Mid-term exam SCI 211, November 1, 2002

1 Our purpose is to compute the integral

$$\int_{-\pi}^{\pi} (\cos x)^4 (\sin x)^2 \, \mathrm{d}x$$

without too much work.

- a) Write $(\cos x)^2 \sin x$ first in complex notation, and then as a sine series.
- b) Use Parseval's identity in Theorem 2.6 in order to compute the integral.

2 Find the Fourier transform of the function $f : \mathbf{R} \to \mathbf{R}$, which is defined by $f(t) = t e^{-2t}$ when t > 0 and f(t) = 0 when $t \le 0$.

3 Let f(t) be a complex valued function of which the Fourier transform $g(\omega) = \hat{f}(\omega)$ is given by

Make a sketch of the graph of the Fourier transform of the function $f(t) \cos(2t)$. Don't forget to show the scale on the axes!

- **4** Consider the vector field F(x, y) = (x, y) on the plane \mathbf{R}^2 .
 - a) Find a differentiable function $g: \mathbb{R}^2 \to \mathbb{R}$ such that $F = \operatorname{grad} g$.
 - b) Let $\gamma: [0, T] \to \mathbf{R}^2$ be the curve in the plane which is defined by

$$\gamma(t) = \left(\frac{\cos t}{1+t}, \frac{\sin t}{1+t}\right), \quad 0 \le t \le T.$$

Compute the line integral of the vector field F over the curve γ . What happens with this integral when $T \to \infty$?