Mid-term exam UCU SCI211, October 31, 2001

1 Consider the function $f(x), x \in \mathbb{R}$, which is defined by the following properties:
i) $f(x)$ is periodic with period equal to 2π.
ii) If $0 \leq x \leq \pi$, then $f(x)=\frac{\pi^{2}}{4}-\left(x-\frac{\pi}{2}\right)^{2}$.
iii) $f(-x)=-f(x)$ for every $x \in \mathbb{R}$.
a) Sketch the graph of $f(x)$, for $-3 \pi / 2 \leq x \leq 3 \pi / 2$.
b) Prove that

$$
f(x)=\sum_{k=1}^{\infty} b_{k} \sin (k x)
$$

where

$$
\begin{aligned}
b_{k} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (k x) d x \\
& =\frac{2}{\pi k} \int_{0}^{\pi} f^{\prime}(x) \cos (k x) d x \\
& =-\frac{2}{\pi k^{2}} \int_{0}^{\pi} f^{\prime \prime}(x) \sin (k x) d x
\end{aligned}
$$

Give your arguments for each of the identities!
c) Compute the coefficients b_{k} and show that

$$
\frac{8}{\pi} \sum_{l=0}^{\infty} \frac{1}{(2 l+1)^{3}} \sin ((2 l+1) x)=\frac{\pi^{2}}{4}-\left(x-\frac{\pi}{2}\right)^{2}, \quad 0 \leq x \leq \pi
$$

2 For the function $f(t), t \in \mathbb{R}$, we define

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-i \omega t} d t
$$

as its Fourier transform. Prove, using the Euler formula for the cosine, that the Fourier transform of the function $g(t)=f(t) \cos (b t)$ is given by

$$
\widehat{g}(\omega)=\frac{1}{2}(\widehat{f}(\omega-b)+\widehat{f}(\omega+b))
$$

Let $f(t)=\mathrm{e}^{-a t^{2}}$. Then it is known that $\widehat{f}(\omega)=\sqrt{\pi / a} \mathrm{e}^{-\omega^{2} / 4 a}$. Make a sketch of the graph of $\widehat{g}(\omega)$, for $-2<\omega<2$, in the case that $a=0.01$ and $b=1$.

3 Let D be the set of all $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) \neq(0,0)$. Prove that the differential form

$$
\omega:=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

defined in D, is closed.
Let γ be the closed curve in D which is defined by $\gamma(t)=(\cos t, \sin t), 0 \leq t \leq 2 \pi$. Compute $\oint_{\gamma} \omega$. Prove that ω is not exact in D.

