Final exam UCU SCI 211, December 20, 2002
In every part of a problem you may use the conclusion of a previous part, even if you did not prove that one (yet). Lots of success!

1) Consider the wave equation

$$
\frac{\partial^{2} v(x, t)}{\partial t^{2}}=\frac{\partial^{2} v(x, t)}{\partial x^{2}}, \quad 0<x<\infty
$$

on the positive x-axis, with the boundary condition

$$
v(0, t)=0 \quad \text { for all } \quad t \in \mathbf{R}
$$

and the initial conditions

$$
v(x, 0)=\varphi(x) \quad \text { and }\left.\quad \frac{\partial v(x, t)}{\partial t}\right|_{t=0}=0 \quad \text { for all } \quad x \geq 0
$$

where φ is a given function on the positive x-axis. Assume that φ is twice continuously differentiable, that $\varphi(0)=0$ and that $\varphi^{\prime \prime}(0)=0$. Define the function f on the whole real axis by $f(x)=\varphi(x)$ when $x \geq 0$ and $f(x)=-\varphi(-x)$ when $x<0$. It follows that f is twice continuously differentiable on the whole real axis and that f is odd. (You don't have to prove this here. Also, don't be irritated that we used a different notation for φ and its odd extension f to the whole real axis.)
a) Let $u(x, t)$ be the solution of the wave equation on the whole real axis such that

$$
u(x, 0)=f(x) \quad \text { and }\left.\quad \frac{\partial u(x, t)}{\partial t}\right|_{t=0}=0 \quad \text { for all } \quad x \in \mathbf{R}
$$

Use d'Alembert's formula in order to prove that $u(0, t)=0$ for every $t \in \mathbf{R}$. Therefore, if $v(x, t):=$ $u(x, t)$ for every $x \geq 0$ and every $t \in \mathbf{R}$, then $v(x, t)$ is a solution of the wave equation on the positive real axis, which satisfies the required boundary condition and the required initial conditions. (Again, don't be irritated that we used a different notation for u and its restriction v to the positive axis.)
b) Suppose that the graph of the function $\varphi(x)$ is given by

Draw the graph of the function $x \mapsto v(x, 1)$ and of the function $x \mapsto v(x, 4)$ for $x \geq 0$. Show the scale on the axes!
2) Consider the partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} u(x, y)}{\partial x^{2}}+\frac{\partial^{2} u(x, y)}{\partial y^{2}}=1, \quad 0<x<1,0<y<1 \tag{1}
\end{equation*}
$$

in the square in the plane, with the boundary conditions

$$
\begin{equation*}
u(0, y)=u(1, y)=0 \quad \text { when } \quad 0 \leq y \leq 1 \quad \text { and } \quad u(x, 0)=u(x, 1)=0 \quad \text { when } \quad 0 \leq x \leq 1 \tag{2}
\end{equation*}
$$

a) Let $f(t)$ be periodic with period 2 , odd, and such that $f(t)=1$ when $0<t<1$. Let b_{k} be the coefficients in Theorem 1.2 in the Guide Book. Show that $b_{k}=4 /(\pi k)$ when k is odd and $b_{k}=0$ when k is even. Show that

$$
\sum_{l \geq 1, l \text { odd }} \sum_{k \geq 1, k \text { odd }} \frac{4}{\pi k} \sin (k \pi x) \frac{4}{\pi l} \sin (l \pi y)=1, \quad 0<x<1,0<y<1
$$

b) Define

$$
u(x, y):=-\sum_{l \geq 1, l \text { odd }} \sum_{k \geq 1, k \text { odd }} \frac{16}{\pi^{4} k l\left(k^{2}+l^{2}\right)} \sin (k \pi x) \sin (l \pi y)
$$

Show that $u(x, y)$ satisfies the differential equation (1) and the boundary conditions (2).
3) Let $x(t)$ be the solution of the differential equation $\mathrm{d} x(t) / \mathrm{d} t=c x(t)$, with the initial condition $x(0)=a$. Here c and a are positive constants.
a) For any $t>0$, write down the Euler method with step length $h=t / N$. (Here we treat t as a positive constant.) The value x_{N} after N steps is the corresponding numerical approximation of $x(t)$. Prove by induction on n that, for every positive integer $n, x_{n}=a(1+h c)^{n}$.
b) Now treat t again as a variable. Write $x_{N}=x_{N}(t)$, in order to emphasize the dependence of x_{N} on t. Define $v(t):=\ln x(t)-\ln x_{N}(t)$. Prove that $v(0)=0$ and that

$$
\frac{\mathrm{d} v(t)}{\mathrm{d} t}=\frac{c^{2} t}{N+c t}
$$

Let T be a given positive number. Deduce that, for every $0 \leq t \leq T$,

$$
\frac{c^{2} t}{N+c T} \leq \frac{\mathrm{d} v(t)}{\mathrm{d} t} \leq \frac{c^{2} t}{N}
$$

and, as a consequence,

$$
\frac{c^{2} t^{2}}{2(N+c T)} \leq v(t) \leq \frac{c^{2} t^{2}}{2 N} \quad \text { when } \quad 0 \leq t \leq T
$$

(This implies that the difference between $x_{N}(t)$ and $x(t)$ is of order $1 / N$ as $N \rightarrow \infty$. However, you don't have to prove this here.)

