Exercise 0.1 (Adjoints, vector calculus, quaternions and Euclidean Dirac operator). Write C for the linear space $C_{c}^{\infty}\left(\mathbf{R}^{3}\right)$ of C^{∞} functions on \mathbf{R}^{3} with compact support and introduce the usual inner product on C by $\langle f, g\rangle_{C}=\int_{\mathbf{R}^{3}} f(x) g(x) d x$, for f and $g \in C$. Consider the linear operator $D_{j}: C \rightarrow$ C of partial differentiation with respect to the j-th variable, for $1 \leq j \leq 3$.
(i) Prove that D_{j} is anti-adjoint with respect to the inner product on C, that is,

$$
\left\langle D_{j} f, g\right\rangle_{C}=-\left\langle f, D_{j} g\right\rangle_{C} .
$$

Denote by V the linear space of C^{∞} vector fields on \mathbf{R}^{3} with compact support and introduce an inner product on V by $\langle v, w\rangle_{V}=\int_{\mathbf{R}^{3}}\langle v(x), w(x)\rangle d x$, for v and $w \in V$. Here the inner product at the right-hand side is the usual inner product of vectors in \mathbf{R}^{3}. Furthermore, consider the linear operators grad : $C \rightarrow V$ and div: $V \rightarrow C$.
(ii) For $f \in C$ and $v \in V$, verify the following identity of functions in C :

$$
\operatorname{div}(f v)=\langle\operatorname{grad} f, v\rangle+f \operatorname{div} v .
$$

Use this to prove

$$
\langle\operatorname{grad} f, v\rangle_{V}=-\langle f, \operatorname{div} v\rangle_{C} .
$$

Conclude that - div : $V \rightarrow C$ is the adjoint operator of grad : $C \rightarrow V$.
(iii) For v and w in V, prove the following identity of functions in C :

$$
\operatorname{div}(v \times w)=\langle\operatorname{curl} v, w\rangle-\langle v, \operatorname{curl} w\rangle .
$$

Hint: At the left-hand side the operator D_{1} only occurs in the term $D_{1}\left(v_{2} w_{3}-v_{3} w_{2}\right)$ and apply Leibniz' rule. Next determine the occurrence of D_{1} at the right-hand side.
(iv) Deduce from part (iii) that

$$
\langle\operatorname{curl} v, w\rangle_{V}=\langle v, \operatorname{curl} w\rangle_{V} .
$$

In other words, the linear operator curl : $V \rightarrow V$ is self-adjoint.
Now consider the following matrix of differentiations acting on mappings $\binom{v}{f}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$:

$$
M=\left(\begin{array}{cl}
\text { curl } & \text { grad } \\
- \text { div } & 0
\end{array}\right)=\left(\begin{array}{rrrr}
0 & -D_{3} & D_{2} & D_{1} \\
D_{3} & 0 & -D_{1} & D_{2} \\
-D_{2} & D_{1} & 0 & D_{3} \\
-D_{1} & -D_{2} & -D_{3} & 0
\end{array}\right) .
$$

The preceding results (in particular, part (i)) imply that M is a symmetric matrix, which in this context must be phrased as $M^{t}=-M$ (when "truly" transposing the matrix we also have to take the transpose of its coefficients).
(v) Verify that $-M^{2}$ equals Gram's matrix associated to M, that is, the matrix containing the inner products of the column vectors of M. Deduce $M^{2}=-\Delta E$, where Δ is the Laplacian and E the 4×4 identity matrix. Derive, for $f \in C$ and $v \in V$

$$
\operatorname{curl} \operatorname{grad} f=0, \quad \operatorname{div} \operatorname{curl} v=0, \quad \operatorname{curl}(\operatorname{curl} v)=\operatorname{grad}(\operatorname{div} v)-\Delta v,
$$

where in the third identity the Laplacian Δ acts by components on v. Finally, show how to derive the second identity from the first.

Background. We may write $M=I D_{1}+J D_{2}+K D_{3}$, where the antisymmetric and orthogonal matrices

$$
I=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), \quad J=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad K=\left(\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

in $\operatorname{Mat}(4, \mathbf{R})$ satisfy $I^{2}=J^{2}=K^{2}=I J K=-E$. As a consequence $I J=-J I=K$. Phrased differently, the linear space over \mathbf{R} spanned by E, I, J, K provided with these rules of multiplication forms the noncommutative field \mathbf{H} of the quaternions, see the Background in Exercise 5.67. In addition, analogously to the situation in dimension 1 where $-D_{1}^{2}=\left(i D_{1}\right)^{2}$, we have decomposed minus the Laplacian on \mathbf{R}^{3} into a square of a matrix-valued linear differential operator acting on \mathbf{R}^{4} :

$$
-\left(D_{1}^{2}+D_{2}^{2}+D_{3}^{2}\right) E=\left(I D_{1}+J D_{2}+K D_{3}\right)^{2} .
$$

M is called the Euclidean Dirac operator, which is studied in the theory of Clifford algebras.

Solution of Exercise 0.1

(i) Because f and g are of compact support, it is possible to select an open ball $\Omega \subset \mathbf{R}^{n}$ containing $\operatorname{supp}(f)$ and $\operatorname{supp}(g)$; in particular, f and g vanish along $\partial \Omega$. The formula then follows from Corollary 7.6 .2 because the integral over $\partial \Omega$ vanishes.
(ii) On account of Leibniz' rule we have

$$
\operatorname{div}(f v)=\sum_{1 \leq j \leq 3} D_{j}\left(f v_{j}\right)=\sum_{1 \leq j \leq 3}\left(D_{j} f\right) v_{j}+\sum_{1 \leq j \leq 3} f D_{j} v_{j}=\langle\operatorname{grad} f, v\rangle+f \operatorname{div} v
$$

Next integrate this identity over \mathbf{R}^{3} and notice that Gauss' Divergence Theorem 7.8.5 implies that the integral of the left-hand side equals $\int_{\partial \Omega} f(y)\langle v(y), \nu(y)\rangle d y=0$, for the same reasons as in part (i). The final conclusion is a consequence of the definition of the adjoint in Section 2.1.
(iii) At the left-hand side D_{1} occurs in the term $v_{2} D_{1} w_{3}+w_{3} D_{1} v_{2}-v_{3} D_{1} w_{2}-w_{2} D_{1} v_{3}$, while at the right-hand side it occurs in $-w_{2} D_{1} v_{3}+w_{3} D_{1} v_{2}+v_{2} D_{1} w_{3}-v_{3} D_{1} w_{2}$, which is a rearrangement of the former expression. Taking the indices modulo 3 one obtains analogous results for D_{2} and D_{3} by means of cyclic permutation of the indices.
(iv) The desired results follow in the same manner as in part (ii).
(v) First note that $-M^{2}=M^{t} M$ where the right-hand side is Gram's matrix according to Section 2.1. On the basis of the symmetry of Gram's matrix and $D_{i} D_{j}=D_{j} D_{i}$, one has to perform 10 trivial mental calculations to establish that $\left\langle M_{i}, M_{j}\right\rangle=\delta_{i j} \Delta$, for $1 \leq i, j \leq 3$. This leads to $M^{2}=-\Delta E$. On the other hand one finds

$$
M^{2}=\left(\begin{array}{cl}
\text { curl } & \text { grad } \\
- \text { div } & 0
\end{array}\right)\left(\begin{array}{rl}
\text { curl } & \text { grad } \\
- \text { div } & 0
\end{array}\right)=\left(\begin{array}{rr}
\text { curl } \circ \text { curl }- \text { grad } \circ \text { div } & \text { curl } \circ \text { grad } \\
- \text { div } \circ \text { curl } & - \text { div } \circ \text { grad }
\end{array}\right) .
$$

Comparison of the matrix coefficients leads to the desired conclusions. Observe that in addition one recovers the definition $\Delta=\operatorname{div} \circ$ grad. The second identity follows from the first by taking the transpose.

