
Answers final exam UCU SCI 211, December 18, 2003

1) According to the theory, for instance of Section 8.2 in the Guide Book wit γ = 1 and L = 1, the solution
is of the form

u(x, t) =

∞
∑

k=0

ak e−π2 k2 t cos(kπx),

in which substitution of t = 0 yields

1 + cos(πx) = u(x, 0) =

∞
∑

k=0

ak cos(kπx).

Here the left hand side is a cosine series of the same form as appears in the right hand side, with a0 = 1,
a1 = 1 and ak = 0 for every k > 1. (One can also use the integral formulas for the Fourier cofficients ak,
which is a little more work.) The conclusion is that

u(x, t) = 1 + e−π2 t cos(πx).

It follows that
|u(x, t) − 1| =

∣

∣

∣
e−π2 t cos(πx)

∣

∣

∣
= e−π2 t |cos(πx)| ≤ e−π2 t,

because |cos(πx)| ≤ 1. Substitution of t = 1 yields the desired inequality.

2) Let f(x) be a twice differentiable function on the real axis which is periodic with period 2L and has the
property that f(x) = 0 when −L ≤ x ≤ 0. Define

u(x, t) = f(t + x) − f(t − x).

a) Differentiating u(x, t) twice with respect to t we obtain f ′′(t + x) − f ′′(t − x). Differentiating u(x, t)
with respect to x we obtain f ′(t + x) + f ′(t − x), and differentiating this again with respect to x we
obtain f ′′(t + x)− f ′′(t− x), which is equal to the second order derivative of u(x, t) with respect to t.
This shows that u(x, t) satisfies the wave equation.

Putting x = 0 we get u(0, t) = f(t) − f(t) = 0. Putting x = L we obtain f(t + L) − f(t − L) = 0,
because x + L = (x − L) + 2L and f was assumed to be periodic with period 2L. This shows that
u(x, t) satisfies the boundary conditions.

Finally, if 0 < x < 3 then u(x, 0) = f(x)− f(−x) = f(x), because x > 0 implies −x < 0 and therefore
f(−x) = 0. If we put t = 0 in ∂u(x, t)/∂t = f ′(t + x) − f ′(t − x) we obtain that the initial velocity is
equal to f ′(x) − f ′(−x) = f ′(x), because f(y) = 0 for all y < 0 implies that f ′(y) = 0 for all y < 0.
This shows that u(x, t) satisfies the initial conditions.
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b) The pictures should look like the following.

-3 -2 -1 0 1 2 3

f(x)

-f(-x)

-3 -2 -1 0 1 2 3

f(1+x)

-f(1-x)

-3 -2 -1 0 1 2 3

f(2+x)

-f(2-x)

-3 -2 -1 0 1 2 3

f(3+x)

-f(3-x)

In the interval 0 ≤ x ≤ 3, the bump is translated to the left with speed 1 until it hits the left end point
of the interval, whereas after time t = 2 it has reappeared upside down and is shifting to the right with
speed equal to 1.

c) We have u(x, 1.5) = f(1.5 + x) − f(1.5 − x) = 0, in which the second equation just expresses the
symmetry of the function f with repect to the reflection 1.5 + x 7→ 1.5−x. This is not such a paradox
as it may seem, because at time t = 1.5 the velocity ∂u(x, t)/∂t is nonzero, the string just moves
through the horizontal position at time t = 1.5.
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3) If we substitute u(x, y) = f(x) g(y) in the partial differential equation, we obtain

f ′′(x) g(y) + f(x) g′′(y) + 2f ′(x) g(y) + f(x) g(y) = 0.

Assuming that u(x, y) = f(x) g(y) is nonzero we can divide by f(x) g(y) and obtain the equivalent equation

f ′′(x)

f(x)
+

g′′(y)

g(y)
+ 2

f ′(x)

f(x)
+ 1 = 0,

or equivalently
f ′′(x)

f(x)
+ 2

f ′(x)

f(x)
+ 1 = −g′′(y)

g(y)
.

The left hand side does not depend on y, and is equal to the right hand side which does not depend on x,
and therefore it is equal to a constant λ neither depending on y nor on x. This implies that our equation is
equivalent to the two equations

f ′′(x)

f(x)
+ 2

f ′(x)

f(x)
+ 1 = λ = −g′′(y)

g(y)
,

or equivalently
f ′′(x) + 2f ′(x) + (1 − λ) f(x) = 0, g′′(y) + λ g(y) = 0,

in which λ is an arbitrary constant. The exponential function ep x is a solution for the equation for f(x) if
and only if p2 + 2p + (1 − λ) = 0, or p = −1±

√
λ. If λ 6= 0 then, using the two-dimensionality of the space

of solutions of the differential equation for f(x), we obtain that the general solution is

f(x) = c+ e(−1+
√

λ) x +c− e(−1−
√

λ) x,

in which c+ and c− are arbitrary constants. Similarly eq y is a solution of the differential equation for g(y)
if and only if q2 + λ = 0, and we have

g(y) = d+ e
√
−λ y +d− e−

√
−λ y,

in which d+ and d− are arbirary constants, and therefore the answer is

u(x, y) =
(

c+ e(−1+
√

λ) x +c− e(−1−
√

λ) x
) (

d+ e
√
−λ y +d− e−

√
−λ) y

)

,

in which λ, c−, c+, d−, d+ are arbitrary complex numbers. The only exceptional case occurs for λ = 0, in
which case this should be replaced by

u(x, y) =
(

a e−x +b x e−x
)

(c + d y) ,

in which a, b, c, d are arbitrary constants.
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4)

a) We have
d
(

x(t)2 − y(t)2
)

/dt = 2x′(t) x(t) − 2y′(t) y(t) = 2y(t) x(t) − 2x(t) y(t) = 0.

This implies that x(t)2 − y(t)2 is constant as a function of t and therefore equal to x(0)2 − y(0)2 =
12 − 02 = 1.

b) The Euler approximation for this system of ordinary differential equations is

xn+1 = xn + h yn, yn+1 = yn + h xn, x0 = 1, y0 = 0.

The identity for (xn)
2 − (yn)

2
obviously holds when n = 0. Now assume that it holds for some given

n. Then

(xn+1)
2 − (yn+1)

2 = (xn + h yn)2 − (yn + h xn)2 =
(

1 − h2
)

(

(xn)2 − (yn)2
)

=
(

1 − h2
) (

1 − h2
)n

=
(

1 − h2
)n+1

,

which is the identity for (xn)
2−(yn)

2
with everywhere n replaced by n+1. Here we have used the Euler

procedure in the first equality, a straightforward calculation in the second equality, and the induction
hypothesis in the third equality. This completes the proof of the identity for (xn)

2 − (yn)
2

for every
n ≥ 0.

c) (bonus) The first identity is obtained by the substitution of n = N , h = t/N , where we subsequently
write

(

1 − t2

N2

)N

= e
N ln

(

1− t
2

N2

)

.

For the second and the third identity we use the first order Taylor expansion which says that for any
differentiable function f(x) we have f(x) = f(a) + f ′(y) (x − a), in which y is some point between a
and x. If we do this for the function f(x) = ln x, with a = 1, x = 1 − t2/N2 and y = p, we obtain the
second identity. We obtain the third identity if we do this for f(x) = ex, with a = 0,

x = −1

p

t2

N

and y = q.

The last statement follows if we write θN = eq /p and observe that the inequalities for p and q imply
that p → 1 and q → 0 as N → ∞.
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