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Answers to the Mid-term exam SCI 211, November 1, 2002
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we obtain that
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This is a Fourier series as in (1.2) with p = 27, by = 1/4, bs = 1/4, and all
the other coefficients equal to zero. Therefore Parseval’s identity (2.21) yields
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Here we have substituted the definition of f in the second identity. Further-
more we used
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in order to perform a partial integration in the fourth identity, where there
are no boundary terms because t e~ 2T19)? vanishes when t = 0 and when
t — 00.

Applying (4.7) with v = 2, we see that we have to translate the graph of fto
the left and to the right over a distance 2, add the functions and multiply by
1/2.

The function g has to satisfy dg(z, y)/0x = x and 9g(zx, y)/0y = y. The
first equation yields that g(z, y) = 22/2+ h(y), and then the second equation
implies that h(y) = y*/2+c, in which ¢ is a constant, which we can take equal
to zero.

According to (7.2) the line integral is equal to

o) = 9000 =5 (g 1)

in which we have used that (cost)? + (sint)?> = 1. When T' — oo, the integral
converges to —1/2.



