Exercise 0.1 (Computation of $\zeta(2)$ by successive integration). Define the open set $J=] 0, \sqrt{2}[\subset$ \mathbf{R} and the function $m: J \rightarrow \mathbf{R}$ by $m\left(y_{1}\right)=\min \left(y_{1}, \sqrt{2}-y_{1}\right)$.
(i) Sketch the graph of m. Verify that the open subset \diamond of \mathbf{R}^{2} is a square of area 1 if we set

$$
\diamond=\left\{y \in \mathbf{R}^{2} \mid y_{1} \in J,-m\left(y_{1}\right)<y_{2}<m\left(y_{1}\right)\right\} .
$$

(ii) Define

$$
f: \diamond \rightarrow \mathbf{R} \quad \text { by } \quad f(y)=\frac{1}{2-y_{1}^{2}+y_{2}^{2}}
$$

Compute by successive integration

$$
\int_{\diamond} f(y) d y=\frac{\pi^{2}}{12}
$$

At $(\sqrt{2}, 0)$, which belongs to the closure in \mathbf{R}^{2} of \diamond, the integrand f is unbounded. Yet, without proof one may take the convergence of the integral for granted.
Hint: Write the integral the sum of two integrals, one involving $] 0, \frac{1}{2} \sqrt{2}[$ and one $] \frac{1}{2} \sqrt{2}, \sqrt{2}[$, which can be computed to be $\frac{\pi^{2}}{36}$ and $\frac{\pi^{2}}{18}$, respectively. In doing so, use that $f(y)=f\left(y_{1},-y_{2}\right)$. Furthermore, without proof one may use the following identities, which easily can be verified by differentiation:

$$
\begin{aligned}
\int f\left(y_{1}, y_{2}\right) d y_{2} & =: g\left(y_{1}, y_{2}\right):=\frac{1}{\sqrt{2-y_{1}^{2}}} \arctan \left(\frac{y_{2}}{\sqrt{2-y_{1}^{2}}}\right), \\
\int g\left(y_{1}, y_{1}\right) d y_{1} & =\frac{1}{2} \arctan ^{2}\left(\frac{y_{1}}{\sqrt{2-y_{1}^{2}}}\right) \\
\int g\left(y_{1}, \sqrt{2}-y_{1}\right) d y_{1} & =-\arctan ^{2}\left(\sqrt{\frac{\sqrt{2}-y_{1}}{\sqrt{2}+y_{1}}}\right) .
\end{aligned}
$$

Introduce the open set $I=] 0,1\left[\subset \mathbf{R}\right.$, and furthermore the counterclockwise rotation of \mathbf{R}^{2} about the origin by the angle $\frac{\pi}{4}$ by

$$
\Psi \in \operatorname{End}\left(\mathbf{R}^{2}\right) \quad \text { with } \quad \Psi=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right), \quad \text { set } \quad \square=I^{2} \subset \mathbf{R}^{2} .
$$

(iii) Show that $\Psi: \diamond \rightarrow \square$ is a C^{∞} diffeomorphism and using this fact deduce from part (ii)

$$
\int_{\square} \frac{1}{1-x_{1} x_{2}} d x=\frac{\pi^{2}}{6} .
$$

(iv) Conclude from part (iii)

$$
\int_{I} \frac{\log (1-x)}{x} d x=-\frac{\pi^{2}}{6} .
$$

Give arguments that the integrand is a bounded continuous function on I near 0 .
(v) Compute $\int_{\square}\left(x_{1} x_{2}\right)^{k-1} d x$, for $k \in \mathbf{N}$. Assuming without proof that in this particular case summation of an infinite series and integration may be interchanged, use part (iii) (or part (iv)) to show Euler's celebrated identity

$$
\zeta(2):=\sum_{k \in \mathbf{N}} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} .
$$

Solution of Exercise 0.1

(i) $\operatorname{graph}(m)$ is given by

This is an isosceles rectangular triangle of hypothenuse $\sqrt{2}$, hence its area equals $\frac{1}{2}$.
(ii) Note $J=\frac{1}{2} J \cup\left(\frac{1}{2} \sqrt{2}+\frac{1}{2} J\right)$ while the two subintervals have only one point in common. On $\frac{1}{2} J$ and $\frac{1}{2} \sqrt{2}+\frac{1}{2} J$ one has $m\left(y_{1}\right)=y_{1}$ and $m\left(y_{1}\right)=\sqrt{2}-y_{1}$, respectively. Furthermore $f(y)=f\left(y_{1},-y_{2}\right)$. Therefore, using a generalization of Corollary 6.4.3 on interchanging the order of integration and the antiderivatives as given in the hint, one obtains

$$
\begin{aligned}
\int_{\diamond} f(y) d y & =2 \int_{0}^{\frac{1}{2} \sqrt{2}} \int_{0}^{y_{1}} f(y) d y_{2} d y_{1}+2 \int_{\frac{1}{2} \sqrt{2}}^{\sqrt{2}} \int_{0}^{\sqrt{2}-y_{1}} f(y) d y_{2} d y_{1} \\
& =2 \int_{0}^{\frac{1}{2} \sqrt{2}} g\left(y_{1}, y_{1}\right) d y_{1}+2 \int_{\frac{1}{2} \sqrt{2}}^{\sqrt{2}} g\left(y_{1}, \sqrt{2}-y_{1}\right) d y_{1} \\
& =\arctan ^{2}\left(\frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{3}{2}}}\right)+2 \arctan ^{2}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi^{2}}{36}+\frac{\pi^{2}}{18}=\frac{\pi^{2}}{12}
\end{aligned}
$$

because $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$.
(iii) The rotations Ψ and Ψ^{-1} are bijective and C^{∞}; hence, Ψ is a C^{∞} diffeomorphism. From the description of Ψ as a specific rotation one gets $\Psi(\diamond)=\square$. Thus, $\Psi: \diamond \rightarrow \square$ is a C^{∞} diffeomorphism. Observe that, for $y \in \diamond$ and $x=\Psi(y) \in \square$,

$$
\frac{1}{1-x_{1} x_{2}}=\frac{1}{1-\frac{1}{2}\left(y_{1}-y_{2}\right)\left(y_{1}+y_{2}\right)}=2 f(y) \quad \text { and } \quad|\operatorname{det} D \Psi(y)|=1 .
$$

Application of the Change of Variables Theorem 6.6.1 now leads to the desired equality.
(iv) Note that

$$
\int_{I} \frac{1}{1-x_{1} x_{2}} d x_{2}=\left[-\frac{\log \left(1-x_{1} x_{2}\right)}{x_{1}}\right]_{0}^{1}=-\frac{\log \left(1-x_{1}\right)}{x_{1}} .
$$

Since $\square=I \times I$, one obtains the desired formula by means of Corollary 6.4.3 once more. Taylor series expansion of the integrand about 0 shows that it equals $-1+\mathcal{O}(x)$, for $x \downarrow 0$.
(v) Obviously

$$
\int_{\square} x_{1}^{k-1} x_{2}^{k-1} d x=\left(\int_{I} x^{k-1} d x\right)^{2}=\frac{1}{k^{2}} .
$$

Summation of the geometric series leads to

$$
\sum_{k \in \mathbf{N}}\left(x_{1} x_{2}\right)^{k-1}=\frac{1}{1-x_{1} x_{2}}
$$

Integrating the equality over \square and interchanging summation of an infinite series and integration one finds, on the basis of part (iii)

$$
\sum_{k \in \mathbf{N}} \frac{1}{k^{2}}=\sum_{k \in \mathbf{N}} \int_{\square}\left(x_{1} x_{2}\right)^{k-1} d x=\int_{\square} \frac{1}{1-x_{1} x_{2}} d x=\frac{\pi^{2}}{6} .
$$

Background. Compare this exercise with Exercise 6.39. Note that the definition of the integral in part (ii) needs some care, as the integrand f becomes infinite at the corner $(\sqrt{2}, 0)$ of the closure of \diamond. Since f is continuous and positive on the open set \diamond, in order to prove convergence of the integral it suffices to show the existence of an increasing sequence of compact Jordan measurable sets $K_{k} \subset \diamond$ such that $\cup_{k \in \mathbf{N}} K_{k}=\diamond$ and that the $\int_{K_{k}} f(y) d y$ exist and converge as $k \rightarrow \infty$, see Theorem 6.10.6. One may do this, by choosing the subsets K_{k} to be the closures of the contracted squares $\frac{k-1}{k} \diamond$.

Next, the antiderivatives in part (ii) may be computed as follows. For the first one, write

$$
f(y)=\frac{1}{\sqrt{2-y_{1}^{2}}} \frac{1}{1+\left(\frac{y_{2}}{\sqrt{2-y_{1}^{2}}}\right)^{2}} \frac{d}{d y_{2}} \frac{y_{2}}{\sqrt{2-y_{1}^{2}}} \quad \text { and set } \quad u=u\left(y_{2}\right)=\frac{y_{2}}{\sqrt{2-y_{1}^{2}}}
$$

further, use $\int \frac{1}{1+u^{2}} d u=\arctan u$. For the second antiderivative, apply the change of variables $v=v\left(y_{1}\right)=\frac{y_{1}}{\sqrt{2-y_{1}^{2}}}, \quad$ so $\quad y_{1}=\sqrt{2} \frac{v}{\sqrt{1+v^{2}}}, \quad \sqrt{2-y_{1}^{2}}=\frac{\sqrt{2}}{\left(1+v^{2}\right)^{\frac{1}{2}}}, \quad \frac{d y_{1}}{d v}=\frac{\sqrt{2}}{\left(1+v^{2}\right)^{\frac{3}{2}}}$.

Thus,

$$
\int g\left(y_{1}, y_{1}\right) d y_{1}=\int \frac{\arctan v}{1+v^{2}} d v=\frac{1}{2} \arctan ^{2} v .
$$

For the third antiderivative, apply the change of variables

$$
w=w\left(y_{1}\right)=\frac{\sqrt{2}-y_{1}}{\sqrt{2-y_{1}^{2}}}, \quad \text { so } \quad y_{1}=\sqrt{2} \frac{1-w^{2}}{1+w^{2}}, \quad \sqrt{2-y_{1}^{2}}=\frac{2 \sqrt{2} w}{1+w^{2}}, \quad \frac{d y_{1}}{d v}=-\frac{4 \sqrt{2} w}{\left(1+w^{2}\right)^{2}} .
$$

Thus,

$$
\int g\left(y_{1}, y_{1}\right) d y_{1}=-2 \int \frac{\arctan w}{1+w^{2}} d v=-\arctan ^{2} w
$$

