Final exam UCU SCI211, December 19, 2001

1 Let $(x(t), y(t))$ be the solution of the differential equations

$$
\frac{d x(t)}{d t}=y(t), \quad \frac{d y(t)}{d t}=-x(t)
$$

with the initial condition

$$
x(0)=1, \quad y(0)=0
$$

a) Prove that the function $t \mapsto x(t)^{2}+y(t)^{2}$ is constant. What is its value?
b) Write down the Euler method with step length $h=t / N$. The value $\left(x_{N}, y_{N}\right)$ after N steps is the corresponding numerical approximation of $(x(t), y(t))$. Prove that, for every positive integer $n, x_{n}{ }^{2}+y_{n}{ }^{2}=\left(1+h^{2}\right)^{n}$.
c) Prove that

$$
1+\frac{t^{2}}{2 N} \leq\left(x_{N}^{2}+y_{N}^{2}\right)^{1 / 2} \leq \mathrm{e}^{t^{2} / 2 N}
$$

(Hint: you may use the well-known theorem that if f is a differentiable function, then $f(a)=f(0)+f^{\prime}(b) a$, for some b between 0 and a. For the first inequality use $f(a)=(1+a)^{N / 2}$ and for the second inequality use $f(a)=\ln (1+a)$.)
Prove that the error in the distance to the origin, the number $\left(x_{N}{ }^{2}+y_{N}{ }^{2}\right)^{1 / 2}-$ $\left(x(t)^{2}+y(t)^{2}\right)^{1 / 2}$, is at least equal to $t^{2} / 2 N$ and at most equal to $\mathrm{e}^{t^{2} / 2 N}-1$.

2 Consider the wave equation

$$
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}, \quad-\infty<x<\infty
$$

on the real line.
a) Give d'Alembert's formula for the solution $u(x, t)$ in terms of the initial profile $u(x, 0)=f(x)$ and the initial velocity $\left.\frac{\partial u(x, t)}{\partial t}\right|_{t=0}=g(x)$.
b) Let $f(x)$ be periodic with period 2 and given by $f(x)=x^{2}$ when $-1 \leq x \leq 1$. Let $g(x) \equiv 0$. Make a sketch of the function $x \mapsto u(x, t)$ given by d'Alembert's formula, for $-4 \leq x \leq 4$, and for $t=0, \frac{1}{2}, 1, \frac{3}{2}, 2$. (Five graphs, make these distinguishable if you put these into one picture.)
c) Returning to general initial conditions, prove that $u(x, t)=f(x+t)$ if $g(x)=$ $d f(x) / d x$. Sketch the graph of $x \mapsto u(x, 1 / 2)$, for $-4 \leq x \leq 4$, if $f(x)$ is as in b) and $g(x)$ is periodic with period 2 and $g(x)=2 x$ when $-1<x<1$. (The discontinuities of $g(x)$ at the odd integers are no obstacle to the application of d'Alembert's formula.)

3 Denote by

$$
D:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\} \quad \text { and } \quad C:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
$$

the unit disc in the plane and its boundary circle, respectively. Our aim is to solve the diffusion equation

$$
\frac{\partial u(x, y, t)}{\partial t}=\frac{\partial^{2} u(x, y, t)}{\partial x^{2}}+\frac{\partial^{2} u(x, y, t)}{\partial y^{2}}, \quad(x, y) \in D, t>0
$$

with boundary condition

$$
u(x, y, t)=0 \quad \text { when } \quad(x, y) \in C, t \geq 0
$$

and prescribed initial profile $u(x, y, 0)=f(x, y)$.
For this purpose we use the substitution of polar coordinates

$$
U(r, \theta, t):=u(r \cos \theta, r \sin \theta, t), \quad F(r, \theta):=f(r \cos \theta, r \sin \theta) .
$$

It is known (and you don't have to verify this here) that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} U}{\partial r^{2}}+\frac{1}{r} \frac{\partial U}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} U}{\partial \theta^{2}}
$$

a) Expand the 2π-periodic functions $\theta \mapsto U(r, \theta, t)$ and $\theta \mapsto F(r, \theta)$ into the Fourier series

$$
U(r, \theta, t)=\sum_{k=-\infty}^{\infty} U_{k}(r, t) \mathrm{e}^{i k \theta} \quad \text { and } \quad F(r, \theta)=\sum_{k=-\infty}^{\infty} F_{k}(r) \mathrm{e}^{i k \theta}
$$

respectively. Prove that the diffusion equation in $D \backslash\{(0,0)\}$ is equivalent to

$$
\begin{equation*}
\frac{\partial U_{k}(r, t)}{\partial t}=\frac{\partial^{2} U_{k}(r, t)}{\partial r^{2}}+\frac{1}{r} \frac{\partial U_{k}(r, t)}{\partial r}-\frac{k^{2}}{r^{2}} U_{k}(r, t), \quad k \in \mathbb{Z}, r, t>0 \tag{1}
\end{equation*}
$$

that the boundary condition is equivalent to

$$
\begin{equation*}
U_{k}(1, t)=0, \quad k \in \mathbb{Z}, t \geq 0 \tag{2}
\end{equation*}
$$

and that the initial condition is equivalent to

$$
\begin{equation*}
U_{k}(r, 0)=F_{k}(r), \quad k \in \mathbb{Z}, 0 \leq r \leq 1 . \tag{3}
\end{equation*}
$$

b) For any integer k, write $n=|k|$. Note that $n^{2}=k^{2}$ and $n \geq 0$. Let $J_{n}(\rho)$ denote the Bessel function of order n. Write down the second order differential equation, the Bessel equation, which is satisfied by $J_{n}(\rho)$.
Let $R_{n, m}$ denote the m-th strictly positive zero of $J_{n}(\rho)$. Prove that

$$
U_{k, m}(r, t)=\mathrm{e}^{-R^{2} t} J_{n}(R r), \quad R=R_{n, m}
$$

satisfies the differential equation (1), the boundary condition (2), and the initial condition (3) with

$$
F_{k}(r)=J_{n}\left(R_{n, m} r\right)
$$

(Hint: use the substitution $\rho=R r$.)

