Answers final exam UCU SCI 211, December 18, 2003

1) According to the theory, for instance of Section 8.2 in the Guide Book wit $\gamma=1$ and $L=1$, the solution is of the form

$$
u(x, t)=\sum_{k=0}^{\infty} a_{k} \mathrm{e}^{-\pi^{2} k^{2} t} \cos (k \pi x)
$$

in which substitution of $t=0$ yields

$$
1+\cos (\pi x)=u(x, 0)=\sum_{k=0}^{\infty} a_{k} \cos (k \pi x)
$$

Here the left hand side is a cosine series of the same form as appears in the right hand side, with $a_{0}=1$, $a_{1}=1$ and $a_{k}=0$ for every $k>1$. (One can also use the integral formulas for the Fourier cofficients a_{k}, which is a little more work.) The conclusion is that

$$
u(x, t)=1+\mathrm{e}^{-\pi^{2} t} \cos (\pi x)
$$

It follows that

$$
|u(x, t)-1|=\left|\mathrm{e}^{-\pi^{2} t} \cos (\pi x)\right|=\mathrm{e}^{-\pi^{2} t}|\cos (\pi x)| \leq \mathrm{e}^{-\pi^{2} t}
$$

because $|\cos (\pi x)| \leq 1$. Substitution of $t=1$ yields the desired inequality.
2) Let $f(x)$ be a twice differentiable function on the real axis which is periodic with period $2 L$ and has the property that $f(x)=0$ when $-L \leq x \leq 0$. Define

$$
u(x, t)=f(t+x)-f(t-x)
$$

a) Differentiating $u(x, t)$ twice with respect to t we obtain $f^{\prime \prime}(t+x)-f^{\prime \prime}(t-x)$. Differentiating $u(x, t)$ with respect to x we obtain $f^{\prime}(t+x)+f^{\prime}(t-x)$, and differentiating this again with respect to x we obtain $f^{\prime \prime}(t+x)-f^{\prime \prime}(t-x)$, which is equal to the second order derivative of $u(x, t)$ with respect to t. This shows that $u(x, t)$ satisfies the wave equation.
Putting $x=0$ we get $u(0, t)=f(t)-f(t)=0$. Putting $x=L$ we obtain $f(t+L)-f(t-L)=0$, because $x+L=(x-L)+2 L$ and f was assumed to be periodic with period $2 L$. This shows that $u(x, t)$ satisfies the boundary conditions.
Finally, if $0<x<3$ then $u(x, 0)=f(x)-f(-x)=f(x)$, because $x>0$ implies $-x<0$ and therefore $f(-x)=0$. If we put $t=0$ in $\partial u(x, t) / \partial t=f^{\prime}(t+x)-f^{\prime}(t-x)$ we obtain that the initial velocity is equal to $f^{\prime}(x)-f^{\prime}(-x)=f^{\prime}(x)$, because $f(y)=0$ for all $y<0$ implies that $f^{\prime}(y)=0$ for all $y<0$. This shows that $u(x, t)$ satisfies the initial conditions.
b) The pictures should look like the following.

In the interval $0 \leq x \leq 3$, the bump is translated to the left with speed 1 until it hits the left end point of the interval, whereas after time $t=2$ it has reappeared upside down and is shifting to the right with speed equal to 1 .
c) We have $u(x, 1.5)=f(1.5+x)-f(1.5-x)=0$, in which the second equation just expresses the symmetry of the function f with repect to the reflection $1.5+x \mapsto 1.5-x$. This is not such a paradox as it may seem, because at time $t=1.5$ the velocity $\partial u(x, t) / \partial t$ is nonzero, the string just moves through the horizontal position at time $t=1.5$.
3) If we substitute $u(x, y)=f(x) g(y)$ in the partial differential equation, we obtain

$$
f^{\prime \prime}(x) g(y)+f(x) g^{\prime \prime}(y)+2 f^{\prime}(x) g(y)+f(x) g(y)=0
$$

Assuming that $u(x, y)=f(x) g(y)$ is nonzero we can divide by $f(x) g(y)$ and obtain the equivalent equation

$$
\frac{f^{\prime \prime}(x)}{f(x)}+\frac{g^{\prime \prime}(y)}{g(y)}+2 \frac{f^{\prime}(x)}{f(x)}+1=0
$$

or equivalently

$$
\frac{f^{\prime \prime}(x)}{f(x)}+2 \frac{f^{\prime}(x)}{f(x)}+1=-\frac{g^{\prime \prime}(y)}{g(y)}
$$

The left hand side does not depend on y, and is equal to the right hand side which does not depend on x, and therefore it is equal to a constant λ neither depending on y nor on x. This implies that our equation is equivalent to the two equations

$$
\frac{f^{\prime \prime}(x)}{f(x)}+2 \frac{f^{\prime}(x)}{f(x)}+1=\lambda=-\frac{g^{\prime \prime}(y)}{g(y)}
$$

or equivalently

$$
f^{\prime \prime}(x)+2 f^{\prime}(x)+(1-\lambda) f(x)=0, \quad g^{\prime \prime}(y)+\lambda g(y)=0,
$$

in which λ is an arbitrary constant. The exponential function $\mathrm{e}^{p x}$ is a solution for the equation for $f(x)$ if and only if $p^{2}+2 p+(1-\lambda)=0$, or $p=-1 \pm \sqrt{\lambda}$. If $\lambda \neq 0$ then, using the two-dimensionality of the space of solutions of the differential equation for $f(x)$, we obtain that the general solution is

$$
f(x)=c_{+} \mathrm{e}^{(-1+\sqrt{\lambda}) x}+c_{-} \mathrm{e}^{(-1-\sqrt{\lambda}) x},
$$

in which c_{+}and c_{-}are arbitrary constants. Similarly $\mathrm{e}^{q y}$ is a solution of the differential equation for $g(y)$ if and only if $q^{2}+\lambda=0$, and we have

$$
g(y)=d_{+} \mathrm{e}^{\sqrt{-\lambda} y}+d_{-} \mathrm{e}^{-\sqrt{-\lambda} y}
$$

in which d_{+}and d_{-}are arbirary constants, and therefore the answer is

$$
u(x, y)=\left(c_{+} \mathrm{e}^{(-1+\sqrt{\lambda}) x}+c_{-} \mathrm{e}^{(-1-\sqrt{\lambda}) x}\right)\left(d_{+} \mathrm{e}^{\sqrt{-\lambda} y}+d_{-} \mathrm{e}^{-\sqrt{-\lambda}) y}\right)
$$

in which $\lambda, c_{-}, c_{+}, d_{-}, d_{+}$are arbitrary complex numbers. The only exceptional case occurs for $\lambda=0$, in which case this should be replaced by

$$
u(x, y)=\left(a \mathrm{e}^{-x}+b x \mathrm{e}^{-x}\right)(c+d y)
$$

in which a, b, c, d are arbitrary constants.
4)
a) We have

$$
\mathrm{d}\left(x(t)^{2}-y(t)^{2}\right) / \mathrm{d} t=2 x^{\prime}(t) x(t)-2 y^{\prime}(t) y(t)=2 y(t) x(t)-2 x(t) y(t)=0
$$

This implies that $x(t)^{2}-y(t)^{2}$ is constant as a function of t and therefore equal to $x(0)^{2}-y(0)^{2}=$ $1^{2}-0^{2}=1$.
b) The Euler approximation for this system of ordinary differential equations is

$$
x_{n+1}=x_{n}+h y_{n}, \quad y_{n+1}=y_{n}+h x_{n}, \quad x_{0}=1, \quad y_{0}=0 .
$$

The identity for $\left(x_{n}\right)^{2}-\left(y_{n}\right)^{2}$ obviously holds when $n=0$. Now assume that it holds for some given n. Then

$$
\begin{aligned}
\left(x_{n+1}\right)^{2}-\left(y_{n+1}\right)^{2} & =\left(x_{n}+h y_{n}\right)^{2}-\left(y_{n}+h x_{n}\right)^{2}=\left(1-h^{2}\right)\left(\left(x_{n}\right)^{2}-\left(y_{n}\right)^{2}\right) \\
& =\left(1-h^{2}\right)\left(1-h^{2}\right)^{n}=\left(1-h^{2}\right)^{n+1}
\end{aligned}
$$

which is the identity for $\left(x_{n}\right)^{2}-\left(y_{n}\right)^{2}$ with everywhere n replaced by $n+1$. Here we have used the Euler procedure in the first equality, a straightforward calculation in the second equality, and the induction hypothesis in the third equality. This completes the proof of the identity for $\left(x_{n}\right)^{2}-\left(y_{n}\right)^{2}$ for every $n \geq 0$.
c) (bonus) The first identity is obtained by the substitution of $n=N, h=t / N$, where we subsequently write

$$
\left(1-\frac{t^{2}}{N^{2}}\right)^{N}=\mathrm{e}^{N \ln \left(1-\frac{t^{2}}{N^{2}}\right)} .
$$

For the second and the third identity we use the first order Taylor expansion which says that for any differentiable function $f(x)$ we have $f(x)=f(a)+f^{\prime}(y)(x-a)$, in which y is some point between a and x. If we do this for the function $f(x)=\ln x$, with $a=1, x=1-t^{2} / N^{2}$ and $y=p$, we obtain the second identity. We obtain the third identity if we do this for $f(x)=\mathrm{e}^{x}$, with $a=0$,

$$
x=-\frac{1}{p} \frac{t^{2}}{N}
$$

and $y=q$.
The last statement follows if we write $\theta_{N}=\mathrm{e}^{q} / p$ and observe that the inequalities for p and q imply that $p \rightarrow 1$ and $q \rightarrow 0$ as $N \rightarrow \infty$.

