Answers to the Mid-term exam SCI 211, November 1, 2002

1a) Substituting

$$
\cos x=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} x}+\mathrm{e}^{-\mathrm{i} x}\right), \quad \sin x=\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}\right)
$$

we obtain that

$$
(\cos x)^{2} \sin x=\frac{1}{8 \mathrm{i}}\left(\mathrm{e}^{3 \mathrm{i} x}+\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}-\mathrm{e}^{-3 \mathrm{i} x}\right)=\frac{1}{4} \sin (3 x)+\frac{1}{4} \sin x
$$

1b) This is a Fourier series as in (1.2) with $p=2 \pi, b_{1}=1 / 4, b_{3}=1 / 4$, and all the other coefficients equal to zero. Therefore Parseval's identity (2.21) yields that

$$
\int_{-\pi}^{\pi}(\cos x)^{4}(\sin x)^{2} \mathrm{~d} x=2 \pi \frac{1}{2}\left(\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{2}\right)=\frac{\pi}{8}
$$

2)

$$
\begin{aligned}
\widehat{f}(\omega) & :=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} t=\int_{0}^{\infty} t \mathrm{e}^{-2 t} \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} t \\
& =\int_{0}^{\infty} t \mathrm{e}^{-(2+\mathrm{i} \omega) t} \mathrm{~d} t=\frac{1}{2+\mathrm{i} \omega} \int_{0}^{\infty} \mathrm{e}^{-(2+\mathrm{i} \omega) t} \mathrm{~d} t \\
& =\frac{1}{(2+\mathrm{i} \omega)^{2}}
\end{aligned}
$$

Here we have substituted the definition of f in the second identity. Furthermore we used

$$
\mathrm{e}^{-(2+\mathrm{i} \omega) t}=-\frac{1}{2+\mathrm{i} \omega} \frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{e}^{-(2+\mathrm{i} \omega) t}
$$

in order to perform a partial integration in the fourth identity, where there are no boundary terms because $t \mathrm{e}^{-(2+\mathrm{i} \omega) t}$ vanishes when $t=0$ and when $t \rightarrow \infty$.
3) Applying (4.7) with $\nu=2$, we see that we have to translate the graph of \widehat{f} to the left and to the right over a distance 2 , add the functions and multiply by $1 / 2$.

4a) The function g has to satisfy $\partial g(x, y) / \partial x=x$ and $\partial g(x, y) / \partial y=y$. The first equation yields that $g(x, y)=x^{2} / 2+h(y)$, and then the second equation implies that $h(y)=y^{2} / 2+c$, in which c is a constant, which we can take equal to zero.

4b) According to (7.2) the line integral is equal to

$$
g(\gamma(T))-g(\gamma(0))=\frac{1}{2}\left(\frac{1}{(1+T)^{2}}-1\right)
$$

in which we have used that $(\cos t)^{2}+(\sin t)^{2}=1$. When $T \rightarrow \infty$, the integral converges to $-1 / 2$.

