Answers Mid-term exam SCI 211, October 30, 2003

Problem 1 The velocity vector is equal to $(1-\cos t, \sin t)$, of which the square of the length is equal to

$$
(1-\cos t)^{2}+(\sin t)^{2}=1-2 \cos t+(\cos t)^{2}+(\sin t)^{2}=2-2 \cos t
$$

because $\cos ^{2}+\sin ^{2}=1$. Therefore the length of the curve is equal to

$$
\int_{0}^{2 \pi} \sqrt{2-2 \cos t} \mathrm{~d} t=2 \int_{0}^{\pi} \sqrt{2-2\left(1-2(\sin s)^{2}\right)} \mathrm{d} s=4 \int_{0}^{\pi} \sin s \mathrm{~d} s=4(-\cos \pi-(-\cos 0))=8
$$

where in the second identity we have used the substitution of variables $t=2 s$ in the integral.
Problem 2 Assume in the sequal that not both $x=0$ and $y=0$, which implies that $x^{2}+y^{2} \neq 0$. Using the chain rule for differentiation we obtain $\partial V(x, y) / \partial x=\left(x^{2}+y^{2}\right)^{-1} 2 x$ and differentiating once more with respect ot x :

$$
\frac{\partial^{2} V(x, y)}{\partial x^{2}}=-\left(x^{2}+y^{2}\right)^{-2}(2 x)^{2}+2\left(x^{2}+y^{2}\right)^{-1}
$$

Similarly

$$
\frac{\partial^{2} V(x, y)}{\partial y^{2}}=-\left(x^{2}+y^{2}\right)^{-2}(2 y)^{2}+2\left(x^{2}+y^{2}\right)^{-1}
$$

and therefore

$$
(\Delta V)(x, y)=\frac{\partial^{2} V(x, y)}{\partial x^{2}}+\frac{\partial^{2} V(x, y)}{\partial y^{2}}=-4\left(x^{2}+y^{2}\right)^{-2}\left(x^{2}+y^{2}\right)+4\left(x^{2}+y^{2}\right)^{-1}=0
$$

Problem 3

a) Formula (4.7) in the Guide Book yields $\chi(\omega)=(\phi(\omega-5)+\phi(\omega+5)) / 2$. Acoording to formula (4.4) in the Guide Book we have $\phi(\omega)=\sqrt{2 \pi} \mathrm{e}^{-\omega^{2} / 2}$, and therefore

$$
\chi(\omega)=\frac{1}{2} \sqrt{2 \pi}\left(\mathrm{e}^{-(\omega-5)^{2} / 2}+\mathrm{e}^{-(\omega+5)^{2} / 2}\right) .
$$

b) The sketch should look like

Problem 4

a) The graph looks like

How it has been obtained can be read off from the Mathematica instruction
$\mathrm{f}[\mathrm{x}] \quad:=(\mathrm{Pi} / 8) \mathrm{x}(\mathrm{Pi}-\mathrm{x}) ;$
ParametricPlot[\{\{x, $\mathrm{f}[\mathrm{x}]\},\{-\mathrm{x},-\mathrm{f}[\mathrm{x}]\},\{\mathrm{x}-2 \mathrm{Pi}, \mathrm{f}[\mathrm{x}]\},\{-\mathrm{x}+2 \mathrm{Pi},-\mathrm{f}[\mathrm{x}]\}\}, \quad\{\mathrm{x}, 0, \operatorname{Pi}\}]$
b) Because $f(x)$ is odd and 2π-periodic, we conclude from Theorem 1.2 in the Guide Book that its Fourier series is a sine series, with coefficients

$$
\begin{aligned}
b_{k} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (k x) \mathrm{d} x=\frac{2}{\pi} \int_{0}^{\pi} \frac{\pi}{8} x(\pi-x) \sin (k x) \mathrm{d} x \\
& =\frac{1}{4} \int_{0}^{\pi} \frac{\mathrm{d} x(\pi-x)}{\mathrm{d} x} \frac{1}{k} \cos (k x) \mathrm{d} x=-\frac{1}{4} \int_{0}^{\pi} \frac{\mathrm{d}^{2} x(\pi-x)}{\mathrm{d} x^{2}} \frac{1}{k^{2}} \sin (k x) \mathrm{d} x \\
& =\frac{1}{2 k^{2}} \int_{0}^{\pi} \sin (k x) \mathrm{d} x=\frac{1}{2 k^{3}}[-\cos (k \pi)-(-\cos 0)]=\frac{1}{2 k^{3}}\left(-(-1)^{k}+1\right) .
\end{aligned}
$$

Here we have used a partial integration in the third and in the fourth identity. The boundary terms in the third identity vanish because $f(x)=0$ when $x=0$ and when $x=\phi$, whereas the boundary terms in the fourth identity vanish because $\sin (k x)=0$ when $x=0$ and when $x=\pi$. The desired formula now follows from the obervation that $-(-1)^{k}+1=0$ when k is even and $-(-1)^{k}+1=2$ when k is odd.
c) It follows from b) that

$$
f(x)-\sin x=\sum_{l=1}^{\infty} \frac{1}{(2 l+1)^{3}} \sin ((2 l+1) x), \quad x \in \mathbf{R},
$$

which is a sine series with $b_{1}=0, b_{k}=0$ when k is even and $b_{k}=1 / k^{3}$ when k is odd and $k \geq 3$. The desired identity therefore follows from Parseval's identity (2.21) in the Guide Book, with $p=2 \pi$ and $a=-\pi$.
d) (bonus) It follows from section 2.5 in the Guide book that the function $\sin x$ is orthogonal to all the functions $\sin ((2 l+1) x), l \geq 1$, which appear in the sine series of the function $f(x)-\sin x$, Therefore $\langle f-\sin , \sin \rangle=0$, hence $\langle f, \sin \rangle=\langle\sin , \sin \rangle$, and therefore

$$
\langle f-\sin , f-\sin \rangle=\langle f, f\rangle-2\langle f, \sin \rangle+\langle\sin , \sin \rangle=\langle f, f\rangle-\langle\sin , \sin \rangle
$$

Now using the symmetry of $f(x)^{2}$ the integral over $[-\pi, \pi]$ is twice the integral over $[0, \pi]$, hence

$$
\begin{aligned}
\langle f, f\rangle & =\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{\pi}{8} x(\pi-x)\right)^{2} \mathrm{~d} x=\frac{\pi}{64} \int_{0}^{\pi} x^{2}\left(\pi^{2}-2 \pi x+x^{2}\right) \mathrm{d} x \\
& =\frac{\pi}{64}\left(\pi^{2} \frac{\pi^{3}}{3}-2 \pi \frac{\pi^{4}}{4}+\frac{\pi^{5}}{5}\right)=\frac{\pi^{6}}{64}\left(\frac{1}{3}-\frac{1}{2}+\frac{1}{5}\right)=\frac{\pi^{6}}{64} \frac{10-15+6}{30}=\frac{\pi^{6}}{1920}
\end{aligned}
$$

On the other hand

$$
\langle\sin , \sin \rangle=\frac{1}{\pi} \int_{0}^{\pi}(\sin x)^{2} \mathrm{~d} x=\frac{1}{\pi} \int_{0}^{\pi} \frac{1-\cos (2 x)}{2} \mathrm{~d} x=\frac{1}{2},
$$

because $\sin 2 x=0$ when $x=\pi$ and when $x=0$.

