Answers final exam UCU SCI 211, December 18, 2003

1) According to the theory, for instance of Section 8.2 in the Guide Book wit v = 1 and L = 1, the solution
is of the form

o0
u(z, t) = Z ap e ™ K cos(kmz),
k=0

in which substitution of t = 0 yields
1+ cos(mz) = u(zx, 0) = Z ay, cos(kmx).
k=0

Here the left hand side is a cosine series of the same form as appears in the right hand side, with ag = 1,
a; = 1 and a; = 0 for every k > 1. (One can also use the integral formulas for the Fourier cofficients ay,
which is a little more work.) The conclusion is that

u(z, t) =1+ e cos(mz).

It follows that ) , ,
lu(z,t) — 1| = [e”™ ! cos(mx)| = e ™ * |cos(mx)| <e ™ 1,

because |cos(mz)| < 1. Substitution of ¢ = 1 yields the desired inequality.

2) Let f(z) be a twice differentiable function on the real axis which is periodic with period 2L and has the
property that f(z) =0 when —L < 2 < 0. Define

u(z, t) = f{t+2) - f{t — ).

a) Differentiating u(z, t) twice with respect to ¢ we obtain f”(t + z) — f”(t — ). Differentiating u(z, t)
with respect to & we obtain f/(t + z) + f/(t — ), and differentiating this again with respect to = we
obtain f”(t 4+ x) — f”(t — ), which is equal to the second order derivative of u(z, t) with respect to t.
This shows that u(x, t) satisfies the wave equation.

Putting x = 0 we get u(0, ¢t) = f(t) — f(t) = 0. Putting 2 = L we obtain f(t+ L) — f(t — L) = 0,
because  + L = (x — L) + 2L and f was assumed to be periodic with period 2L. This shows that
u(z, t) satisfies the boundary conditions.

Finally, if 0 < < 3 then u(z, 0) = f(z) — f(—z) = f(z), because z > 0 implies —x < 0 and therefore
f(=xz)=0. If we put t =0 in Qu(x, t)/0t = f'(t + ) — f'(t — x) we obtain that the initial velocity is
equal to f'(z) — f'(—z) = f'(x), because f(y) = 0 for all y < 0 implies that f'(y) = 0 for all y < 0.
This shows that u(x, t) satisfies the initial conditions.



b) The pictures should look like the following.

f(x)
-3 1 0 1 2 3
-F(-x)
f (1+x)
-3 2 -1 0 1 2 3
-f(1-x)
f (2+x)
-3 2 -1 0 1 2 3
-f(2-x)
f(3+x)
-3 2 -1 0 1 2 3
-f(3-x)

In the interval 0 < x < 3, the bump is translated to the left with speed 1 until it hits the left end point
of the interval, whereas after time ¢ = 2 it has reappeared upside down and is shifting to the right with
speed equal to 1.

¢) We have u(z, 1.5) = f(1.5 + z) — f(1.5 — ) = 0, in which the second equation just expresses the
symmetry of the function f with repect to the reflection 1.5+ z +— 1.5 — z. This is not such a paradox
as it may seem, because at time ¢ = 1.5 the velocity du(x, t)/0t is nonzero, the string just moves
through the horizontal position at time ¢ = 1.5.



3) If we substitute u(z, y) = f(z) g(y) in the partial differential equation, we obtain

(@) g(y) + f(x) g" (y) + 2f'(x) g(y) + f(x) g(y) = 0.

Assuming that u(z, y) = f(z) g(y) is nonzero we can divide by f(z) g(y) and obtain the equivalent equation

[x)  ¢"(@y) . f(x) B
7@ g T T

or equivalently
1 I 1
) @) o 9"
f(z) f(z) 9(y)
The left hand side does not depend on y, and is equal to the right hand side which does not depend on x,
and therefore it is equal to a constant A\ neither depending on y nor on x. This implies that our equation is

equivalent to the two equations
" !
@) o)

f(x) f(x) 9(y)’

or equivalently
f@) +2f(x) + (1= X) f(z) =0, ¢"(y)+Ag(y) =0,

in which A is an arbitrary constant. The exponential function eP® is a solution for the equation for f(x) if
and only if p? +2p+ (1 —X) =0, or p = —1 + v/X. If A # 0 then, using the two-dimensionality of the space
of solutions of the differential equation for f(x), we obtain that the general solution is

@) = ey TV e oI

in which ¢4 and c_ are arbitrary constants. Similarly e?¥ is a solution of the differential equation for g(y)
if and only if ¢> + A = 0, and we have

g(y) =dy eV Y +d_ e VY,

in which d; and d_ are arbirary constants, and therefore the answer is
@, y) = (C+ VN fe e<—1—ﬁ>ﬂﬂ) (d+ REVEvE e—mw) ,

in which A, c¢_, ¢y, d—, d4 are arbitrary complex numbers. The only exceptional case occurs for A = 0, in
which case this should be replaced by

u(z, y) = (a e T+bx efz) (c+dy),

in which a, b, ¢, d are arbitrary constants.



4)

2)

We have
d(z(t)? —y(t)?) /dt = 22/ (t) x(t) — 20/ (t) y(t) = 2y(t) (t) — 22(t) y(t) = 0.

This implies that x(t)? — y(¢)? is constant as a function of ¢ and therefore equal to x(0)? — y(0)? =
12 -0% =1.
The Euler approximation for this system of ordinary differential equations is

Tn+1 :mn'i‘hyna Yn+1 :yn+hxna zo=1, yo=0.

The identity for (2,)* — (yn)” obviously holds when n = 0. Now assume that it holds for some given
n. Then

(@ni)? = @) = @+ hy)® = (o +haa)® = (1= 42) (@) - )?)
= (1=h) (1=h)"=(1-p>)"",

which is the identity for (xn)2 — (yn)2 with everywhere n replaced by n+1. Here we have used the Euler
procedure in the first equality, a straightforward calculation in the second equality, and the induction
hypothesis in the third equality. This completes the proof of the identity for (az:n)2 — (yn)2 for every
n > 0.

(bonus) The first identity is obtained by the substitution of n = N, h = t/N, where we subsequently

write N
2
<1%> _ N n(1-L45) .

For the second and the third identity we use the first order Taylor expansion which says that for any
differentiable function f(z) we have f(x) = f(a) + f'(y) (z — a), in which y is some point between a
and x. If we do this for the function f(z) =Inz, with a =1, x =1 —t?/N? and y = p, we obtain the
second identity. We obtain the third identity if we do this for f(x) =e®, with a =0,

12
r= ———
p N
and y = q.

The last statement follows if we write 6 = e? /p and observe that the inequalities for p and ¢ imply
that p—1and ¢ - 0as N — oo.



