Mid-term exam SCI 211, November 1, 2002

1 Our purpose is to compute the integral

$$
\int_{-\pi}^{\pi}(\cos x)^{4}(\sin x)^{2} d x
$$

without too much work.
a) Write $(\cos x)^{2} \sin x$ first in complex notation, and then as a sine series.
b) Use Parseval's identity in Theorem 2.6 in order to compute the integral.

2 Find the Fourier transform of the function $f: \mathbf{R} \rightarrow \mathbf{R}$, which is defined by $f(t)=t \mathrm{e}^{-2 t}$ when $t>0$ and $f(t)=0$ when $t \leq 0$.

3 Let $f(t)$ be a complex valued function of which the Fourier transform $g(\omega)=\widehat{f}(\omega)$ is given by

Make a sketch of the graph of the Fourier transform of the function $f(t) \cos (2 t)$. Don't forget to show the scale on the axes!

4 Consider the vector field $F(x, y)=(x, y)$ on the plane \mathbf{R}^{2}.
a) Find a differentiable function $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that $F=\operatorname{grad} g$.
b) Let $\gamma:[0, T] \rightarrow \mathbf{R}^{2}$ be the curve in the plane which is defined by

$$
\gamma(t)=\left(\frac{\cos t}{1+t}, \frac{\sin t}{1+t}\right), \quad 0 \leq t \leq T
$$

Compute the line integral of the vector field F over the curve γ. What happens with this integral when $T \rightarrow \infty$?

