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1. Introduction

From the physical point of view, for instance in the quantum theory of the
electromagnetic field, it is of interest to give, for any finite-dimensional module
U for the connected Lorentz group G, a description of the space J( U) of all the
U-valued distributions on (the dual of the) Minkowski space-time that are
invariant under G and supported on the closed forward light cone, see [2].
Lorentz invariant distributions have of course been studied in depth, not only
on physical space-time but on the more general spaces Rm’" with a quadratic
form of signature (m, n), see [10], [12], [13], the work of Gârding and J.E. Roos
in [3], [11], [16]. However the case of the vector-valued distributions as well as
the situation when their supports are required to be in the forward (as opposed
to the full) light cone have not received the emphasis they deserve in the
mathematical literature. Our aim here is to supplement these papers with a
consideration of these two aspects. We restrict ourselves to the case of signature
( 1, n).
We shall now briefly explain some of the main ideas of the paper. For this

purpose it is enough to consider scalar distributions. In his seminal paper [14]
M. Riesz studies the wave operator D and its complex powers. For Riesz, as well
as for Gelfand and Shilov who took this up later, the study of invariant
distributions associated to the quadratic form co was essentially a question of the
analytic continuation of the powers WS (s E C). The description of all invariant
distributions with or without support conditions, did not emerge as an objective
until the works of Methée and others referred to above focussed attention on

this goal. Finally, it was Harish-Chandra who realized (in a different context) the
fruitfulness of regarding the space of invariant distributions as a module for the
algebra of polynomial differential operators, especially for the Lie algebra a
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gratitude to the Mathematical Institute of the State University at Utrecht, where he spent a part of
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isomorphic to sl(2, C), with basis 0, cv, and their commutator [D, (0], which is
essentially the Euler vector field. This idea is also our starting point and one of
the main results is a complete description of this module structure. Rallis and
Schiffmann in [11] have studied related modules, but as modules for 0 only.
The closed forward light cone supports two invariant measures: b, the Dirac

measure at the origin, and (Xri, the invariant measure on the open forward light
cone. One may naively expect that all invariant distributions supported by the
closed forward light cone may be obtained as linear combinations of the n’ô and
~k03B1+0(k  0). This is in fact true if d, the dimension of the underlying space, is
odd. But when d is even this is no longer the case. Then the distribution
~d-2/203B1+0 becomes a multiple of b - a circumstance compatible with the
Huygens principle - and so one cannot gain access to those invariant

distributions which are nonzero away from the origin and have a transversal

order at the points of the forward cone that is  d - 2 2. Thus, to generate all
invariant distributions one has to start with an invariant distribution 03C4 of

transversal order 2 ; the ones with higher transversal order are then obtained
from the Ek T, and the ones with lower transversal order are obtained from the
(Okr. One also sees from this description that the module of invariant distribu-
tions will have a much more complicated structure when d is even, and that in
particular it will not be cyclic for C alone.
The construction of i is therefore one of the central concerns of this paper. For

use in applications in physics it is also important to obtain an explicit space-time
expression for i. This is done in Section 7.2 where the formula for i on the space
go of Schwartz functions vanishing at the origin is calculated. The extension of i
to the full Schwartz space Y is not unique; however, all extensions are invariant
and they are determined by the value at one element of g outside go.
The method we use for constructing i is not the only one possible. The theory

of Riesz distributions can be used for this purpose, as we discuss in greater detail
in [8]. For instance, if (RJ is the Riesz family (R, is the restriction to the open
solid forward light cone of the power cos with a suitable normalization), it turns
out that, up to a constant depending on d, the distribution r is equal to

Also the principal results on J(C) can now be obtained, although at various
stages in the arguments, one has to make use of a generalization to the one-sided
context of the theory of Methée. Therefore we have preferred to develop in this
paper the entire theory in a direct and elementary manner, independent of the
rather sophisticated Methée calculus.
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This work was inspired by questions posed to VSV by a group of physicists at
the Istituto Nazionale di Fisica Nucleare in Genova, consisting of Professors G.
Cassinelli, G. Olivieri and P. Truini. We are grateful to Professor J.J. Duister-
maat for stimulating discussions on the results of this paper.

2. Notations and statement of main results

We set

We work in R’,", for n  3, with coordinates (p0, p1,... , Pn) and fundamental
quadratic form

where p03BC = + p, according as y is 0 or &#x3E; 0. We write G for SO(1, n)°, the
connected component containing the identity of the subgroup of GL(R1°") of
elements fixing 03C9. We have: g = (aij) ~ G if and only if g fixes w, det(g) = 1, and
aoo &#x3E; 0 ( 1 actually). Moreover Lie(G) = g is its Lie algebra, acting on R1,n via
the vector fields

Here ,u, v = 1,..., n, for M ~ v, and a,, = êlêp,. The forward light cone is

and its closure Cl(Xô ) = X+0 ~ {0}.
G operates naturally on the usual space of test functions C~c(R1,n) (resp.

Y(R1,n)) and hence on the dual space of distributions (resp. tempered distribu-
tions). More generally let U be a finite-dimensional G-module. A U-valued

distribution (resp. tempered distribution) is a continuous map T: C~c(R1,n) ~ U
(resp. Y(R1,n) ~ U). G acts on these by

T is invariant if g - T = T, for all g E G. For any T, supp(T) denotes its support.
Our main concern is with

J(U) = {T|T an invariant distribution with supp(T) c Cl(X+0)}.
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Many computations involving the distributions in J(U) only exploit their
behavior under multiplication by the quadratic form cv and application of the
wave operator

Clearly it is also natural to consider along with these the commutator of (O and
D, cf. [5]; up to constants it is equal to the radial or Euler vector field

which detects the homogeneity properties of the distributions. These three
operators generate a 3-dimensional simple subalgebra a of the algebra of
polynomial differential operators. In fact, for any polynomial h let M(h) be the
operator of multiplication by h. Then, if we write

we have the commutation rules

so that

is a three-dimensional simple subalgebra of the algebra of polynomial dif-

ferential operators on R1,n. It is clear that a operates on J(U) so that J(U) is an
a-module; and we shall give a complete description of J(U) as a module for a.

First we come to the modules U that actually do occur in this set-up. Let Y be
the algebra of polynomial functions on R 1 ,no We have a natural action of G on Y.
An element u ~ Y is said to be harmonic if ~u = 0. We write Jf for the (graded)
G-submodule of Y of harmonic polynomials and Hj for its subspace of
homogeneous elements of degree j. These are stable and irreducible under G. If
U is an irreducible finite-dimensional G-module, then J(U) is nonzero if and
only if U ~ Jfj.
The closed forward cone is stratified by two orbits: the vertex and the open

forward cone. Accordingly we have an injection of the a-module K(U) of the
Lorentz invariant distributions supported by the vertex into J(U). Let J( U) be
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the space of germs of Lorentz invariant distributions defined on invariant open

neighborhoods of X ô with supports contained in X t. Then restriction of
distributions supported on Cl(X+0) to open invariant neighborhoods of xt gives
a mapping J(U) ~ J(U). These maps lead to the sequence

It is important to establish at the outset that (*) is exact. Although K( U) and
J(U) are relatively simple to describe as a-modules, the exact sequence (*) does
not split when d is even (it does, if d is odd). The analysis of (*) is thus a basic
issue when d is even. We shall now proceed to a more detailed discussion of this
point.
We recall the Verma modules V(À) (À E C), cf. § 3 infra. If 03BB, = i is an integer  0,

then F(i) denotes the irreducible finite-dimensional module of dimension i + 1,
and we have the exact sequence

Next we consider the module M(i) which may be characterized as the module,
unique up to isomorphism, for which there is a nonsplitting exact sequence

A precise formulation of the results above is now that always

and that

When d is even the submodule F(d 2 - 2 corresponds of course to the linear
span of the elements ~k03B1+0 0  k  d 2- 2 .

In order to study (*), we consider, for any integer i  0, modules W for which
there is a nonsplitting exact sequence
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The moduli space for all such modules W is P 1 (C), and for every value of the
modulus we construct W as a quotient of the universal enveloping algebra of a
by an explicitly given ideal.

It therefore remains to verify the exactness of (*) as well as to determine the
exact parameter that corresponds to the module under consideration. For both
questions the essential case is that of U ~ C. Note that 03C9:R1,nB{0} ~ R is a

surjective submersion, therefore the pullback 03C9*(03B4(d-2/2)0) of the d 2-derivative
of the Dirac measure ô. at 0 in R gives a distribution on R1,nB{0} homogeneous
of degree - d. The surjectivity of J(C) ~ J(C) now comes down to proving that
03C9*((03B4(d-2/2)0) can be extended to a Lorentz invariant tempered distribution
supported on Cl(X+0). Such tempered extensions exist and they are auto-
matically Lorentz invariant. The determination of the modulus for the general
case J(U) is a delicate calculation.
Our main theorem, which summarizes the results above, is as follows.

2.1. THEOREM. As usual d = n + 1.

(a) For any integer i  0 the set of isomorphism classes of a-modules W
admitting a nonsplitting exact sequence (W, i) is in natural bijection with
P1(C) = C ~ {~}. Let W(i : y) be the module corresponding to y E P1(C).

(b) If U is an irreducible finite-dimensional G-module, then J(U) is nonzero if
and only if U ~ Hj. I n this case,

The invariant y is a subtle one. However there is a qualitative difference
between the module W(i : oo) and the modules W(i : y) with y finite, namely,
W(i : oo) is a weight module while the W(i : y) with y finite are not so; the action of
H on these involves a two-step nilpotent corresponding to each eigenvalue of
multiplicity 2.

In the description of the J(U) there is a noticeable contrast between the case of
odd or even dimension d ; this is directly related to the Huygens principle. If d is
odd there exist no invariant distributions T supported by the forward light cone
that are fundamental solutions of the wave operator, i.e. with UT = ô. In fact, in
this case the Dirac measure at 0 is a highest weight vector in the Verma module
occurring as the second summand; and therefore it cannot be in the image of ~.

It would be interesting to know whether there exist geometric realizations for
the modules W(i : y) for finite values of y different from 1 2(i+1), as spaces of
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vector-valued distributions or variations thereof. And furthermore, can one

explain the isomorphisms between the modules having the same value of

3. Construction of the modules W( j : y)

In this section we shall give the construction of the modules W( j : y). We
consider modules for g = sI(2, C) with the commutation rules

For any module V and any c E C, V[c] denotes the generalized eigenspace of H
for the eigenvalue c, namely the space of all v E v such that (H - c)’v = 0, for
some k.

Let us write V(03BB) for the Verma module with basis (v03BB, VÀ-2, ...) such that

We next introduce the modules M( j), with j an integer  0. Let us consider
modules M for which there is a nonsplitting exact sequence

Then H acts semisimply on M with simple spectrum {j, j - 2,....}. It is obvious
that

For any integer j  0 one can construct such a module M(j) as follows. The
module M(j) has a basis {m(k)}k=j,j-2,... such that

Conversely any M satisfying (E) and nonsplit is isomorphic to M( j); to see this
we observe that X is surjective on M and so we can find 0 ~ m(k) E M[k],
X m(k) = m(k + 2) (m(j + 2) = 0); the commutation rules then lead to the above
action of Y
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3.1. We shall next consider modules W admitting an exact sequence

PROPOSITION. Let w ~ W[- j - 2] map to a nonzero element of M( j). Then
YX w and (H + j + 2)w are independent of the choice of w; and

Proof. The first assertion is clear since, for any u E V(-j - 2)[ - j - 2], X u = 0
and (H + j + 2)u = 0. Also the implication =&#x3E; is obvious. Suppose conversely
that YXw = 0 and (H + j + 2)w = 0. Let Wk = Xkw, 0  k  j + 1. Since wj+1
maps to Xj+1 m ~ 0 where m is the image of w, it must be nonzero. Let

where  ... &#x3E; denotes linear span. We leave it to the reader to verify that L is a
submodule. It is obvious that L ~ M(j) and W = V(-j - 2) ~ L.

3.2. DEFINITION. Suppose that (3.1) does not split. Since (H + j + 2)w and
YX w map to 0 in M( j), they both lie in V(-j - 2)[ -j - 2] and so satisfy a
nontrivial relation 03B1 YXw - 03B2(H + j + 2)w = 0. Hence we have a unique point

03B3 = 03B2 03B1 ~P1(C) = C ~ {~}. It is obvious that 03B3 = 03B3(W) is an invariant of W. Our
aim is to show that all points of P1(C) arise in this manner and that y determines
W uniquely. We write W(j : 03B3) for any W for which 03B3(W) = y.

It is clear that the spectrum of H in W is {j,j - 2,...}; the eigenvalues
j, j - 2,..., - j are simple and the others are double.

LEMMA. Let y = y(W). If y is finite, W is not a weight module; and for any r  1,
H + j + 2r is a nonzero nilpotent on W[- j - 2r]. If y = oc, then W is a weight
module. In either case, w generates W Finally, if y is finite, and 1  r  j + 1,

Proof. If y is finite, we have we W[- j - 2], and (H + j + 2)w ~ 0, proving
that H + j + 2 is a nonzero nilpotent on W[- j - 2]. Furthermore, for any
k  1, X is a bijection of W[- j - 2(k + 1)] with W[- j - 2k] taking H - 2 to H.
This implies, by induction on k, that H + j + 2k is nonzero nilpotent on
W[- j - 2k] for all k. In either case let W’ = U(g) · w, where U(g) is the universal
enveloping algebra of g. It is clear that W’ maps onto M( j). So to prove that
W’ = W we need to verify that W’ contains ker( W ~ M(j)). If y is finite and
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v = (H + j + 2)w, then v ~ 0, (H + j + 2)v = 0, and v maps to zero in M( j), so
that v generates ker(W - M(j)). If y = oo, we take v = YX w; then again v ~ 0
and maps to 0 in M(j) so that it generates ker( W ~ M(j)). We prove the last
assertion of the lemma by induction on r. This is clear for r = 1. Let r &#x3E; 1 and

assume it for lower values of r. Now

therefore we get, if we remember that (H + j + 2)2W = 0,

3.3. We write « ... » for the ideal generated by - - .

LEMMA. Let U(g) be the universal enveloping algebra of g. Then

where

Proof If 0 ~ u ~ M(j)[- j - 2], the map a ~ a·u (a E U(g)) gives an exact
sequence U(g)/K(j) ~ M(j) ~ 0. The elements Y"X’, for r  0, s  j + 1 span
U(g) mod K( j). On the other hand, if r  1 and s  1,

So Yr, for r  0, and X S, for 1  s  j + 1, span U(g) mod K( j). The weights of
Y" and X S are respectively - j - 2 - 2r and - j - 2 + 2s. This shows that the
spectrum of H on U(g)/K(j) is simple and is contained in {j,j - 2...}, and, hence,
that U(g)/K(j) ~ M(j).

3.4. We now consider the W( j : y). We treat first the case of finite y. The vector w
is as in Section 3.1. For any integer j  0 and y E C let
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Let

LEMMA. I( j : y)w = 0 and 03932j E I( j : y). In particular F? = 0 on W( j : y).

Proof The first relation is obvious. Since 0393j ~ (H - j + 403B3)(H + j + 2)
mod 1( j : y) we get rJ == 0 mod 1( j : y), proving the second relation.
3.5. LEMMA. dim(U(g)/I(j: y))[ - j - 2] = 2.

Proof. Let us write 7 for 1( j : y), W for U(g)/I, and define

Now YrXs(H + j + 2)t, for r, s, t  0, form a basis for U(g) and it is clear that the
subfamily with r  0 and (s, t) satisfying one of: (a) s  j + 2; (b) t  2; (c) s  1,
t  1, span l’. Hence YrXs, for r  0, 0  s  j + 1, and yr(H + j + 2), for
r  0, form a basis for U(g) mod l’. The weights of these are, respectively,
- j - 2 + 2s - 2r and - j - 2 - 2r, so that if W’ = U(g)/l’, and a ~ a’ is the

natural map U(g) ~ W’, then W’[- j - 2] has the basis u’, vs, for 0  s  j + 1,
where u = H + j + 2 and vs = YSX S. Now I’ c I and I = l’ +

U(g)(YX - 03B3(H + j + 2)). Hence W = W’/W" where W" is the submodule of W’

generated by (YX - y(H + j + 2))’ which lies in W’[- j - 2]. But W"[- j - 2] is
spanned by the elements a · (YX - y(H + j + 2))’ where a is of the weight 0 for the
adjoint representation, i.e., a commutes with H. Now the centralizer of H in U(g)
is the algebra generated by H and YX and is therefore abelian. Hence,
W"[- j - 2] is L(W’[- j - 2]) where L is the endomorphism of W’ which is
induced by left multiplication by YX - y(H + j + 2) on U(g). Hence,

But a simple calculation shows that

So for the kernel ic and the range p of L on W’[- j - 2] we have

where (...) denotes linear span. The vectors determining p are linearly
independent, so that K = ~u’, v’j+1~ and the dimension of p is j + 1. This proves
that W[- j - 2] = W’[- j - 2]/03C1 ~ C2.
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3.6. Since I(j: y) c K( j), we now may introduce the module V’ = K( j)/I( j : y).

LEMMA. We have V’ ~ V(-j - 2) and the sequence

is exact and nonsplitting. In particular, for W = U(g)/I(j : y) we have y(W) = y.
Proof. We know YX’ (r  0, s  j + 1), Y’(H + j + 2) (r , 0) span U(g)

mod I(j:03B3). But if r  1, s  1,

Hence,

These have weights - j - 2 + 2s, - j - 2 - 2r, respectively. So the spectrum of H
on W is contained in {j, j - 2,...} with the eigenvalues of multiplicity  1 or  2
according as they are  - j or  - j - 2. Hence, the spectrum of H on V’ is
simple and contained in {- j - 2, - j - 4,...}. By 3.5 we know that - j - 2 is an
eigenvalue. Hence, - j - 2 is the highest weight of V’, showing that

V’ ~ V( - j - 2). On the other hand, H + j + 2 ft I( j : y) as otherwise we would
have K(j) c I( j : y) c K( j), giving V’ = 0. We may therefore take w to be the
image of H + j + 2 in W and find that y( W) = y. ·

3.7. We now take up the case y = oo. We set

LEMMA. dim(U(g)/I( j : oo))[- j - 2] = 2.

Proof. Write

and a’ for the image in W’ of a E U(g). Let W" = U(g)·(03932j)’. Then

yrxs(H + j + 2Y, for r, s, t  0, form a basis for U(g) and the subfamily with
either ,s  j + 2 or t  1 span l’. Hence, YrXs (r  0, 0  s  j + 1) form a basis of
U(g) mod l’. In particular, Vs = (Y’X’)’ (0  s  j + 1) form a basis of

W[- j - 2J. Since 1 j is m the center of U(g) we have W"’ = 03932j. W’ so that
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A simple calculation shows that

from which it follows easily that (restricted to W’[ - j - 2]) ker(03932j) has

dimension 2 and that W’[ - j - 2] = ker(03932j) ~ im(03932j).
3.8. As I(j:~) ~ K(j) we are allowed to introduce the module V’ =

is a nonsplitting exact sequence. In particular, y(W) = oo.
Proof. Write 1 = l(j: (0). The images Vrs of YrXs in U(g)/I for r  0 and

0  s  j + 1 span W. An easy calculation shows that, with yj = rj/4,

and, hence, that for suitable constants ars, brs,

It follows that for 1  s  j and constants crs we have

Thus vro and vr(j+1) span m and their weights are respectively - j - 2 - 2r and
j - 2r. Consequently, the spectrum of H in V’ is simple and contained in
{- j - 2, - j - 4, ...}. As - j - 2 is an eigenvalue by 3.7, it follows as before that
V’ ~ V(- j - 2). If w is the image of 1 in W, we must have YX w ~ 0; for,
otherwise, YX E I which would imply that K(j) ~ I ~ K(j) so that V’ would be
0. Since (H + j + 2)w = 0, we have 03B3(W) = ~.

3.9. THEOREM. For each y E P1(C) there is exactly one W( j : y) up to isomor-
phism. It is a weight module for y oc while for finite y the action of H + j + 2k on
W(j:03B3)[-j-2k] for each k  1 is a nonzero nilpotent. ln either case, if
w ~ W(j:03B3)[-j-2] maps to a nonzero element in M(j), there is a unique
isomorphism of W( j : y) with U(g)/I(j: y) that takes w to the image of 1.

Proof. Let W be such that (3.1 ) is exact and nonsplitting and let y( W) = y. If J
is the annihilator of w in U(g), it is direct that 1( j : y) c J. Hence there is a unique
surjective homomorphism U(g)/I(j: y) ~ W that takes the image of 1 to w. This
must be an isomorphism since the multiplicities of the eigenvalues of H are the
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same for both modules. The remaining statements are clear. Note that this
proves Theorem 2.1(a)

3.10. The modules W(j:03B3) do not seem to have been encountered before in
representation theory; however, the modules W( j : oo) are the same as the
modules T discussed in [18, p. 185].

3.11. We shall now give another description of W( j : y). Let W be the category of
modules V such that:

(1) v = ~c~C V[c], where the V[c] are the generalized weight spaces for H;
(2) V[c] ~ 0, only for c ~ Z, and finite-dimensional for all c.

As before let

and for any V ~ B and integer c  0, let Vc be the maximal subspace of V on
which 0393 - c(c + 2) is nilpotent. The n are submodules and V = ~ Vc. We write
E, for the projections V ~ Vc. The functor 03B2j, for integers j  0, is then defined
by

It is clear that this is a covariant functor which is exact, that is, takes exact

sequences to exact sequences. Our aim is to prove the following theorem whose
proof requires some preparation.

THEOREM. We have

3.12. We write {fj, fj-2,..., f- il for a basis of F(j) with fk of weight k and
Yfk = fk-2 (Yf - k = 0). The following proposition is the special case, for

g = sI(2, C), of [1, Lemma 5].

PROPOSITION. Let c E C. Then V(c) 0 F(j) has a flag of submodules whose
successive quotients are

More precisely, let v(c) be a nonzero highest weight vector of V(c) and let



74

where D = C [ Y] c U(g). Then :

(1) the Lr are submodules and 0 c Lo c... c Li = V(c) 0 F( j);
(2) Lr/Lr-1 ~ V(c + j - 2r);
(3) The image of v(c) O fj- 2r ~ Lr lies in V(c+j-2r)[c+j-2r] and is not zero.

3.13. DEFINITION. Suppose W ~ B has a flag of submanifolds

Assume that for all m = 0,..., p, we have that (Wm/Wm-1)c(m) =
Wm/Wm-1, for some c(m) E C; that is, r has a single eigenvalue c(m)(c(m) + 2) on
Wm/Wm-l’ For a fixed r, 0  r  p, the number c(r) or Wr/Wr-1 is said to be

isolated if c(m)(c(m)+2) ~ c(r)(c(r) + 2) for m ~ r.

3.14. Let the context be as above and let 03C0 be the natural map

LEMMA

(1) Suppose x ~ Wm and 03C0x ~ 0, then Ec(m)x ~ 0; in fact,

(2) Suppose further that Wr/Wr-1 is isolated. Then W’ := Ec(r)W is contained in
W and Wr = W’ ~ Wr-1.

Proof The assertion (1) follows from the commutativity of the diagram

For (2) we write W" = (I - Ec(r))(W). Then W = W’ ~ W" so that W"c(r) = 0. For
any m,

Taking m = r we see that W ~ W" = Wr-1 n W". Hence,
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On the other hand, if m ~ r, the imbedding

shows that Wm-l 1 ~ W’ = Wm n W’. Hence,

This proves that Wr = W’ ~ Wr-1.

3.15. Let c ~ C, Lr as in Proposition 3.12, and c(r) = c + j - 2r.

LEMMA. We have

and its image in L, /4 - 1 generates L, /4 - 1.
Proof. Follows from Proposition 3.12(2) and Lemma 3.14(1).

3.16. We continue in the above context but with V(-2) in place of V(c).

LEMMA. Let E = Ej, then:

Proof. Assertion (1) is immediate from Lemma 3.15. For (2), notice that
V(-2) ~ Fi has the flag of submodules L, with Lr/Lr-1 ~ V(-2+j-2r) with
r = 0, 1,..., j. Then Lj/Lj-l i is isolated and so by Lemma 3.14(2) we find that

03B2j(V(-2)) ~ V(-j - 2). We now prove (3). From (2) and the exact sequence

we get the exact sequence

It is thus enough to prove that this does not split. If it does, then V( - j - 2) is a
direct summand of 03B2j(M(0)) and, hence, of M(O) Q F( j). So there exists v ~ 0 in
M(O) (8) F(j) of weight - j - 2 with X v = 0. Write
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where , and is of weight Then

This means that v-j+2r is of weight 0 so that r = - 1, a contradiction.

Let us write W(y) for W(0 : y). From the above lemma we obtain the exact

sequence

We are thus reduced to verifying that this does not split and computing the y-
invariant of 03B2j(W(03B3)). Consider

and let we W(y)[ -.2] be as in 3.1. Let

3.17. LEMMA. With notation as above we have the following :

Proof A standard 51(2) calculation shows that Xjf-j = j!2fj. Also we know
that Xj+1f-j = 0, X2w = 0. Hence,

But YX w = u E V(-2)[-2] and yj(u 0 fj) ~ L0 ~ V(j - 2), according to Propo-
sition 3.12. Hence, ELO = 0, so that

Again Yj-1(u ~ fj-2) ~ L1, and EL1 = 0, so that
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This argument can be continued until we get

For (2) we simply note

3.18. We recall the exact sequence

LEMMA. Let w’ = E(w Q f-j). Then w’ E 03B2jW(03B3)[-j- 2] and maps to a nonzero
element of M( j)[ - j - 2]. Moreover the above exact sequence does not split, and
so, 03B2jW(03B3) = W( j : y’) for some y’ E P’(C); and y’ is finite if and only if y is.

Proof. The image of w’ in M(j)[-j-2] is E(m( - 2) (8) f - ) where

m( - 2) E M(o) is the image of w. Under M(0) ~ V(-2) we have

m(-2) ~ v’ ~ V(-2)[-2] with v’ ~ 0, so that under M(j) ~ V(-j-2), the

element E(m(-2) ~ f-j) goes to E(v’ ~ f-j) which is ~ 0 by Lemma 3.16(1).
Hence, E(m( - 2) (D f- j) ~ 0.
We now have

Suppose now that y E C. Then v ~ 0 and therefore (H + j + 2)w’ ~ 0. So y’ E C.

Suppose next that y = oo . Then v = 0 and u ~ 0. So (H + j + 2)w’ = 0;
moreover

This implies that YXw’ ~ 0. Indeed, if YX w’ = 0, then as (H + j + 2)w’ = 0,
Proposition 3.1 will apply to give the conclusion that 03B2j(W(03B3)) =
V(-j- 2) ~ M( j), which implies that Yi’ 1Xj+1 = 0 on 03B2j(W(03B3)).
3.19. We can complete the proof of Theorem 3.11 by proving the following
lemma.

LEMMA. 03B2j(W(03B3)) = W(j:(j + 1)y).
Proof. We need only consider the case when y is finite. Then
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But u = YX w = y(H + 2)w, so that

Let y’ be such that YX w’ = y’(H + j + 2)w’. Then by Lemma 3.2,

Hence equating the right-hand sides, we find

4. The modules li

We now return to the framework of Section 2. The properties of the modules li
are quite classical and have been studied, in a vastly more general context, by
Kostant [9, §§0-2]. For our purposes we need a few refinements which,
although readily deducible from Kostant’s theory, are hard to find in the

literature. Let X be a complex vector space of finite dimension on which a
connected complex reductive algebraic group L operates. Let Y be the algebra
of polynomial functions on X. For any x in X we write L(x) for the orbit of x
under L. If x E X, let F(L(x)) denote the space of functions on L(x) that are
restrictions of the polynomial functions to L(x); moreover, let R(L(x)) denote the
space of L-finite functions on L(x), namely, the linear span of all finite-

dimensional spaces of functions on L(x) that are stable under L and

carry a holomorphic (=rational) representation of L. It is obvious that

F(L(x)) c R(L(x)), and it is important to know when there is equality here. It is
known (see [9]) that if the variety Cl(L(x)) is normal and Cl(L(x))BL(x) is of
codimension at least 2 in Cl(L(x)), then F(L(x)) = R(L(x)). Let Y be the algebra of
constant coefficient differential operators on X. We shall naturally identify it
with the symmetric algebra over X. We write I(Y) (resp. I(Y)) for the subalgebra
of L-invariant elements of Y (resp. Y). An element f of Y is called harmonic if
a(u)f = 0 for all u E I(Y) whose constant terms are zero. We denote by H the
graded space of harmonic elements and by li its homogeneous components.

Let us now introduce the variety fi of zeros of the ideal I(Y)+· EP where
I(Y)+ is the set of all elements of I(Y) that vanish at the origin of X. Following
Kostant let us make the following assumptions:

(1) I(Y)+·Y is a prime ideal;
(2) there exists an orbit 0 dense in N;
(3) there exists a symmetric nondegenerate bilinear form ( . , . ) for X invariant

under L.
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Under these conditions, which we shall call (K), we have the following results

(cf. [9]):

(1) the natural map I(&#x26;» ~ H ~ P is an isomorphism; in particular Y is a
free I(P)-module;

(2) H is the linear span of the monomials 1(x)", for n = o, l, 2, ... , where 1(x) is
the linear function y ~ (x, y) on X;

(3) let x e X be called quasiregular if

then if x is quasiregular, the (surjective) restriction map P ~ F(L(x)) is an

isomorphism onto when restricted to e.

The structure of Yf (hence of 9) as an L-module may be obtained under
suitable additional assumptions. Let x E X be any quasiregular element; for
instance, we may take x to be such that L(x) is dense in X. Let Lx be the

stabilizer of x in L and let R(L/Lx) be the left L-module of all regular functions on
L that are right Lx-invariant. If in addition Cl(L(x))BL(x) is of codimension  2
in Cl(L(x)), we have the L-module isomorphism

e - R(L/Lx),

which, together with Frobenius reciprocity shows that e contains precisely
those irreducible representations of L whose contragredients contain nonzero
vectors invariant under Lx, and that the multiplicity of such a representation is
the dimension of the space of Lx-invariant vectors in the contragredient
representation. Finally, we have an isomorphism

of Y with Y under which the linear function 1(x): y H (x, y) goes over to the
directional derivation ê(x) in the direction of x. The bilinear form for EP defined
by

is then symmetric, nondegenerate, and L-invariant; and with respect to it

1(&#x26;)+ · P and Je are mutual orthogonal complements. Of course
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We may now specialize to the situation when L is the full special orthogonal
group of (.,.). The conditions (K) are satisfied. The variety X is the cone of null
elements

and it follows from classical results of Seidenberg [9, p. 391] that X is normal.
Let us define

Then the Qt are all orbits for L; the Qt for t ~ 0 are closed and smooth while Qo is
smooth and open dense in fi. It follows from this that any x ~ 0 in X is

quasiregular and F(Qx) = R(Qx) ~ e. Of course we shall continue to use the
notation to for the quadratic form (.,.) and ~ for the operator which is 1, ~2/~z2k
with respect to any linear system (Zk) of coordinates associated to an or-

thonormal basis. A polynomial is harmonic if Cp = 0. The following result is
well-known, and we give a sketch of its proof for completeness.

4.1. PROPOSITION. We have the following.

(1) The modules Hj are irreducible for all j  0, self -contragredient, and they
are mutually inequivalent.

(2) Setting a(n) = a - (a + 1) ... (a + n - 1), we have

In particular, for any x :0 0, the action of L on F(Qx) = R(Qx) is multiplicity-free
and contains only those representations that contain a nonzero vector fixed by LX.
These representations are self -contragredient and have a one-dimensional space of
Lx-invariant vectors.

Proof. Using an orthonormal basis for X we identify X with C"+ 1 so that
03C9 = 03A30kn z2k and ~ = 03A30kn ~2/~z2k. If we take x = (1, 0,..., 0) and note that
the restriction map from SO(n + 1, C) to SO(n + 1, R) induces an isomorphism of
R(SO(n + 1, C)/SO(n, C)) with R(SO(n + 1, R)/SO(n, R)), we can make use of the
compactness to infer the self-contragredient nature of the representations
involved. If we knew that the li are irreducible and the dimension formula is
true, all the assertions would follow easily.
We now prove the dimension formula. We shall work with the real subspace

EPR of Y on which ( . , . ) is positive definite. The isomorphism p H a(p) of Y with
P takes 03C9 to D. Moreover for p, q ~ P we have
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showing that co and D are transposes of each other with respect to (.,.). As M(w)
maps PjR injectively into Pj+R 2, the operator 0 will map PjR surjectively onto
Pj-2R for all j  0. The dimension formula now follows from the fact that Hj is
the kernel of C on Pj.

It remains to prove the irreducibility of li under SO(n + 1, R). This will be
done if we show that the space of functions in Ai that are fixed by SO(n, R) is of
dimension  1. For this we set up an injection of this space into the space of
solutions of an ordinary differential equation of the second order on the open
interval ( -1, + 1). To this end, let Q be the Casimir operator of SO(n + 1, R). Its
action on functions on Rn+ 1 is given by

A simple calculation shows that

where r2 = 03A3jp2j and 6 is the Euler operator. So Q acts as the scalar

-j(j + n - 1) on li. Let Z be the space of functions z on the unit sphere S" that
are smooth and fixed by SO(n, R), and satisfy Qz = - j ( j + n - 1)z. Let

The differential equation Qz = - j ( j + n - 1)z then transcribes into the dif-

ferential equation

This is an equation of the Fuchsian type with singularities at + 1, 00; and it is an
easy consequence of the theory of such equations that the space of solutions
bounded at t = 1 is one-dimensional; indeed, this follows from the fact that the
roots of the indicial equation at t = 1 are 0 and - 1 2n.
For our purposes we need to refine these results by bringing in the group G,

the component of the identity of SO(1, n). Let us therefore take X as CCn, the
complexification of R 1.n, and L as Gc, the complexification of G, namely, the
special orthogonal group of the quadratic form
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We then view the forward light cone Xô as the G-orbit of the point
(1, 0, ... , 0, 1), and write Go (respectively Gc,o) for its stabilizer in G (resp. Gc).
We then have the following

4.2. LEMMA. The stabilizer Gc,o is isomorphic to the semidirect product of
SO(n -1, C) with the additive group of C n -1 viewed as a module for SO(n -1, C)
via the contragredient action. I n particular, GG,o is connected, as are the stabilizers
of all the nonzero points of X.

Proof. We select a basis (fj)0jn such that f0 = (1, 0, ... , 0, 1 ),
fn = (0, 0, ... , 1), and f1,..., fn-1 span a space S orthogonal to fo. Then any
element gE Ge,o gives rise to a vector a = (a1, a2,..., an-1) and a

h==(hij)ESO(n-1, C) such that

It is then easy to verify that the map g ~ (h, a) gives the isomorphism
described.

4.3. LEMMA. Every continuous finite-dimensional representation of G extends
to a rational representation of Ge.

Proof. Since SO(n) is the maximal compact subgroup of G, the fundamental
group of G is (± 1). Let G*C be the universal covering group of GC and
7r: G*C ~ Gc be the covering morphism with kernel K0 ~ (± 1). Let Hn be the
component of the identity of H’n = 03C0-1(G). It is clearly a question of proving that
Ko c Hn. Now Kn+1 = 03C0-1(SO(n+ 1)) is a compact subgroùp of G*C having the
same dimension as its maximal compact subgroup and, hence, Kn+1 is con-

nected. If Kn = n-1(SO(n)) and K’n is its component of identity, the diagram

shows, in view of the simple connectedness of Sn, that Kn = K’n. But then
Ko ~ Hn, proving that Hn = H’n.

4.4. PROPOSITION. For any x ~ 0 in R1,n let Qx,R be the G-orbit of x and let
Rx be the space of G- finite functions on it, namely the span of all spaces of functions
on the orbit that are stable under G and induce a continuous representation on it.
Then the restriction map from P maps onto Rx and is an isomorphism of H onto it.
Proqf Only the surjectivity of P ~ Rx is not obvious. If GX is the stabilizer of

x in G, then Rx ~ R(G/Gx). By the previous lemma the elements of R(G/Gx) are
restrictions of the rational matrix elements of Gc to G, and these are right
invariant under the stabilizer of x in GC since this stabilizer is connected by
Lemma 2. Hence, Rx c R(Qx).
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4.5. COROLLARY. For an irreducible finite-dimensional G-module U the fol-
lowing are equivalent:

(1) there exists a G-module imbedding U ~ F(Qx,R)(=Rx);
(2) U ~ Hj for some j;
(3) The space Ux of vectors fixed by Gx is nonzero.

I n this case dim( Ux) = 1.
Proof. Obvious..

4.6. PROPOSITION. Let U ~ Hj be as above and let u ~ 0 be in Ux. Then
there is a unique harmonic G-invariant map hu: C1,n ~ U such that hu(x) = u;
moreover hu is necessarily homogeneous of degree j. The elements

form a basis for the space of G-invariant maps C1,n ~ U. Finally, if U is not
equivalent to any Hj, there is no invariant map C1,n ~ U other than zero.

Proof. There is a unique G-invariant map h : Qx,R ~ U with h(x) = u ; its

components are in R(Qx,R) and so there is a unique harmonic map hu : C1,n ~ U
that restricts to h. This map is necessarily G-invariant. To prove that this is
homogeneous of degree j it is enough to construct such a map independently.
Let (hi) be a basis of li and let (ki) be the contragredient basis. If

it is immediate that h is a nonzero G-invariant, harmonic map that is

homogeneous of degree j. For the rest of the proof, let 1 d be the space of G-
invariant maps of C1.n into U that are homogeneous of degree d. First let j = 0.
Then hu is a nonzero constant and the assertion is just that

form a basis for the space of G-invariant scalar polynomial functions. Let j  1

and let e be the smallest degree in which we can find a homogeneous polynomial
map g into U of degree e that is G-invariant and nonzero. If t = (1, 0,..., 0, 1 ),
there is a constant c such that g - chu vanishes on Qt,R, hence, on the complex
orbit Qt, so that g - chu = 03C9g1; g1 is G-invariant. If e  j, then g 1 will have a

nonzero component in degree e - 2, contradicting the definition of e, and so,
e a j. Let g be a G-invariant polynomial map into U of degree d  j. If d = j, g 1
is zero so that g = chu; if d &#x3E; j, then g = 03C9g2 where g2 is homogeneous of degree
d - 2, and we use the induction hypothesis to complete the proof. The last
assertion is obvious.
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5. Structure of J( U)

Let M, N be smooth manifolds, N being a submanifold of M, regularly
imbedded, in particular locally closed. Let p E N and T a distribution, scalar or
vector-valued, defined around p with supp(T) c N. If xi, ... , xm, y1,...,yr are
local coordinates defined around p vanishing at p such that N is locally defined
as y1= ... = yr = 0, then T can be written as Ey ôySY where Sy are distributions
defined on N around p, and ~03B3 = (~/~y1)03B31...(~/~yr)03B3r, the sum being finite. The
germs of the Sy at p are uniquely determined by T. The transversal order, op(T),
of T at p, is then defined as the largest integer r for which there is a y with 171 = r
such that the germ at p of S, is nonzero. It is easy to see that this definition is
independent of the choice of local coordinates. If N is of codimension-one in M,
and g E C°°(M) is such that dgp ~ 0 and N is locally defined as the set of zeros of
g, then

If T is invariant under a Lie group G acting on M and N is invariant,
op(T) = Og·p(T). In particular, if N is an orbit, op(T) is constant for p E N and we
denote it by oN(T) or o(T).

5.1. DEFINITION. Let U be an irreducible G-module. We define J(U) to be
the space of germs of G-invariant distributions T defined on invariant open

neighborhoods of X+0 with supp(T) c X t. Similarly we define J(U) to be the
space of germs of G-invariant distributions T definéd on R1,n with

supp(T) c Cl(X+0). These spaces admit filtrations (Jk(U)) (resp. (Jk(U)) defined
by the condition o(T)  k, the transversal order being with respect to the orbit
xt. When U = C we omit U. Once and for all we choose and fix a G-invariant
harmonic map hu: C1,n ~ U, nonzero iff U rr li for some j.

5.2. LEMMA. Let T ~ J(U). Then we have

Proof. Immediate since X ô is locally the set where w is zero; and d03C9 ~ 0

everywhere on it. ·

5.3. A standard way to build invariant distributions is by ’pullback’ of

arbitrary distributions via an invariant map. Let us now make this more precise.
A volume form on a smooth manifold M is a nowhere zero element of n* M of
maximal degree. Let us now consider two smooth manifolds M, N and a smooth

mapn: M - N which is surjective and everywhere submersive. Let volM
(resp. volN) be a volume form on M (resp. N). If p = dim M - dim N, there exists
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a unique exterior differential form fi on M of degree p, such that

flm = (volM)m/(volN)03C0(m) for all m E M. It is clear that 1 defines a volume form 1(n)
on the fiber 03C0-1({n}) and that 1(n) is smooth with respect to n. If we choose
(oriented) local coordinates on M and N so that n has the form (x, y) H y, and if
the volume forms are, respectively, vm(x, y) dx dy and VN(y) dy, then

Let y, v, and M(n) be the measures defined by the forms volM, volN and il(n). For
any f ~ C~c(M) we define

It can then be shown that 03C0* f lies in C~c(N), while supp(03C0*f) c n(supp(f)), and
f ~ 03C0*f is a continuous linear map of C~c(M) onto cr: (N). The dual map,
denoted by 03C0*, is the pullback map of distributions

For more details, we refer to [17, §I.2]. See also [6], where it is mentioned that a
similar construction goes back to some unpublished work of L. Schwartz, and
[4]. We shall need to make use of the following properties:

(1) For any locally integrable function g on N, we have

(2) Let D be a differential operator on M and let us suppose that there is a
differential operator Dn on N such that for all smooth f in N, D(f 0 n) =
(D03C0f)° n. If t denotes transposes with respect to the volume forms, then

(3) supp(t 0 n) ~ 03C0- 1(supp(t)).
(4) If N’ c N is a closed submanifold, then M’ = 03C0-1(N’) is a closed submani-

fold of M; and for any distribution t on N with supp(t) c N’ and any n ~ N’
with on(t) = k and m ~ 03C0-1(n), one has
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We only need (4) in the special case when N’ = {n} and this is seen as follows.
Going over to the local picture let t = a:b where ô is the Dirac measure at y = 0;
then

with

Here ~(x, y) dx is the ratio of volume forms. This shows that So is the measure
~(x, 0) dx, and so, as ~(0,0) &#x3E; 0, we have 0 E supp(Sa), showing that the

transversal order of ton at (0, 0) is IPI.

5.4. We now apply these considerations to the case M = R1,nB{0}, N = R, and
03C0 = 03C9, the volume forms being the standard ones dPodp1 ...dPn and dt. We
exclude the origin to make cv submersive. Then for f E C~c(R1,n)B{0}),

with

If ba is the delta function on R at the point a E R, then co*(ba) is the positive
measure aa on the hyperboloid cv = a, invariant under the full Lorentz group;
and the integral above is the expression for f f dota. For a &#x3E; 0 the hyperboloid
splits into two connected components (sheets) and we write aâ for the

restrictions of (Xa to the two components. If a = 0, then 03C9-1({0}) splits into the
two halves of the light cone and we define aô analogously. Thus

for all f ~ C~c(R1,nB{0}). It is obvious that the integral above converges even
when f ~ P(R1,n), so that the aô are tempered measures on R 1,n.
We remark that the integral defining 03C9*f exists for all f c- C’O(R’ n) if a ~ 0.

The function co,f = Mf thus defined is the so-called mean value map and plays
a fundamental role in the works [10], [3], [16].
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5.5. SOME FORMULAE. Write

The (u,) form a coordinate system on the open set R l," of p ~ R1,n with po &#x3E; 0.

We have

In particular, on RI ,n , the vector fields ~/~u03BC (1  03BC  n) generate the same
module (over C~c(R1,n+)) as all the M,, (0  r, s  n). Further,

From these we get the following expressions for D and 8, where as usual
d=n+ l,

It is immediate from these that D and g have associated to them differential

operators ~03C9, E03C9

5.6. LEMMA. The measure 03B1+0 satisfies on R’ nthe differential equations

Proof. The first assertion is obvious. Since H = E + d 2 and 03B1+0=03C9*(03B40), the
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second assertion on R1,nB{0} follows from the readily verified formula

on R. To see that this relation holds on all of R1,n we note that

S = H03B1+0 - (d 2 - 2 03B1+0 has support contained in 0 and satisfies X S = 0. Going

over to Fourier transforms we get oS = 0 where S is an invariant polynomial.
This means that S is invariant and harmonic, and, hence, a constant. It follows
that S = cô for some constant c. So S will be zero if we can find f E Y(R 1,n) with
f(0) ~ 0 but S(f) = 0. If we take f = e-g where g(p) = 1 2(p20 +... + p;), it is a

routine calculation that S(f) = 0.

5.7. LEMMA. We have the following.

(1) J(U) = 0, unless U ~ Hj for some j.
(2) If U rr Hj, Jo( U) is one-dimensional and spanned by hU. aô where hu is a

nonzero invariant map: Cl, n - U.

(3) hu . aô lies in Jo(U) and satisfies, on all of R1,n

(4) Jk(U)/Jk-1(U) ~ 0 for all k  0.

Proof. If J(U) ~ 0 there is a t ~ 0 in J( U) such that X t = 0. So t lives on

X+0 ~ G/Gx (x = (1, 0,..., 0, 1)) and, hence, its components may be viewed as G-
finite distributions on G/Gx. By a well-known result they are COO functions on
G/Gx, showing that there is a nonzero invariant function with values in U. This
proves assertion (1) and establishes at the same time that Jo(U) = C·hU·03B1+0.
Furthermore, as EhU = jhU, if hu is homogeneous of degree j, we have,

HhU·03B1+0 = (d 2 - 2 + j )hU·03B1+0 on R1,n. For the last assertion note that the

pullback of 03B4(k)0 is invariant and has transversal order k..

5.8. Let us now consider an a-module V such that V = ~k0 Vk where
Vk = {v ~ V|Xk+1v = 0}. Each Vk is H-stable as Xk+1 H = (H - 2k - 2)Xk+1.
LEMMA. Suppose that dim(Vo) = 1 and let Â E C be such that H = 03BB·1 on Vo. If
Â fi {0, 1,...}, then V ~ V(03BB). If Â = j is an integer  0, then V ~ F(j) or V ~ M( j).
Proof Let 0 ~ v03BB ~ V0 so that Xv03BB = 0, Hv03BB = 03BBv03BB. As the mapping

X : Vk/Vk-1 ~ Vk-1/Vk-2 is injective, we get dim(Vk/Vk-1)  dim V0 = 1 , for all k.
Hence dim Vk  (k+1), for all k. Further Xk(H - 03BB, + 2k) = (H - 03BB)Xk and so, as
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XkVk C vo, we must have (H - 03BB + 2k)Vk c V, - . In particular

So H acts semisimply on V with a simple spectrum c (À, À - 2,...}. Let W be the
cyclic module generated by v03BB. If 03BB, is not an integer  0, then W = V(03BB) and it is
clear from the spectra that W = E Suppose that = j is an integer  0. Since the
kernel of X on V(j) is 2-dimensional, W is not equivalent to V( j) and so
W ~ F( j). If Vj+1/Vj = 0, then Vk+1/Vk = 0 for all k &#x3E; j and so V = F( j). If

Vj+ 1/Vj ~ 0 and 0 ~ u E Vj+1/Vj c V/Vj, we see that Hu = ( - j - 2)u, X u = 0, so
that u generates V( - j - 2). In other words, V has a submodule V’ satisfying an
exact sequence

this does not split because dim kerV-(X) = 1. As {j, j - 2,...} is the spectrum of H
on V’, we must have V = V’. The results of Section 3 now imply that

V ~ M(j).

5.9. PROPOSITION. Suppose U ~ Hj. Then

In all cases, multiplication by hu gives an isomorphism of J = J(C) with J(U)

Proof. Follows immediately from Lemmas 5.7 and 5.8, except for the last
statement. Consider the map m: t - hut of J into J(U). This is injective because
hu is nowhere zero on X ri. On the other hand, it takes H on J to H + j on J( U).

So the ran e of m contains all the J U d 2 - 2 + - 2k k &#x3E; 0 . So m is

surjective..

6. Structure of J( U)

We have the restriction map J(U) ~ J( U) that maps Jk(U) into Jk(U) for all
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k  0. Let K(U), Kk(U) be the respective kernels so that we have the diagrams

Let b be the delta function at the origin of R 1,n. We shall first prove the following
lemma.

6. l. LEMMA. K(U) = 0 and, hence, J(U)= 0 unless U ~ Hj for some j. Suppose
that U ~ Hj and that (ha)1aN are the components of the map hu with respect to
some basis of U. Then, if tr is the U-valued distribution whose components in that
basis are Drê(ha)b, the tr, for r = 0, l, ... , form a basis of K(U). In particular

Proof. We show first that

K(C) = {P(~)03B4|P an arbitrary polynomial} ~ V

Indeed, since pkb = 0 and E~ = -c - d, the equations involving ô are clear. On
the other hand, elements of K(C) are supported by {0} and so are of the form
P(a)à, with P being a polynomial; in fact P H P(p)b is a linear isomorphism. In
other words K(C) is a cyclic module with b as a generator and Y acts injectively
on it. So

Let now U be an irreducible G-module with basis (ea). The elements of K( U) are
of the form (Da03B4) where the Da are constant-coefficient differential operators; the
invariance implies that the linear span of the Da is either 0 or carries a
representation contragredient to U. This already shows that K(U) = 0 unless U
is ~ to some li. Suppose that U rr Ai. Proposition 4.6 now shows that the tr
form a basis of K(U). For the identification of K( U) with the appropriate Verma
module it is enough to verify that
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It is actually enough to check the second relation; for then Htr =
d- - - j - 2r tr and so to has the highest weight in K(U). If p ~ Hj,

03B5~(p)03B4 = - d~(p)03B4 + [E, ~(p)]03B4, and so we need only check that

[E, ~(p)] = -j~(p). We shall show that this is true for any p ~ P that is

homogeneous of degree j. This is trivial for j = 0 and let us suppose that it is true
in degrees  j. We may assume that 0 = oP where 03B2 = (/30, ..., 03B2n) and |03B2|= j.
Then [ô, pk~k] = 03B2k~03B2 for all k ; so that [E, ~(p)] = -~(p).

The obvious question now is whether the map J(U) ~ J(U) is surjective. We
shall do this by first replacing U by C and by showing that the elements of J(C)
extend to tempered distributions in all of R1,n. We then use a cohomology
argument to show the existence of invariant tempered extensions. We begin with
a preparatory result.

6.2. LEMMA. Let s be an integer  0 and let P(s) be the subspace of P(R1,n) of
all elements f such. that ~03B2f(0) = 0, for |03B2|  s. If r is any integer  s and y is a

multiindex with lyl = r, then there are linear continuous maps La: Y(s) - fi/ such
that

Proof. Analogous to the arguments in the proof of [7, Lemma 7.1.4]. a

6.3. LEMMA. Let r, s be integers  0. Then there is a tempered distribution t on
R1,n such that

(1) supp(t) c CI(xt),
(2) for all f ~ P(s+r+1), in particular in C~c(R1,n+),

Proof. By Lemma 6.2 we can find f03B2 e Q (1 03B2| = r + 1) depending linearly and
continuously on f ~ P(s+r+1), such that

Then, for f’ E P(s+r+1)
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and it is clear that the right side is a continuous seminorm on P. So

is a continuous linear functional on P(s+r+1) and so extends to a tempered
distribution on R1,n. If f ~ C~c(R1,n) and supp( f ) n Cl(X+0) = 0, then f vanishes
in a neighborhood of 0, so that f ~ P(s+r+1); and t(f) is 0 by its definition..

6.4. PROPOSITION. Any element of J(U) is tempered, and the maps

are surjective.
Proof. The basic assertion to prove is that any element of J(U) is the

restriction of a tempered element of J(U). Indeed, if this is done, all elements of
J(U) are tempered .since all elements of K(U) are tempered. The surjectivity of
the second map also follows. In fact, let t ~ Jk(U) and t ~ J(U) be such that t
restricts to t. Then Xk+1 t lies in K(U). But as K( U) is a Verma module whose

highest weight is 0, it is clear that X acts surjectively on it and so we can find
t’ ~ K(U) such that Xk+1t’ = Xk+1t. So t - t’ lies in Jk(U) and restricts to t.

Furthermore it is enough to prove the basic assertion in the case when U = C, in
view of the isomorphism s ~ hUs of J(C) with J(U). Finally, since

J(C) ~ M(d 2 - 2 it is enough to prove that the elements of weights - - 2 and() 
2 

’ g p g 
2

- d 2 are extendable, the latter being necessary only when d is even. The former is
2

a 0 + which is already defined as an element of J(C). Let t be the latter, d being

even ; t has transversal order d-2 2.
We begin by remarking that it is enough to prove that t has a tempered

extension t to all of R’,", with SUpp(t) c Cl(Xô ), but not necessarily invariant.
For, suppose that we have constructed such a t. Let us write, for any Z E g, i(Z)
for the vector field on R1,n defined by Z. Since r(Z)t = 0, for all Z E g, the

distribution i(Z)t has support c {0}. As i(ZJ depends linearly on Z we can find
an integer r  0 such that !(Z)t E L(r) for all Z E g, with L(r) being the span of the
derivatives of 03B4 of order  r. Now L(r) is stable under G, hence under i(Z), for
Z e g; and it is immediate that Z - i(ZJ is an 1-cocycle for this g-module. Since
g is semisimple, H1(g, L(r») = 0; and so we can find s E L(r) such that 03C4(Z)t = 03C4(Z)s,
for all Z E g. This means that t 1= t - s also extends t, has support c Cl(X+0), and
is infinitesimally invariant. It is thus a tempered element of J(U) that restricts
to t.
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In order to prove the existence of a suitable t it is sufficient to show that for

any integer r  0, the restriction to R1,n+ of the pullback tr = 03C9*(03B4(r)0) extends to a
tempered distribution on R1,n with support c Cl(X+0). If f ~ C~c(R1,n+) and a &#x3E; 0,

So

It is easy to see by induction that (dr/dar)(03C9*f) is a linear combination of

functions of a of the form

where k is an integer  0, and, hence, tr(f) is a linear combination of linear
functionals of the form considered in Lemma 6.3.

6.5. LEMMA. Suppose d is odd. Then

I n particular D acts injectively on J(U).
Proof. By (3) of Lemma 5.7 and Proposition 5.9, if W is the cyclic module

generated by 03B1+U = hU03B1+0 and R is the restriction map J(U) ~ J(U), then

R(W) = J(U) ~ V (d 2 - 2 + j), so that W ~ 2 J
phism on W 

From now on we shall assume that d is even. At this stage we know that J(U)
is 0 unless U ~ Hj for some j, and that when this is so, it admits an exact

sequence

In Lemma 6.8 below we shall verify that this exact sequence satisfies the

criterium of Proposition 3.1 for being nonsplitting. Then it follows from



94

Theorem 2.1(a) that there exists y E P 1 (C) such that

We shall now begin the proof that

This is a delicate calculation, which depends on explicit construction of certain
distributions invariant under the full Lorentz group. We begin with

6.6. LEMMA. All elements of J(C) are invariant under the space inversion S. For
any distribution s in J(C) let SO be its transform under the space-time inversion ST.
Then the map s H s + SO is an a-module isomorphism of J(C) with the space .P of
SO(1, n)-invariant distributions supported on the full light cone.
Proof. We start with the exact sequence

It is clear that the elements of K are invariant under all of SO(1, n). On the other

hand J(C) is spanned by the up=~p03B1+0 (0  p  d 2 - 2), and the vr = ~r03C4

(r  0), where i is a nonzero element of weight - d 2. The u are obviously S-
invariant. Since S commutes with H, the vr are either invariant or change sign
when transformed by S; but, as X commutes with S and Xvo is a nonzero

multiple of ud/2 - 2, it must be that v. is also S-invariant, so that all the vr are S-
invariant. So all elements of J(C) are S-invariant. But then this must be true of
J(C) also. We consider next the map s H s + s°, SE J(C). It is clear that it maps
J(C) into fil and that it commutes with the action of a. Suppose that for some s,
we have s + s° = 0. It is then obvious that s has to be zero on R1,n+, and so s E K,
showing that 2s = s + So = 0. To prove that it is surjective it is thus enough to
verify that the multiplicities of the eigenvalues of H in fil are not greater than the
corresponding multiplicities in J(C). Let filx be the space of SO(1, n)-invariant
distributions defined on invariant neighborhoods of Xo in R1,nB{0} and

supported on Xo. We then have the sequence

It is obvious that this is exact at the second place and that the map s H s + s° is
an isomorphism of J(C) with Y’. This proves the required bounds on the H-

multiplicities. ·
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COROLLARY. The above sequence is exact.

DETERMINATION OF y(J(C)). We suppose that d  4 is even. The starting
point is the observation that by Fourier analysis the delta functions on R and
their derivatives can be expressed as superpositions of the exponential functions
ei03BBt, and the pullbacks of the latter are just the functions ei03BB03C9. The resulting
integrals define formally the pullbacks on all of R 1.n; however, the integrals do
not in general converge, and so have to be regularized using the transformation
03BB, ~ 03BB-1 that is familiar from stationary phase analysis. We now proceed to give
the details.

Our starting point is the well-known transformation formula, see [7, (7.6.2)’],
valid for all 03BB E RB(0), and all f E P:

where

We shall also choose and fix, once and for all, u E C~c(R) such that u is equal to 1
in a neighborhood of 03BB = 0; then v =1- u is 0 in a neighborhood of 03BB = 0, equal to
1 for IÀI » 0. For any distribution T on R1,n we write T  for its restriction to

R1,nB{0}.
We then define the tempered distribution i on R1,n by

To see that there is absolute convergence we use the estimate

If f lies in C~c(R1,nB{0}), we know that 1 e"’f dp is rapidly decreasing as |03BB| ~ oo,
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and so, we have in this case

6.7. LEMMA. The distribution 03C4 restricts on R1,nB{0} to a nonzero multiple of
03C9*(03B4(d-0 2/2)}, the pullback under 03C9 of 03B4(d-0 2/2). In fact,

Proof. If 0 e supp( f ) we have

6.8. LEMMA. We have

Proof. We note that Then

Let us now write

Then
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Integrating by parts, we get

Moreover, observing that 0 and 03BBd/2|03BB|-d/2 = (sgn 03BB)d/2 are locally constant and
denoting temporarily by Z the boundary term, we have

Now u’+ v’= 0 so that IA + IB = Z. On the other hand, B(± ~) =
11 dp = (2n)f (0) and, writing 6 = 2-d03C0-d/2, we have

according as d = 41 + 2 or d = 41 + 4. Hence,

6.9. LEMMA. We have

1 n particular,

Proof. First we observe that f = Owf Moreover,

where

so that
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From these formulae we get

203C003C4(03C9~f)

Let A, B be as before. Then we get

where

If we now integrate by parts and use that A(03BB) = 03B8(03BB)|03BB|-d/2B(03BB), we get

where Z is the boundary term, which turns out to be

But our earlier calculation led to the formula

Hence, we obtain

6.10. DETERMINATION OF 03B3(J(U)). We shall now sketch the calculation
for showing that



99

For brevity we put

so that W0 = J(C)~ W(0:03B30). We then choose t0 ~ W0[- d 2] such that

Xct0 =03B1+0; then Yc03B1+0=~03B4, for some constant ~ ~ 0. On the other hand,

YXt0 = 03B30(H + d 2)t0, so that by Lemma 3.2 we have YcXct0 = 03B3(H + d 2)t0,
where 03B3 = (c - 1)!203B30. Thus H + d 2 )t0 = 03B3-1~03B4. Select a basis e for U and let
(ha) be the components of the map hue We put t = (~(ha)t0) and view t as an

element of W = J(U). It is clear that t ~ W[-d 2 -j].
LEMMA. Let D be the algebra of differential operators on c1,n with polynomial
coefficients, and for any u e D, let Du be the derivation D H [u, D] of Çfi. Then, for
any homogeneous polynomial p of degree r (identifying p with the operator of
multiplication by p)

1 n particular,

Proof. This is a well-known lemma of Harish-Chandra [5, p. 99]. If (xj) is the
standard basis for C1.n, then we have [X, ~j] = -03B5jxj, and [ Y, xj] = -03B5j~j; this
proves the lemma for r = 1. The general case is done by induction on the

degree..

6.11. LEMMA. We have

In particular ô(ha)to maps to a nonzero element of J(U) [- d 2 - j].
Proof. For any u ~ D let Lu (resp. Ru) be the operator of left (resp. right)

multiplication in D by u; then Lu, Ru, and Du commute with each other and

Du = Lu - Ru . So, by Lemma 6.10,
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On the other hand, Xc+1t0 = 0, so that

6.12. LEMMA. We have

where Da E D; moreover, for some Oa E D,

Proof. As before we write L, = Dy + Ry so that, by Lemma 6.10,

where

6.13. COMPLETION OF THE CALCULATION OF y(J(U)). By Lemmas
6.11 and 6.12, we have, for some constant ~’,

For any u c- let uo be its local expression at the origin, namely the differential
operator with constant coefficients obtained by freezing the coefficients of u at 0.
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Then uô = ((u t)o)t b; and so

Writing 03A9’a = ((03A9~a)0~ we thus have for some constant b,

On the other hand, we know that the left side is of the form b’~(ha)03B4 where b’ is a
constant. Hence,

But the restriction map of e on the light cone is injective; and this, when
interpreted in the symmetric algebra, implies that 03B4(H) is linearly independent
of the ideal generated by Y Hence, the above relation must imply that ~’03A9’a = 0.
In other words,

If we write y’ - 03B3(J(U)), we know (by Lemma 3.2 again)

since Hence,

If we remember that 03B3 = (c -1)!203B30 = (c -1)!21 2c, we get

This completes the proof of Theorem 2.1(b).

6.14. REMARK. The reader will see that the surjectivity of the map

J(C) ~ J(C) and the determination of 03B3(J(U)) are the key steps in the arguments
above. One can use the Riesz distributions R, to give an alternative treatment of
these two points, cf. [8].
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7. Remarks and additional results

We retain the assumption of d being even.

7.1. SOME FUNDAMENTAL SOLUTIONS. We shall now verify that

In particular, on Minkowski space-time, we have,

As before, let c = d 2. It is obvious that assertion (F) is equivalent to

According to Lemma 6.8 we have

Now there exists a ~ 0 such that X03C4 = aYc-1 03B10, while YX03C4 = 03B3b03B4. So

(Lemma 3.2)

which lead to

It is thus enough to calculate a.
Since both i and Yc-1 1 (Xo are nonzero on R1,nB{0} we can determine a working

on R1,nB{0} and hence working entirely with the pullbacks. For any distribution
T on R 1,n let T " be its restriction to R1,nB{0}. We have 03C4  = (- i)c03C9*(03B4(c)0); so that
X03C4  = 1 2cic(-1)c-103C9*(03B4(c-1)0) while (X; = 03C9*(03B40). We shall now compute Yc-103B1 0.
Clearly there exists e such that Yc-103B1 0 =03B503C9*(03B4(c-1)0). On the other hand, the

d
pullback intertwines the action of Y with that of - 2t d2 dt2 - dd dt = Q. So if we
write 03A91= ((03A9~c-1)0)~, then Yc-103B1 0 = 03A9103C9v*(03B40). Since 03A91= 03B5(d/dt)c-1 we can
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determine it by acting on we find that

From this the desired formulae follow at once. Related formulae occur in [13];
results of this kind go back essentially to [15]. Professor Duistermaat pointed
out to us that the result above, as well as the Lemmas 6.8 and 6.9, also can be
deduced by using [7, §3.2].
From (F) it is easy to deduce the corresponding formulae in the vector-valued

situation. Let U rr li and let (ha) be the components of hU with respect to some
basis of U. Then, using Lemma 6.12 and proceeding as we did in the

determination of 03B3(J(U)), we find

The methods developed in this paper allow one to obtain a host of similar
formulae.

7.2. SPACE-TIME EXPRESSIONS FOR i. The distribution i of Lemma 6.7

is unique only up to a translation by a multiple of ô; and so one can expect
explicit formulae for it only on the subspace P0 of the Schwartz space consisting
of the functions that vanish at 0. Let 03C4k,a (0  k  c) be the distribution given by

where a &#x3E; 0 is fixed and M +( f : b) is the restricted mean value

For b = a &#x3E; 0 we can differentiate under the integral sign and we obtain

where p’0 = (|p|2 +a)1/2 and f ~ P, and the Ck,s are uniquely determined by
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The limit as a - 0+ of the ik,a will now be invariant distributions. There is no

difficulty when k  c. But when k = c, s = 0, the integrand is

f(0)(p’0)-n + O((p’0)-(n-1)) near p = 0; and so for the passage to the limit we must
suppose f (0) = 0. Thus

In particular, for n = 3 we get

In the physics literature i is often written as 03B4’(p03BCp03BC) and the above expression,
quite well-known, plays an important role in the quantum theory of the
electromagnetic field in the so-called Landau gauge, see [2, Th. 2.1].

7.3. RELATION TO THE THEORY OF METHÉE. The determination of
y(J(C)) (cf. Lemma 6.9) may also be carried out with the help of this theory. The
central construction in it is the mean value map M that takes f E C~c(R1,n) into
the function Mf = w,f defined and smooth away from the origin in R,
vanishing for large It 1. One of the main results of that theory is that the range of
M is precisely the space of all functions on R of the form

where hi belong to C~c(R), and h(k)2(0) = 0, for 0  k  d 2 - 2. Although the hi are

not uniquely determined by u, the derivatives h(k)i(0) are determined; and if we
write

then

are SO(1, n)-invariant distributions; moreover
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and the 039Bk, for k  d-2 2, and the Mk, for k  0, form a basis for the space of
such distributions that are supported by the full light cone. The formulae

lead to the following formulae

Let

Since 039Bk = 0, for 0  k d 2 - 2, we have X03B8 = 0. So e is a linear combination of

ao and 03B4. But as(H + d 2)03B8 = 0 and as 03B10 is of weight d 2 - 2, we see that 0 is a
nonzero multiple of 03B4, so that

Moreover

Hence,

proving what we want. The determination of g(J(U)) is as before.
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