Mid-term exam SCI 211, October 30, 2003

1 Compute the length of one cycle of the cycloid $(t-\sin t, 1-\cos t), 0 \leq t \leq 2 \pi$. Hint: at some point make the substitution of variables $t=2 s$ in the integral.

2 Let $V(x, y)=\ln \left(x^{2}+y^{2}\right)$, for $(x, y) \neq(0,0)$. Prove that $\Delta V=0$ in the complement of the origin in the plane.

3 Define the function f and g on the real axis by

$$
f(t)=\mathrm{e}^{-t^{2} / 2} \quad \text { and } \quad g(t)=\mathrm{e}^{-t^{2} / 2} \cos (5 t), \quad \text { respectively }
$$

Let $\phi(\omega)$ and $\chi(\omega)$ denote the Fourier transform of f and g, respectively.
a) Express $\chi(\omega)$ in terms of the function ϕ. Give an explicit formula for $\phi(\omega)$ and $\chi(\omega)$.
b) Make a sketch of the graphs of the functions ϕ and χ on the interval $-10 \leq \omega \leq 10$, both in one frame, thereby clearly indicating which is ϕ and which is χ.

4 Let the function $f: \mathbf{R} \rightarrow \mathbf{R}$ be determined by the properties that

$$
f(x)=\frac{\pi}{8} x(\pi-x) \quad \text { when } \quad 0 \leq x \leq \pi
$$

that $f(-x)=-f(x)$ for all $x \in \mathbf{R}$, and that $f(x+2 \pi)=f(x)$ for all $x \in \mathbf{R}$.
a) Make a sketch of the graph of $f(x)$ for $-2 \pi \leq x \leq 2 \pi$.
b) Prove that

$$
f(x)=\sum_{l=0}^{\infty} \frac{1}{(2 l+1)^{3}} \sin ((2 l+1) x), \quad x \in \mathbf{R} .
$$

c) Prove that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x)-\sin (x))^{2} \mathrm{~d} x=\frac{1}{2} \sum_{l=1}^{\infty} \frac{1}{(2 l+1)^{6}}
$$

d) (bonus) Prove that $\langle f-\sin , \sin \rangle=0$, hence $\langle f, \sin \rangle=\langle\sin , \sin \rangle$, and therefore $\langle f-\sin , f-\sin \rangle=\langle f, f\rangle-\langle\sin , \sin \rangle$. Use this to show that the left hand side in c) is equal to $\pi^{6} / 1920-1 / 2=0.00072 \ldots$

