Answers Mid-term exam SCI 211, October 30, 2003
Problem 1 The velocity vector is equal to (1 — cost, sint), of which the square of the length is equal to
(1 —cost)? + (sint)? =1 — 2cost + (cost)? + (sint)* = 2 — 2cost,

because cos? +sin? = 1. Therefore the length of the curve is equal to
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where in the second identity we have used the substitution of variables t = 2s in the integral.
Problem 2 Assume in the sequal that not both z = 0 and y = 0, which implies that 22 +y? # 0. Using the

chain rule for differentiation we obtain OV (z, y)/0x = (m2 + y2)_1 2z and differentiating once more with
respect ot x:
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Problem 3

a) Formula (4.7) in the Guide Book yields x(w) = (¢(w — 5) + ¢(w + 5)) /2. Acoording to formula (4.4)
in the Guide Book we have ¢(w) = v27 e=“"/2, and therefore
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b) The sketch should look like
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Problem 4

a) The graph looks like
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How it has been obtained can be read off from the Mathematica instruction
flx] := (Pi/8) x (Pi - x);
ParametricPlot[{{x, f[x]}, {- x, - f[x]}, {x - 2 Pi, f[x]}, {- x + 2 Pi, - {[x]}}, {x, 0, Pi}]

Because f(z) is odd and 27-periodic, we conclude from Theorem 1.2 in the Guide Book that its Fourier
series is a sine series, with coefficients
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Here we have used a partial integration in the third and in the fourth identity. The boundary terms in
the third identity vanish because f(z) = 0 when 2 = 0 and when 2 = ¢, whereas the boundary terms
in the fourth identity vanish because sin(k ) = 0 when z = 0 and when z = 7. The desired formula
now follows from the obervation that —(—1)* + 1 = 0 when k is even and —(—1)* + 1 = 2 when k is
odd.
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It follows from b) that
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which is a sine series with b; = 0, by, = 0 when k is even and b, = 1/]{:3 when k is odd and k > 3. The
desired identity therefore follows from Parseval’s identity (2.21) in the Guide Book, with p = 27 and
a= —T.

(bonus) It follows from section 2.5 in the Guide book that the function sinz is orthogonal to all the
functions sin((20 4+ 1) x), I > 1, which appear in the sine series of the function f(z) — sinz, Therefore
(f — sin, sin) = 0, hence (f, sin) = (sin, sin), and therefore
(f —sin, f —sin) = {f, ) — 2(f, sin) + (sin, sin) = (f, /) — (sin, sin).
Now using the symmetry of f(x)? the integral over [ 7, 7| is twice the integral over [0, 7], hence
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On the other hand
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because sin 2z = 0 when x = 7w and when z = 0.



