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1 The Theorem of Frobenius

Let M be a finite-dimensional smooth manifold and let H be smooth vector subbundle of TM .
If αi, 1 ≤ i ≤ l, are smooth one-forms on M which at each point are linearly independent, then

the

Hm :=
l⋂

i=1

kerαi (1.1)

define a smooth codimension l vector subbundle of M , and every smooth codimension k vector
subbundle H of TM is locally of this form. In the 19th century terminology, one-forms were called
Pfaffian forms and the vector subbundleH in (1.1) was called the Pfaffian system αi = 0, i ≤ i ≤ l.

If v is a smooth vector field on M , then we will write v ⊂ H if vm ∈ Hm for every m ∈ M .
This notation is literally correct if we view the section v of TM as a submanifold of TM , i.e. we
identify v : M → TM with v(M) ⊂ TM .

If u, v ∈ X (M), u ⊂ H and v ⊂ H then we have that for every point m ∈ M the element
[u, v](m)+Hm ∈ TmM/Hm depends only on the values u(m) and v(m) of u and v at the point m,
respectively. This is a little surprising because [u, v](m) definitely depends also on the first order
derivatives of u and v at the point m. In order to prove the Lie brackets modulo Hm only depend
on u(m) and v(m), we can use the formula

i[u, v] α = Lu (iv α)− iv (Luα) = Lu (iv α)− iv (d (iu α))− iv (iu (dα)) ,

which holds for any u, v ∈ X (M) and α ∈ Ω1(M). If u ⊂ H, v ⊂ H and α = 0 on H, then iu α = 0,
iv α = 0 and we conclude that

α([u, v]) = −(dα)(u, v). (1.2)

Because at a given point m ∈M the right hand side of (1.2) only depends on u(m) and v(m), and
the left hand side at the point m measures [u, v](m) modulo Hm if we let α run through the αi of
the local Pfaffian system, the statement is proved.

The statement means that, for every m ∈M , there is a mapping a, b 7→ [a, b]/Hm
from Hm×Hm

to TmM/Hm, called the Lie brackets modulo Hm on Hm ×Hm, such that

[u, v](m) +Hm = [u(m), v(m)]/Hm
(1.3)

for every pair of smooth vector fields u and v on M which are contained in H. It follows from
(1.3) that the Lie brackets modulo Hm define an antisymmetric bilinear mapping from Hm ×Hm

to TmM/Hm, which moreover depends smoothly on m ∈M .
An integral manifold of H is a smooth submanifold I of M such that Ti I = Hi for every i ∈ I.

H is called integrable if for every m0 ∈M there is an integral manifold I such that m0 ∈ I.

Theorem 1.1 (Frobenius) H is integrable if and only if [u, v] ⊂ H for every pair u, v ∈ X (M)
such that u ⊂ H and v ⊂ H. In other words, if and only if, for every m ∈ M , the Lie brackets
modulo Hm on Hm ×Hm vanish. If H is integrable then for every m0 ∈ M there exists a diffeo-
morphism Φ from an open neighborhood M0 of m0 in M onto an open subset of Rn × Rl, such
that, for each m ∈M0, (Tm Φ)(Hm) = Rn × {0}.

Proof If I is an integral manifold of H and u ⊂ H, v ⊂ H, then u|I ⊂ TI and v|I ⊂ TI, which
implies that [u, v]|I = [u|I , v|I ] ⊂ TI ⊂ H. This proves that if H is integrable, then u ⊂ H and
v ⊂ H implies that [u, v] ⊂ H.
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In order to prove the converse, let m0 ∈M . If n = dimHm0
, we can find an open neighborhood

U of m0 in M and functions xj ∈ F(U), 1 ≤ j ≤ n, such that the restrictions to Hm0
of the linear

forms (dxj)(m0), 1 ≤ j ≤ n, are linearly independent. It follows that the m ∈ U , such that the
(dxj)(m)

∣∣
Hm

are linearly independent, form an open neighborhood V of m0 in U . Write δj
i = 0

when i 6= j and δj
i = 1 when i = j. Then, for each m ∈ V , there are unique vectors vi(m) ∈ Hm

such that
(dxj)(m) vi(m) = δj

i , 1 ≤ i, j ≤ n, (1.4)

and vi(m) depends smoothly on m. In other words, vi ∈ X (V ), vi ⊂ H and vi x
j = δj

i .

Because the functions δj
i are constant, we have [vi, vj ]x

k = vi (vj x
k)−vj (vi x

k) = vi δ
k
j −vj δ

k
i =

0. Now assume that H satisfies the integrability condition that u, v ⊂ H =⇒ [u, v] ⊂ H. It follows
from (1.4) that the vectors vi(m) are linearly independent, hence they form a basis ofHm. Therefore
there exist functions ckij on V such that [vi, vj ] =

∑n
k=1 c

k
ij vk on V . This implies that, for every k,

0 = [vi, vj]x
k =

∑n
h=1 c

h
ij vh x

k =
∑n

h=1 c
h
ij δ

k
h = ckij , and therefore [vi, vj] = 0 on V .

If dimM = n+ l, then we can find a smooth mapping ψ from an open subset Y of Rl to M ,
and y0 ∈ Y such that ψ(y0) = m0 and Tm0

M = Hm0
+ Ty0

ψ(Rl). Then

Ψ(t1, . . . , tn, y) := etn vn ◦ . . . ◦ et1 v1(ψ(y))

defines a smooth mapping Ψ from an open neighborhood of {0} × Y in Rn × Y to M such that
T(0, y0) Ψ is invertible. In view of the inverse mapping theorem we obtain an open neighborhood
Z of (0, y0) in Rn × Y such that Ψ|Z is a diffeomorphism from Z onto an open neighborhood M0

of m0 in M .
Because the vector fields vi commute, the flows eti vi commute. Using this, we obtain for every

1 ≤ i ≤ n that ∂Ψ(t, y)/∂ti = vi(Ψ(t, y)). This proves the last statement of the theorem if we take
Φ = Ψ−1. 2

Remark 1.1 Theorem 1.1 is named after Frobenius because of the article [19], in which he
reviewed previous proofs and gave a proof of his own. His oldest reference is to Deahna [13], which
paper I did not understand when I read it. According to Samelson [30], Deahna’s necessary and
sufficient condition, ”pushed a little”, is that if H is given by (1.1) and if v ∈ X (M), v ⊂ H, then,
at each point x and for each i, Lvα

i is a linear combination of the αj . (The paper [30] was pointed
out to me by Joop Kolk.) Frobenius also referred to Clebsch [11], who reduced the problem to
the case that H has a basis of commuting vector fields, which case had been solved by Jacobi [22,
pp. 257–263]. However, Jacobi did not use the commuting flows of the commuting vector fields,
this idea had to wait for Lie [26]. In our proof we presented Clebsch’s construction of a basis of
commuting vector fields in H. �
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2 Connections

Let π : M → X be a fibration of the smooth n + l-dimensional manifold M over the smooth
l-dimensional “base” manifold X, with smooth n-dimensional fibers Mx := π−1({x}, x ∈ X. An
(infinitesimal) connection for π is defined as a codimension l smooth vector subbundle H of TM
with the property that, for each m ∈M , Hm is complementary to the tangent space ker(Tm π) of
the fiber Mπ(m) through the point m. In formula:

TmM = Hm ⊕ ker(Tm π), m ∈M. (2.1)

Because the fibers usually are thought of as vertical, Hm is called the horizontal subspace of TmM
at the point m.

If H would be integrable, then the integral manifolds would at least locally be sections of the
bundle, intersecting each fiber at precisely one point. Mapping the point m in the fiber Mx to the
intersection point with My of the integral manifold through m, we would obtain an identification of
Mx withMy, and if everything would work globally, we would in this way have connected every fiber
Mx to every other fiber My in a unique fashion. However, in general H will not be integrable and it
is for this reason that H is called “only an infinitesimal connection”. For a somewhat more specific
explanation of the names “infinitesimal connection” and “connection”, see Remark 4.1 below. It is
a consequence of (2.1) that the restriction to Hm of Tm π is a linear isomorphism from Hm onto
Tπ(m)M . It follows that for each m ∈M there is a unique vector vhor(m) ∈ Hm such that

Tm π (vhor(m)) = v(π(m)). (2.2)

The vector field vhor on M is called the horizontal lift of v with respect to the connection H. It
is smooth when v is smooth and v 7→ vhor is a continuous linear mapping from X (X) to X (M).
Moreover, if γ is a solution curve in M of the differential equation dm/dt = vhor(m), then δ := π◦γ
is a solution curve in X of the differential equation dx/ dt = v(x), which implies that

π ◦ et vhor = et v ◦π. (2.3)

This implies in turn that

Tm π ([uhor, vhor] (m)) = [u, v](π(m)), u, v ∈ X (M), m ∈M. (2.4)

It follows that, for every x ∈ X, a, b ∈ TxX and m ∈ Mx, there is a unique vector Rx(a, b)(m) ∈
Tm(Mx), such that, for every u, v ∈ X (X),

−Rx(u(x), v(x))(m) = [uhor, vhor](m)− [u, v]hor(m). (2.5)

Note that, for every x ∈ X and a, b ∈ TxX, Rx(a, b) : m 7→ Rx(a, b)(m) is a smooth vector field
on the fiber Mx over x, and it depends in an antisymmetric bilinear way on a, b ∈ TxX. R is called
the curvature of the connection H, where the minus sign in (2.5) has been introduced in order to
get agreement with formula (3.7) below. It is clear from the definition that R = 0 if and only if H
is an integrable vector subbundle of TM , in which case the connection H is called flat.

Remark 2.1 In the proof of Theorem 1.1, we introduced a local fibration (x1, . . . , xn) : M → Rn

such that H is a connection in this fiber bundle. In this terminology the vector fields vi are equal to
the horizontal lifts vi = (ei)hor of the constant vector fields ei in Rn, in which ei, 1 ≤ i ≤ n, denotes
the standard basis of Rn. If H is integrable, then [uhor, vhor] = [u, v]hor for any u, v ∈ X (M).
Because [ei, ej ] = 0, this shows in another way that [vi, vj] = 0. �
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3 Covariant Differentiation

Let π : M → X be a vector bundle, meaning that the fibers Mx, x ∈ X are l-dimensional vector
spaces. More precisely, the local trivializations of M are diffeomorphisms τα : π−1(Uα)→ Uα×Rl,
in which the Uα form an open covering of M and, for any α and β, the retrivialization τβ ◦ τα is a
diffeomorphism from (Uα ∩ Uβ)×Rl onto itself of the form

(x, y) 7→ (x, (τβ α(x))(y)), (3.1)

in which τβ α(x) is an invertible linear transformation of Rl which depends smoothly on x ∈ Uα∩Uβ.
Now assume that H is a given connection in M . Let s is a smooth section of the vector bundle

π : M → X, meaning that s is a smooth mapping from X to M such that π ◦ s is equal to the
identity in X. Then, for every x,∈ X and v ∈ TxX, we define the covariant derivative ∇vs(x) of
s at x and in the direction of the vector v, as follows. Because

Ts(x) π ◦ Tx s (v) = Tx(π ◦ s) (v) = v,

and (Ts(x) π)(vhor(s(x))) = v, it follows that (Tx s) (v) − vhor(s(x)) belongs to ker Ts(x) π =
Ts(x)Mx, the tangent space at s(x) of the fiber Mx over the point x. However, because Mx

is a vector space, we can use the natural identification of all tangent spaces of Mx with Mx, and
define

∇vs(x) := (Tx s) (v(x)) − vhor(s(x)) ∈Mx. (3.2)

In particular, if v ∈ X (X), then ∇vs : x 7→ ∇v(x)s(x) is a smooth section of M again, which is
called the covariant derivative of s with respect to the vector field v. If Γ(M) denotes the space of
all smooth sections of π : M → X, then, for every v ∈ X (X), the covariant derivative ∇v : s 7→ ∇vs
with respect to v is a first order partial differential operator acting on Γ(M).

The fact that M is a vector bundle makes the space of sections Γ(M) into a vector space. The
connection H is called a linear connection if all the covariant derivatives are linear operators. In
order to investigate when this holds, we use a local trivialization of M and local coordinates in X
in order to pass to the situation that X is an open subset of Rn, M = X ×Rl and π : (x, y) 7→ y.
In this situation, we write the connection H as

H(x, y) = {(v, A(x, y) v) | v ∈ Rn} (3.3)

for unique linear mappings A(x, y) : Rn → Rl depending smoothly on (x, y). It follows that
vhor(s(x)) = (v, A(x, s(x)) v). This leads to the formula

(∇vs)
i(x) :=

n∑

j=1

∂si(x)

∂xj
vj −

n∑

j=1

Ai
j(x, s(x)) v

j

for the covariant derivative. It is clear that the covariant derivatives are linear operators if and
only if the matrices Ai

j(x, y) depend linearly on y, i.e.

Ai
j(x, y) = −

l∑

k=1

Γi
jk(x) y

k (3.4)
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for some coefficients Γi
jh(x) which depend smoothly on x, and which are called the Christoffel

symbols of the connection H, with respect to the given local trivialization ofM and local coordinates
in X, respectively. The minus sign in (3.4) is chosen in order get a plus sign in the formula

(∇vs)
i(x) :=

n∑

j=1

∂si(x)

∂xj
vj +

n∑

j=1

l∑

k=1

Γi
jk(x) v

j sk(x) (3.5)

for the covariant derivative.
The Christoffel symbols depend sensitively on the choice of the local trivialization of the bundle

and the local coordinates in the base manifold. The Christoffel symbols do not even transform as
a tensor, cf. Lemma 7.1 below.

It follows from (3.5) that the covariant derivative with respect to a linear connection satisfies
the Leibniz rule for covariant differentiation

∇v(f s) = (v f) s+ f ∇vs, v ∈ X (X), f ∈ F(X), s ∈ Γ(M), (3.6)

in which v f denotes the derivative of the function f in the direction of the vector field v
In general, an operator∇ : (v, s) 7→ ∇vs : X (X)×Γ(M)→ Γ(M) is called a covariant derivative

if, for every v ∈ X (M), s 7→ ∇vs is a linear mapping from Γ(M) to Γ(M) which satisfies the Leibniz
rule (3.6) and, for every s ∈ Γ(M), v 7→ ∇vs is a linear mapping from X (X) to Γ(M) such that
∇f vs = f ∇vs for every f ∈ F(X), v ∈ X (X) and s ∈ Γ(M). It is easily verified that for every
covariant derivative ∇ there is a unique linear connection H in M such that ∇ is equal to the
covariant derivative defined by H.

Another direct calculation in terms of Christoffel symbols shows that, for every u, v ∈ X (X),
s ∈ Γ(M) and x ∈ X,

(
∇u(∇vs)−∇v(∇us)−∇[u, v]s

)
(x) = Rx(u(x), v(x))(s(x)), (3.7)

in which R is the curvature of the connection introduced in (2.5). The operator acting on sections
s of M which appears in the left hand side,

R(u, v) := [∇u, ∇v]−∇[u, v], (3.8)

is called the curvature operator R. A priori it is a second order linear partial differential operator,
but the formula (3.7) shows that it actually is of order zero. Often (3.7) is presented as the definition
of the curvature R of the connection H.

Remark 3.1 The idea of a connection and of parallel transport, cf. Section 4 below, has been
introduced by Levi-Civita [25], for the Levi-Civita connection in a (pseudo-)Riemannian manifold
(X, β). See Section 4 and 7 for the definition of parallel transport and Levi-Civita connection,
respectively.

After various generalizations by, among others, Hermann Weyl and Élie Cartan, the general
definition which we have presented here was given by Ehresmannn [18]. �
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4 Parallel Transport

Let π : M → X be a smooth bundle with smooth connection H and let γ : I → X be a smooth
curve in X, in which I is an interval in R which contains at least two points. A smooth curve
δ : I →M will be called a horizontal lift of γ if

i) π ◦ δ = γ, i.e. δ(t) ∈Mγ(t) for every t ∈ I, and

ii) For every t ∈ I we have that δ′(t) ∈ Hδ(t).

In a local trivialization M ' U × Y ,

H(x, y) = {(v, A(x, y) v) | v ∈ TxX}

for a unique linear mapping A(x, y) from TxX to Ty Y , depending smoothly on (x, y) ∈ U × Y ,
cf. (3.3). The condition i) means that δ(t) = (γ(t), ε(t)) for a smooth curve ε in Y , whereas the
condition ii) is equivalent to

dε(t)

dt
= A(γ(t), ε(t))

dγ(t)

dt
,

which is a time-dependent ordinary differential equation for the curve ε : I → Y of the form

dε(t)

dt
= f(t, ε(t)), (4.1)

if we write

f(t, y) := A(γ(t), y)
dγ(t)

dt
.

It follows from the theory of ordinary differential equations, cf. [12], that for every a ∈ I and y ∈ Y
the equation (4.1) has a unique maximal solution ε(t) = εy(t), defined for t in an open interval Iy

in I containing a, such that ε(a) = y. Moreover, U := {(t, y) | y ∈ Y, t ∈ Iy} is an open subset of
I × Y containing {a} × Y and (t, y) 7→ εy(t) is a smooth mapping from U to Y . Finally, if Iy 6= I,
for instance T = sup Iy ∈ I \ Iy, then for every compact subset K of Y there exists an b < T such
that ε(t) ∈ Y \K for every b < t < T . In other words, the horizontal lift is not defined on the whole
interval I if and only if it runs to infinity in the sense that it runs out of every compact subset of
the fiber.

In the bundle M , this implies that for every a ∈ I and y ∈ Mγ(a) the curve γ has a unique
maximal horizontal lift δy which is defined on an open interval Iy in I. The set

U := {(t, y) | y ∈Mγ(a), t ∈ Iy}

is an open subset of I ×Mγ(a), (t, y) 7→ δy(t) is a smooth mapping from U to M , and Iy 6= I if
and only if δy(t) runs out of every compact subset of M before t reaches the boundary of I. Note
that for every compact subset J of I we have that the π(δy(t)) = γ(t), t ∈ J , stay in the compact
subset γ(J) of X, which means that this running to inifinity has to take place “in the direction of
the fibers of M”.

We say that H allows lifting if for every smooth curve γ : I → X, a ∈ I and y ∈ Mγ(a) there
exists a lift δ = δy : I →M of γ such that δ(a) = y.
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Lemma 4.1 Let H be a connection in the fiber bundle M over X. Then H allows lifting if for
every smooth curve γ : I → X, in which I is an interval in R, the following condition is satisfied.
For every b ∈ I there exists an open interval Jb in I such that b ∈ Jb and such that for every
z ∈Mγ(b) there exists a horizontal lift δb, z : Jb →M of γ|Jb

such that δb, z(b) = z.

Proof Let a ∈ I, y ∈ Mγ(a) and let δ : Iy → M denote the maximal horizontal lift such that
δ(a) = y. We have to prove that Iy = I. Suppose that T = sup Iy ∈ I \ Iy, we will prove that this
leads to a contradiction. The case that T = inf Iy ∈ I \ Iy can be treated similarly.

There exists a b ∈ Iy ∩ JT . We have δb, δ(b)(b) = δ(b) and it follows from the uniqueness of
solutions of ordinary differential equations with the same initial values that δb, δ(b)(t) = δ(t) for all

t ∈ Iy ∩ JT . But this implies that δb, δ(b) and δ have a common extension δ̃ to Iy ∪ JT , which is

a horizontal lift of γ such that δ̃(a) = y. It follows that Iy ∪ JT ⊂ Iy, in contradiction with the
definition of T . 2

If the connection allows lifting, then the lifting is unique and (t, y) 7→ δy(t) is a smooth mapping
from I ×Mγ(a) to M . Moreover, δy(t) ∈ Mγ(t) for every t ∈ I. The mapping ha, t

γ : y 7→ δy(t) is a
smooth mapping from Mγ(a) to Mγ(t), which is called the parallel transport from the fiber Hγ(a) of

H over γ(a) to the fiber Hγ(t) of H over γ(t), along the curve γ in X. Because obviously ht, a
γ is a

two-sided inverse of ha, t
γ , ha, t

γ is a diffeomorphism from Hγ(a) onto Hγ(t).

Remark 4.1 One says that parallel transport establishes a connection of Mγ(a) with Mγ(t), which
is obtained by integrating the infinitesimal connection H along the curve γ. �

The lifting can be extended to piecewise smooth continuous curves in X. It is clear that the
parallel transport along the concatenation “γ2 after γ1” of the curves γ1 and γ1, in which the
endpoint of γ1 is equal to the initial point of γ2, is equal to the composition hγ2

◦hγ1
of the parallel

transports. If γ is a loop based at x, a closed piecewise smooth continuous curve γ : [a, b] → X

such that γ(a) = x and γ(b) = x, then ha, b
γ is a diffeomorphism from Hx onto itself. The set

Loop(X, x) of all loops based at x is a group with the concatenation of loops as the product

structure, and h : γ 7→ ha, b
γ is a homomorphism from Loop(X, x) to the group Diffeo(Mx) of all

diffeomorphisms of Mx, with the composition of mappings as the product. This homomorphism h
is called the holonomy representation of Loop(X, x) in Diffeo(Mx). The image h(Loop(X, x)) is a
subgroup of Diffeo(Mx), called the holonomy group in Mx. Of course, everything being defined by
the connection H in M which allows lifting.

Proposition 4.2 Every linear connection H in a vector bundle M over a manifold X allows
lifting. For every x ∈ X, the holonomy group is a subgroup of GL(Mx), the group of all linear
transformations in Mx.

Proof The differential equation (4.1) takes the form

dεi(t)

dt
=

l∑

k=1

f i
k(t) ε

k(t)),

in which

f i
k(t) := −

n∑

j=1

Γi
jk(γ(t))

dγj(t)

dt
,
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cf. (3.4). For a linear system of ordinary differential equations with coefficients depending con-
tinuously on t we have local solutions. Moreover, if ei, 1 ≤ i ≤ l, form a basis of Mγ(b), then
the intersection I0 of the intervals of definition of the horizontal lifts δi such that δi(b) = ei is an
open interval in I which contains b. Using the linearity of the system of differential equations for
horizontal curves, we have the superposition principle which says that for any z =

∑l
i=1 ci ei the

curve δ : t 7→
∑l

i=1 ci δi(t) defines a horizontal curve δ on I0 such that δ(b) = z. Using Lemma 4.1
we may therefore conclude that H allows lifting.

The second statement follows because the aforemntioned superposition principle implies that
in the local trivializations the parallel transports are given by linear transformations in R l. 2
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5 The Frame Bundle

Let M be a smooth vector bundle over X. If fi, 1 ≤ i ≤ l, is a basis of Mx, then

f : c 7→
l∑

i=1

ci fi

is a linear isomorphism from Rl onto Mx, which we will call a frame in Mx. If ei, 1 ≤ i ≤ l, denotes
the standard basis of Rl, then fi = f(ei), which shows that we have a bijection between the set of
all bases in Mx and the set FMx of linear isomorpisms from Rl to Mx.

The f ∈ FMx will be called the frames in Mx. The group G = GL(l, R) acts on Px := FMx,
by means of

g
P

: f 7→ f ◦ g−1, (5.1)

and this action is proper, free, and transitive. The FMx, x ∈ X together form a smooth fiber
bundle FM over X, called the frame bundle of M . On FM the aforementioned action of G is
proper and free. Because the G-orbits are the fibers FMx, x ∈ X of the bundle π : FM → X, it
follows that P := FM is a principal GL(l, R)-bundle of which the orbit space is identified with X.

If f ∈ FMx, then εi(f) := f(ei) ∈Mx, and

ε : f 7→ (ε1(f), . . . , εl(f))

defines a diffeomorphism from FM onto an open subset V of the fiberwise l-fold Cartesian power

M (l) =
{

(y1, . . . , yl) ∈M
l | πi(yi) = πj(yj) for all i and j

}

of M . More explicitly, M (l) is the vector bundle over X such that, for every x ∈ X, M
(l)
x = (Mx)l.

The subset V of M (l) is defined by the property that, for every x ∈ X, (y1, . . . , yl) ∈ V ∩M
(l)
x if

and only if the yi, 1 ≤ i ≤ l, are linearly independent in Mx, which is an open subset of M (l).
If H is a connection in M , then we define a corresponding connection H in FM , which we

denote by the same letter, by means of

Hf := {w ∈ Tf (FM) | Tf εi(w) ∈ Hfi
for every 1 ≤ i ≤ l} , f ∈ FM. (5.2)

As the intersection of the codimension l linear subspaces (Tf εi)
−1(Hfi

) of Tf (FM), Hf is a linear
subspace of Tf (FM) of codimension at most l2, and because dimFM = n + l2, it follows that
dimHf ≥ n = dimX.

Furthermore, we have for every 1 ≤ i ≤ l that πFM = πM ◦ εi. Therefore, if w ∈ Hf and
Tf π(w) = 0, then we have for every 1 ≤ i ≤ l that Tfi

πM ◦ Tf εi(w) = 0, which implies
that Tf εi(w) = 0 because Tf εi(w) ∈ HM

fi
and the restriction to Hfi

of Tfi
πM is injective. In

turn Tf εi(w) = 0 for every i implies that Tf ε(w) = 0, and therefore w = 0 because ε is a
diffeomorphism. The conclusion is that the restriction to Hf of Tf πFM is injective, and because
dimHf ≥ dimX, it follows that this restriction is bijective andHf is complementary to the tangent
space ker Tf πFM at f of the fiber. This completes the proof that (5.2) defines a connection in FM .

A smooth local section f of FM is a smooth mapping f : U → FM from an open subset
U of X to FM such that, for each x ∈ U , f(x) ∈ FMx. For each 1 ≤ i ≤ n we will write
fi(x) = f(x)(ei) = εi(f(x)), this defines a smooth local section fi of the vector bundle M , where
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we have the property that for each x ∈ U the fi(x) form a basis of Mx. A smooth local section of
FM was called a moving frame by Élie Cartan.

Let f be a moving frame, x ∈ X and v ∈ TxX. Then, according to, (5.2), Tx f(v) ∈ Hf if
and only if, for every 1 ≤ i ≤ l, Tx fi(v) ∈ Hfi(x), which in turn is equivalent to the condition
that (∇vfi)(x) = 0 for every 1 ≤ i ≤ l. This property characterizes the connection in the frame
bundle as the one for which, for every x ∈ X and v ∈ TxX, we have that ∇vf(x) = 0 if and only
if (∇vfi)(x) = 0 for every 1 ≤ i ≤ l.

If g ∈ G then

g−1(ei) =

l∑

k=1

Ak
i (ek)

for some constant matrix Ak
i , and therefore

(f ◦ g−1)i =

l∑

k=1

Ak
i fk.

If the connection H in M is linear, then (∇vfi(x) = 0 for all 1 ≤ i ≤ n implies that
(∇v(f ◦ g

−1)i)(x) = 0 for all 1 ≤ i ≤ l. Therefore the linearity of the connection in M implies that
the connection H in the principal G-bundle P is G-invariant, in the sense that

(Tp gP
)(Hp) = Hg

P
(p), p ∈ P, g ∈ G. (5.3)

The mapping (f, c) 7→ f(c) fromMx×Rl to Mx is surjective. Moreover, we have f(c) = f ′(c′) if
and only if c′ = g(c), in which g := (f ′)−1 ◦f ∈ GL(l, R) = G. Because g := (f ′)−1 ◦f is equivalent
to f ′ = f ◦ g−1 = g

P
(f), we obtain that the fibers of the mapping (f, c) 7→ f(c) are equal to the

orbits of G on FMx ×Rl, where g ∈ G acts on FMx ×Rl by means of (f, c) 7→ (g
P
(f), g(c)).

In this way we obtain a smooth mapping from FM ×Rl onto M , which actually is a fibration
with fibers equal to the GL(l, R)-orbits in FM ×Rl, and this mapping leads to the identification

FM ×GL(l,R) Rl ∼
→M (5.4)

of M with the associated vector bundle P ×G Y , in which Y := Rl.
Because the action of G on the fiber Px = FMx of P is free and transitive, the orbit

{g
P
(f), g

V
(c)) | g ∈ G}

is equal to the graph of a mapping S : Px → Y , which is uniquely determined by the conditions
that S(f) = c and

S(g
P
(f)) = g

V
(S(f)), g ∈ G. (5.5)

One says that S intertwines the action of G on Px with the action of G on Y , or that the mapping
S : Px → Y is equivariant with respect to the action of G on Px and Y , respectively.

A section s of M is a mapping which assigns to each x ∈ X and element s(x) of Mx, whereas
now in turn s(x) is identified with a mapping from Px to V . Because Px is the fiber over x of P ,
this leads to an identification of s with a smooth mapping S : P → Y which is G-equivariant in
the sense of (5.5). If we denote by F(P, Y )G the space of smooth mappings S : P → Y which
are which are equivariant in the sense of (5.5), then we obtain an identification of the space Γ(M)
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of smooth sections of M with the linear subspace F(P, Y )G of the space F(P, Y ) of all smooth
mappings from P to the fixed vector space V .

In order to express the covariant derivative of a section s of M in terms of the Y -valued function
S on P , We choose, for a given point x0 ∈ X. a local section f of the frame bundle FM which is
horizontal at the point x0, which means that

Tx0
f (Tx0

X) = Hf(x0).

Because S(f) = f−1 s(π(f)) for every f ∈ FM , we have

s(x) = f(x)S(f(x)) = f(x)

[
l∑

i=1

Si(f(x))(ei)

]
=

l∑

i=1

Si(f(x)) f(x)(ei) =

l∑

i=1

Si(f(x)) fi(x)

for every x in the domain of definition of f . Here fi : x 7→ f(x)(ei) is a local section of M . In view
of (3.6) we have for any v ∈ X (X) that

(∇vs)(x) =

l∑

i=1

[(dSi(f(x)) Tx f(v(x))) fi(x) + Si(f(x)) (∇vfi)(x)] .

Because f is horizontal at the point x0 we have that Tx f(v(x0)) = vhor(f(x0)), whereas the
definition of the connection in FM and again the fact that f is horizontal at the point x0 implies
that (∇vfi)(x0) = 0 for every 1 ≤ i ≤ l. We therefore have

(∇vs)(x0) =

l∑

i=1

(vhorSi)(x0) fi(x0) = f(x0) (vhorS)(x0).

Therefore, if we denote the section of the vector bundle M and the corresponding element of
F(P, Y )G with the same letter, we arrive at the conclusion that

∇vs = vhor s, (5.6)

in which in the left and right hand side s is viewed as a section of M and an element of F(P, Y )G,
respectively. In other words, covariant differentiation is equal to the ordinary differentiation in the
direction of the horizontal lift of the vector field in the frame bundle.

Conversely, for any G-invariant connection in P , the right hand side in (5.6) defines a covariant
derivative on sections of M , and therefore defines a unique linear connection in M , which induces
the connection in P . This leads to a canonical bijective correspondence

linear connections in M ↔ G-invariant connections in P

12



6 Orthogonal and Unitary Frame Bundles

Now let βx be an inner product in the fiber Mx of M , depending smoothly on x ∈ X. An
orthonormal basis of Mx with respect βx corresponds to an orthogonal linear mapping f from Rl

provided with its standard inner product to Mx provided with the inner product βx. The space of
all orhtogonal linear mappings f : Rl →Mx will be denoted by OFMx.

Let O(l) denote the standard orthogonal group in Rl. If g ∈ O(l) and f ∈ OFMx, then
f ◦ g−1 ∈ OFMx. This defines a proper, free and transitive action of O(l) on OFMx. The OFMx,
x ∈ X form a subbundle OFM of the frame bundle FM , which is a principal O(l)-bundle, called the
orthogonal frame bundle of M . For many purposes it is advantageous to have a smaller structure
group, and especially the fact that the orthogonal group O(l) is compact (where GL(n, R) isn’t)
is often of great help. In the same way as in (5.4), we have an identification

OFM ×O(l) Rl ∼
→M (6.1)

of M with the associated vector bundle OFM ×O(l) Rl with structure group O(n).
If H is a linear connection in M , then we have the induced GL(l, R)-invariant connection H in

FM , and if its restriction of H to OFM would be tangent to OFM , then it would automatically
define an O(l)-invariant connection H in OFM , for which all the observations in Subsection 5 would
hold.

The restriction to OFM of the connection H in FM is tangent to OFM , if an only if, at every
point x0 ∈ X, every βx0

-orthonormal basis f0 in Hx0
can be extended to a local section of OFM , of

which the tangents at x0 are horizontal. For this, it is clearly necessary that, whenever r, s ∈ Γ(M),
v ∈ X (X) (∇vr)(x0) = 0 and (∇vs)(x0) = 0, we have that (v(β(r, s)))(x0) = 0. We say that β is
covariantly constant with respect to the connection H if the latter condition holds.

We will now prove that if β is covariantly constant, then the restriction to OFM of the connec-
tion H in FM is tangent to OFM .

Proof (suggested to me by Erik van den Ban)
Let f ∈ OFMx and w ∈ Hf . Write v = Tf π(w) ∈ TxX. Choose a smooth curve γ : I → X in

X, such that 0 ∈ I, γ(0) = x and γ ′(0) = v. For each 1 ≤ i ≤ l, let δi be the horizontal lift of γ in
FM such that δi(0) = f(ei).

Because δ′i(t) ∈ H
M
δ(t) and β is covariantly constant, we have

d

dt
βγ(t) (δi(t), δj(t)) = 0, 1 ≤ i, j ≤ l, t ∈ I.

It follows that βγ(t) (δi(t), δj(t)) is constant as a function of t, hence equal to its value at t = 0,
which is equal to 0 when i 6= j and equal to 1 when i = j. In other words, if f(t) denotes the frame
in Mγ(t) such that f(t)(ei) = δi(t), then we have for every t ∈ I that f(t) ∈ OFM , which implies
that f ′(t) ∈ Tf(t)(OFM). Because f(0) = f and f ′(0) is equal to the horizontal lift w = vhor of v
in Tf (FM), we conclude that w ∈ Tf (OFM). 2

Under the identification of the sections of M with the O(n)-equivariant mappings from OFM
to Rl, the inner product takes the standard form

β(r, s) = (r, s) (6.2)
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where in the left hand side r and s are viewed as sections of M , and in the right hand side we have
taken the standard inner product of the Rl-valued functions r and s on OFM .

Clearly (6.2) defines inner products βx on the fibers Mx of M which are covariantly constant
with respect to the connection in M defined by (5.6). It follows that the the restriction to OFM
of the connection in FM is tangent to OFM , if and only if the inner products on the fibers of M
are covariantly constant.

Another important version occurs if M is a complex vector bundle over provided with a Hermitian
structure h. This means that, for each x ∈ X, Hx is a complex vector space of dimension, say, l,
and hx is a Hermitian inner product on Hx which depends smoothly on x. We then introduce the
set UFMx of all complex linear mappings f : Cl → Mx which map the standard basis of Cl to an
h-orthonorml basis. The UFMx, x ∈ M form a smooth bundle UFM over X which is a principal
U(l)-bundle, where U(l) dentes the group of unitary transformations in Cl. Furthermore, as in
(5.4) we have the identification

UFM ×U(l) Cl ∼
→M (6.3)

of M with the associated vector bundle UFM ×U(l) Cl with structure group U(n).
If H is a linear connection in M which is complex in the sense that s 7→ ∇vs is a complex linear

operator, and if the Hermitian structure h is covariantly constant, then we obtain a U(n)-invariant
connection in UFM , in terms of which the covariant differentiation satisfies (5.6) (because it does
so in the bigger frame bundle). We also have the analogon

h(r, s) = (r, s) (6.4)

of (6.2) where in the left hand side r and s are viewed as sections of M , and in the right hand side
we have taken the standard inner product of the Cl-valued functions r and s on UFM .

Note that Cl ' R2l and that U(l) is a subgroup of O(2l) of quite smaller dimension:
dimU(l) = l2 and dimO(2l) = l(2l + 1).
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7 The Levi-Civita Connection

If M = TX is equal to the tangent bundle of X, then for every x ∈ X the fiber Mx = Tx is equal
to the tangent space of X at x, and with the identification of all the tangent spaces of a vector
space with the vector space itself, also each tangent space Tv Mx, v ∈Mx, is identified with TxX.

Let H be a linear connection in TX, which sometimes also is referred to as an affine connection
in X. if v, w ∈ X (X), then ∇vw ∈ X , and one can define the torsion T of the connection H by
means of the formula

T (v, w) := ∇vw −∇wv − [v, w]. (7.1)

On the other hand, any system of local coordinates (x1, . . . , xn), which is a diffeomorphism
from an open subset U of X onto an open subset V of Rn, induces a local trivialization of TX, and
the covariant derivative is expressed in terms of the Christoffel symbols by means of the formula
(3.5), in which s = w and l = n. It follows that T (v, w)(x) only depends on v(x) and w(x)
and is given by the antisymmetric bilinear mapping T (x) : TxX × TxX → TxX which in local
coordinates is given by

T (x)(v, w) =
n∑

j=1

l∑

k=1

Γi
jk(x)

(
vj wk − wj vk

)
=

n∑

j=1

l∑

k=1

(
Γi

jk(x)− Γi
kj(x)

)
vj wk, (7.2)

where the second equation is obtained by interchanging the summation indices j and k in the terms
with the minus signs. The antisymmetric bilinear mapping T (x) : TxX × TxX → TxX is called
the torsion of the connection H at the point x.

Lemma 7.1 Let H be a linear connection in TX and let x ∈ X. Then the following statements
are equivalent.

i) There exists a system of local coordinates in a neighborhood of x such that Γi
jk(x) = 0 for all

indices 1 ≤ i, j, k ≤ n.

ii) T (x) = 0.

iii) In any system of local coordinates in a neighborhood of x, we have Γi
jk(x) = Γi

kj(x) for all
indices 1 ≤ i, j, k ≤ n.

iv) In some system of local coordinates in a neighborhood of x, we have Γi
jk(x) = Γi

kj(x) for all
indices 1 ≤ i, j, k ≤ n.

Proof i) =⇒ ii) and ii) =⇒ iii) follow from (7.2), whereas iii) =⇒ iv) is obvious.
A diffeomorphism φ from an open subset U of Rn to an open subset V of Rn induces the

transformation Tφ from TU = U ×Rn onto TV = V ×Rn which is given by

(x, v) 7→ (φ(x), (Dφ(x)) v),

in which

((Dφ(x)) v)i =

n∑

k=1

∂φi(x)

∂xk
vk
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is given by the Jacobi matrix of φ.
It follows that the image of Rn × {0} under T(x, v)(Tφ) is equal to the space of all vecors

((Dφ(x))u, Q(u, v)) in Rn ×Rn, in which

Q(u, v)i :=
n∑

j, k=1

∂2φi(x)

∂xj ∂xk
uj vk

and u ranges over u ∈ Rn. Now choose φ such that φ(0) = 0 and Dφ(0) = I. Then the Christoffel
symbols in the y-coordinates at 0 of the connection which is equal to the trivial connection Rn×{0}
in the x-coordinates are given by

Γ(0)i
jk = −

∂2φi(x)

∂xj ∂xk

∣∣∣∣
x=0

.

Because every symmetric matrix is equal to the Hessian (= second order partial derivative matrix)
of suitable smooth function, we obtain iv) =⇒ i). 2

Remark 7.1 It is trivial that for any smooth manifold M , m ∈ M and linear subspace Hm

of TmM , there exists a smooth submanifold S of M such that Tm S = Hm. If M is a smooth
fiber bundle over a smooth manifold X and H is a connection in M , then this implies that for any
x ∈ X, y ∈Mx there is a smooth section s defined in an open neighborhood of x in M , such that
s(x) = y and (∇vs)(x) = 0 for every v ∈ TxX. If we apply this to the frame bundle of a vector
bundle with a linear connection, then it follows that one can always find a local trivialization (=
local section of the frame bundle = moving frame) such that with respect to any local system of
coordinates all the Christoffel symbols vanish at the chosen point x ∈ X.

If TX, then a local trivialization (= moving frame) is usually not induced by a local system of
coordinates. For instance, if T (x) 6= 0, then it follows from Lemma 7.1 that there exists no system
of local coordinates in a neighborhood of x such that all the Christoffel symbols vanish at the point
x, whereas there always is a local trivialization of TX such that with respect to any local system
of coordinates all the Christoffel symbols vanish at x.

It is the extra freedom of allowing moving frames which are not constant in any system of
local coordinates which makes the moving frames of Élie Cartan such a flexible tool in differential
geometry. �

A linear connection H in TX (= affine connection in X) is called torsion-free if, for every x ∈ X,
any of the equivalent conditions i) — iv) in Lemma (7.1) holds.

Now assumme that β is a pseudo-Riemannina structure on X, i.e., β is a smooth mapping which
assigns to every x ∈ X a nondegenerate symmetric bilinear form on TxX. If, for each x ∈ X, βx is
positive definite, i.e. βx is an inner product on TxX, then β is called a Riemannian structure on
X.

Remark 7.2 If dimX = 4 and the signature of βx is −1, −1, −1, 1, then β is a Lorentz metric on
a space-time manifold X of relativity theory. The v ∈ TxX such that βx(v, v) > 0 and βx(v, v) < 0
are called time-like and space-like, respectively, whereas the set of v ∈ TxX such that βx(v, v) = 0
form the light cone. Particles with positive mass describe time-like curves, whereas particles which
travel with the speed of light, which have zero mass, describe curves which are tangent to the light
cone. �
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In local coordinates β is given by

βx(u, v) =

n∑

i, j=1

βij(x)u
i vj , (7.3)

in which the βij(x), 1 ≤ i, j ≤ n, form a nondegenerate symmetric n × n-matrix, depending
smoothly on x. It is a natural question to ask whether, for the given pseudo-Riemannian structure
β, and for any given point x, on can find a system of local coordinates such that all first order
partial derivatives at the point x of all the coefficients βij(x) vanish, i.e.

∂βij(x)

∂xk
= 0, 1 ≤ i, j, k ≤ n. (7.4)

Suppose that H is a torsion-free connection in TX such that β is covariantly constant with
respect to H. According to Lemma 7.1 there exists a system of local coordinates such that all the
Christoffel symbols of H vanish at the given point x. The condition that β is covariantly constant
at the point x then is equivalent to (7.4). It therefore follows from Theorem 7.2 below that for
the any pseudo-Riemannian structure β, and for any given point x, on can find a system of local
coordinates such that all first order partial derivatives at the point x of all the coefficients βij(x)
vanish.

Theorem 7.2 Let β be a pseudo-Riemannian structure on X. Then there exists a unique torsion-
free connection H in TX such that β is covariantly constant with respect to H.

Proof We work in local coordinates around x = 0. If ei, 1 ≤ i ≤ n, denotes the standard basis in
Rn, then, for any a ∈ Rn, the vector field va defined by

vi
a(x) = ai −

n∑

=1

Γi
jk x

j ak

is horizontal at the point x = 0. Here Γi
jk := Γi

jk(0) denote the Christoffel symbols of H at the
point x = 0. It follows that β is covariantly constant at x = 0 with respect to H if and only if, for
any a, b ∈ Rn and any 1 ≤ k ≤ n,

∂βx(va(x), vb(x))

∂xk

∣∣∣∣
x=0

= 0.

Writing out these equations for a = ei, b = ej , in which the ei, 1 ≤ i ≤ n, denote the standard
basis of Rn, we arrive at the equations

βij, k =
n∑

p=1

βpj Γp
ki +

n∑

p=1

βip Γp
kj, (7.5)

in which we have written βij = βij(0) and βij, k :=
∂βij(x)

∂xk

∣∣∣
x=0

. It follows from (7.5) that

βjk, i =

n∑

p=1

βpk Γp
ij +

n∑

p=1

βjp Γp
ik and βki, j =

n∑

p=1

βpi Γ
p
jk +

n∑

p=1

βkp Γp
ji. (7.6)
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Using the symmetries βij = βji and Γi
jk = Γi

kj, we obtain from (7.5) and (7.6) that

βij, k − βjk, i + βki, j = 2

n∑

p=1

βpj Γp
ki. (7.7)

If βij(x) denotes the inverse matrix of the matrix βij(x), and if we rename the indices in order to
obtain an expression for Γi

jk, then this leads to

Γi
jk(x) =

1

2

n∑

p=1

βip(x)

[
∂βkp(x)

∂xj
−
∂βpj(x)

∂xk
+
∂βjk(x)

∂xp

]
, 1 ≤ i, j, k ≤ n, (7.8)

at x = 0. This proves the uniqueness in Theorem 7.2.
In order to prove that the system (7.5) of linear equations (for all 1 ≤ i, j k ≤ n) for the

Christoffel symbols has a solution, we observe that the right hand side, viewed as a linear function
of the Christoffel symbols, defines a linear mapping L from Sym2(Rn)∗⊗Rn to Sym2(Rn)∗⊗(Rn)∗.
Because of the aformentioned uniqueness, the linear mapping L is injective, and therefore bijective,
because the source space and the target space have the same dimension. 2

The unique torsion-free connection H in TX such that β is covariantly constant with respect to
H, of which the Christoffel symbols in local coordinates are given by (7.8), is called the Levi-Civita
connection of the (pseudo-)Riemannian structure β. The curvature of this connection is called the
Riemannian curvature tensor of (X, β).

Remark 7.3 Riemann introduced the concept of what nowadays is called a Riemannian structure
in his Habilitationsvorlesung in 1854 in Göttingen, cf. [29, XIII]. In it, he discussed the problem of
finding coordinates in which the Riemannian stucture β is the standard one of Rn, and indicates
curvature as the obstruction to this, but without an formula for the curvature tensor.

In [29, XXII] Riemann proved that the first order derivatives of β can be made equal to zero
at a given point using suitable local coordinates, and introduced the curvature tensor R as the
obstruction for making the second order derivatives of β equal to zero at the given point. There he
also states, without further proof, that if R vanishes identically, then the Riemannian structure is
the standard one in a suitable coordinate system.

However, he had written this down in an article which had submitted in 1861 to the Academy
in Paris as his answer to a prize question, which had been posed in 1858 and withdrawn in 1868,
without an award. Riemann did not get the prize because the proofs were not sufficiently complete.
Due to health problems, Riemann never worked out the details in the way he had planned.

Knowing Riemann’s Habiliationsvorlesung but not Riemann’s prize memoir, Christoffel [10] and
Lipschitz [27] independently proved that the first order derivatives of the metric tensor can be made
equal to zero at a given point by choosing suitable coordinates, and that the curvature tensor R
is the obstruction to doing the same with the second order derivatives. Christoffel [10] also proved
that, for any k, the covariant derivatives up to the order k of R at x are the obstructions to making
all derivatives up to the order k + 2 equal to zero at x.

Levi-Civita [25] introduced the parallel transport inthe tangent bundle TX with respect to
the infinesimal connection with the Christoffel symbols (7.8), and which since then is called the
Levi-Civita connection in the (pseudo-)Riemannian manifold (X, β). �
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Remark 7.4 The covariant derivative can be used in order to define all kinds of linear partial
differential operators acting on sections of vector bundles, in terms of given differential geometric
structures on the bundle and the base manifold.

For instance, let (X, β) be an n-diemsnional pseudo-Riemannian manifold and M is a vector
bundle over X with connection H. Let U be an opene subset of X and fi, 1 ≤ i ≤ n, a local frame
of vector fields in U . Define the dual frame of one-forms φj , 1 ≤ j ≤ n, by φj(fi) = δj

i . Then

∆ :=

n∑

i, j=1

β−1(φi, φj)

(
∇fi
◦ ∇fj

−∇
∇β

fi
fj

)
(7.9)

defines a second order linear partial differential operator action on sections of M (over U). Here
∇v : s 7→ ∇vs denotes the covariant derivative with in the direction of the vector field v, regarded as
a first order linear partial differential operator acting on sections of M . The vector field v = ∇β

fi
fj

denotes the covariant derivative of the vector field fj in the direction of the vector field fi, with
respect to the Levi-Civita connection in TX defined by the pseudo-Riemannian structure β.

The point of substracting the covariant derivative in the direction of v is that it makes the right
hand side in (7.9) independent of the choice of the local frame fi, 1 ≤ i ≤ n, and therefore (7.9)
leads to a globally defined second order linear partial differential operator ∆ : Γ(M) → Γ(M),
acting on sections of the vector bundle M . If β is a Riemannian structure on X, then the operator
∆ is a Laplace operator, an elliptic second order linear partial differential operator, whereas ∆ is a
wave operator if β has a Lorentz signature.

A first order linear partial differential operator D acting on Γ(M) is obtained if we write

D =

n∑

i=1

c(φi)∇fi
, (7.10)

in which, for each x ∈ X, cx denotes a linear mapping from (TxX)∗ to the space Lin(Mx, Mx) of
linear mappings from Mx to itself. In other words, cx makes Mx into a (TxX)∗-module. Here it is
even simpler to verify that the right hand side in (7.10) does not depend on the choice of the local
frame. This is particularly interesting if, for any ξ ∈ (TxX)∗, we have that

cx(ξ)2 = β−1
x (ξ, ξ) I,

in which I denotes the identity in Mx. In this case D2 has the same second order part as ∆, and
D is called a Dirac operator acting on Γ(M). An example is the spin-c Dirac operator, which has
applications in symplectic geomtery, cf. [16]. The spin-c Dirac operator occurs also in the Seiberg-
-Witten theory, which led to a revolution in the theory of smooth four-dimensional manifolds, cf.
Morgan [28]. �
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8 Connections in a Principal Fiber Bundle

Now let G be any Lie group with Lie algebra g, and let π : P → X a principal G-bundle over X.
(See the course of Joop Kolk for the definition.) The fact that on each fiber Px of P the proper
action of G is free and transitive, implies that it is infinitesimally free and transitive, which means
that for every p ∈ Px the linear mapping

i(p) : X 7→ X
P
(p) : g→ Tp Px (8.1)

has zero kernel and is surjective, respectively, which together imply that this mapping is a linear
isomorphism. The mappings i(p) : g

∼
→ Tp Px = kerTp π are used to identify all the tangent spaces

of the fibers of P with one and the same Lie algebra g of G.
Now assume that H is a connection in P , i.e. for each p ∈ P

Tp P = Hp ⊕ ker Tp π
∼
← Hp ⊕ g.

Élie Cartan introduced the connection form of H as the g-valued one-form θ such that, for every
p ∈ P , θp is equal to zero on Hp and equal to the identity on the tangent space of the fiber, identified
as above with g. In formula,

ker θp = Hp and (8.2)

θp(XP
(p)) = X, X ∈ g. (8.3)

In view of (8.2), the connection H is G-invariant if and only if

ker θg
P

(p) = Tp gP
(ker θp) , g ∈ G, p ∈ P.

One might think that this condition is equivalen tot the condition that θ is G-invariant in the sense
that g∗

P
θ = θ for every g ∈ G, but the situation is a bit subtler (and nicer) than that. It follows

from
g

P
◦
(
et X

)
P
◦ g−1

P
=
(
g et X g−1

)
P

=
(
et Ad g(X)

)

P

that
g

P
◦
(
et X

)
P

=
(
et (Ad g)(X)

)

P

◦ g
P
.

Evaluating this at p ∈ P and differentiating the left and right hand side with respect to t at t = 0,
we obtain that

Tp gP
X

P
(p) = (Ad g)(X)

P
(g

P
(p)), g ∈ G, p ∈ P. (8.4)

In view of (8.3) we therefore arrive at the conclusion that H is G-invariant if and only if the
connection form θ is G-equivariant in the sense that

((g
P
)∗θ)p = (Ad g)(θp), g ∈ G, p ∈ P. (8.5)

Conversely, any smooth g-valued one-form θ on P which satisfies (8.3) and (8.5) is called a
connection form on the principal G-bundle P .

Lemma 8.1 Every principal G-bundle over a smooth manifold X admits a connection form.
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Proof This is obvious if the G-bundle is trivial. X. For any locally finite covering of X with
open subsets Uα such that π−1(Uα is a trivial G-bundle over Uα, we have a connection form θα on
π−1(Uα). Let χα be a smooth partition of unity on X which is subordinate to the covering Uα,
i.e. for every α we have that χα ∈ F(X) has a compact support which is contained in Uα, and∑

α χα = 1 on X. Then θ :=
∑

α χα θα defines a connection from on P . 2

If θ is a connection form on P , then (8.2) defines an invariant smooth connection in P , of which
θ is the connection form. It therefore follows from Lemma 8.1 that every principal fiber bundle
admits an invariant smooth connection.

If in (8.5) we substitute g = et X , t ∈ R, X ∈ g and we differentiate the left and right hand side
with respect to t at t = 0, then we obtain the infinitesimal equivariance LXP

θ = (adX) (θ). We
have

LX
P
θ = d(iX

P
θ) + iX

P
(dθ) = dX + iX

P
(dθ) = iX

P
(dθ),

where in the first, second and third identity we used the homotopy identity for the Lie derivative, cf.
Section 14, the formula (8.3, and the fact that X is constant, repectively. Therefore the infinitesimal
equivariance of θ takes the form

iX
P
(dθ) = (adX) (θ), X ∈ g. (8.6)

If we apply θp to the left and right hand side of (2.5), we obtain in view of (8.2) and (8.3) that

θpRx(u(x), v(x))(p) = −θp([uhor(p), vhor(p)]) = (dθ)p(uhor(p), vhor(p)),

where in the second identity we have used (1.2). In other words, if we use θp in order to identify
the vertical space Vp := Tp Px with g, then the curvature applied to u, v ∈ X (X) is given by the
g-valued function dθ(uhor, vhor) on P .

A q-form β on Tp P is called horizontal if iv β = 0 for every v ∈ Vp. If α is any q-form onHp, then
there is a unique horizontal p-form β on Tp P which agrees with α on (Hp)

q. This form β is called
the horizontal part αhor of α. Indeed, each v ∈ Tp P has a unique decomposition v = vH + vV with
vH ∈ Hp and vV ∈ Vp, which each depend linearly on v, and αhor(v1, . . . vq) := α(v

1, H
, . . . , v

q, H
)

defines the unique horizontal extension β of α|Hp×Hp to (Tp P )q.
Consider the g-valued two-form Ω on P which is defined by

Ω(u, v) = (dθ)(u, v)− [θ(u), θ(v)], u, v ∈ X (P ). (8.7)

Then, for each X ∈ g,

(iX
P

Ω)(v) = (iX
P
(dθ))(v)− [θ(X

P
), θ(v)] = (adX) (θ(v)) − [X, θ(v)] = 0,

where in the second equation we have used (8.6), and in the last equation that (adX)(Y ) := [X, Y ]
for any X, Y ∈ g. Because Ω agrees with dθ on Hp × Hp in view of (8.2), we conclude that
Ω = (dθ)hor, the horizontal part of the exterior derivative of θ.

It follows also from (8.7), (8.5) and the fact that the exterior derivative commutes with pull-
backs, that the g-valued two-form Ω on P is G-equivariant in the sense that

(g
P
)∗Ω = (Ad g)Ω, g ∈ G. (8.8)
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The G-equivariant horizontal g-valued two-form Ω is called the curvature form of the connection
H in P (or of the connection form θ on P ), and we have the identity

θpRx(u(x), v(x))(p) = Ωp(uhor(p), vhor(p)), u, v ∈ X (X). (8.9)

Remark 8.1 The connection form and curvature form have been introduced by Élie Cartan [7,
pp. 383–390]. �

Remark 8.2 According to the “Wu and Yang dictionary” between field theory in physics and
differential geometry, cf. [31], a “gauge type” is a principal G-bundle P , a “gauge potential” is
an invariant connection in P , given by an equivariant connection form θ ∈ (ω1(P ) ⊗ g)G, and the
“field strength” is the curvature form Ω of the connection. The “gauge group” is the group G if
diffeomorphisms Φ : P → P such that π ◦ Φ = π and Φ ◦ g

P
= g

P
◦ Φ for every g ∈ G. The

Yang-Mills equations are invariant under G, and the relevant fields are the G-orbits of solutions of
the Yang-Mills equations.

For base manifolds X which are compact and four-dimensional, Donaldson used the so-called
anti-self-dual connections modulo G in his study of the geometry of X, cf. [14]. �
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9 Associated Vector Bundles

Now suppose that Y is a finite-dimensional vector space and ρ is a representation of G in Y , i.e.
ρ is a homomorphism of Lie groups from G to GL(Y ). In P × Y we have that action (p, y) →
(g

P
(p), (ρ(g))(y)) of g ∈ G. This action is proper and free, because the action of G on P is proper

and free. We denote by M := P ×GY the space of all the orbits

G (p, y) = {(g
P
(p), (ρ(g))(y)) | g ∈ G} (9.1)

of this action of G in P × Y .
We have G (p, y) = G (p′, y′) if and only if there exists a g ∈ G such that p′ = g

P
(p) and y′ =

(ρ(g))(y), which implies that π(p′) = π(p). therefore we have a well-defined mapping π
M

: M → X
such that π

M
(G (p, y)) = π(p), which is surjective, and in fact exhibits M as a fiber bundle over

X. In the sequel we will write π instead of π
M

.
If x ∈ X, then the fact that G acts freely and transitively on Px implies that, for any chosen

p ∈ Px, the mapping g 7→ g
P
(p) is a diffeomorphism from G onto Px. If, for given y ∈ Y , we

compose the inverse of this mapping with the mapping g 7→ (ρ(g))(y) from G to Y , then we obtain
a smooth mapping s from Px to Y of which the orbit G (p, y) is the graph. This mapping is
G-equivariant in the sense that

s(gP (p)) = (ρ(g))(s(p)), g ∈ G, p ∈ Px, (9.2)

i.e. s intertwines the action of G on P with the representation ρ of G in Y .
Identifying a mapping with its graph, which actually is the set-theoretic definition of a mapping,

we identify the fiber Mx over x ∈ X of the bundle M with the space of all mappings a : Px → Y
which satisfy (9.2). Because Y is a vector space, the space Y Px of all mappings s : Px → Y is a
vector space with the pointwise addition and scalar multiplication. Because, for each g ∈ G, ρ(g)
is a linear mapping from Y to Y , the space Mx of Y -valued function s on P which satisfy (9.2) is
a linear subspace of Y Px , and for each p ∈ Px the mapping evp : s 7→ s(p) (= ”evaluation at the
point p”) defines a linear isomorphism from Mx onto Y . This exhibits M as a vector bundle over
X with fibers isomorphic to Y . Each smooth local section p : U → P of the bundle P , in which
U is an open subset of X, induces a local trivialization τ : π−1

M
(U) → U × Y which is defined by

τ(G (p(x), y)) = (x, y) when x ∈ U and y ∈ Y . These local trivializations exhibits M as a smooth
vector bundle over X.

Because a section of M is a mapping which assigns to each x ∈ X an element s(x) of Mx,
the sections of M are identified with the mappings s : P → Y which satisfy the G-equivariance
condition

s(gP (p)) = (ρ(g))(s(p)), g ∈ G, p ∈ P. (9.3)

In this way the vector space Γ(M) of all sections ofM is identified with the vector space (F(P )⊗Y )G

of all G-equivariant Y -valued functions on P .
If H is a G-invariant connection in P and v ∈ X (X), then vhor is a G-invariant vector field on

P . If s ∈ (F(P ) ⊗ Y )G we therefore have that

(gP )∗(vhor s) = (gP )∗(vhor) (gP )∗(s) = vhor (ρ(g) s) = ρ(g) (vhor s),

where in the last identity we have used that the linear transformation ρ(g) does not depend on the
point in P . In other words, the differentiation of Y -valued functions on P in the direction of the
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vector field vhor maps Γ(M) = (F(P ) ⊗ Y )G to itself, and this defines a covariant diffentiation

∇vs := vhor s, v ∈ X (X), s ∈ Γ(M) (9.4)

in the space of sections of M , since the Leibniz rule (3.6) is obviously satisfied by the right hand
side in (9.4). In this way the G-invariant connection H = HP in P induces a linear connection
H = HM in M , for which it can be verified that

HM
G (p,y) = T(p, y) ψ

(
HP

p × {0}
)
, (p, y) ∈ P × Y, (9.5)

if ψ : P × Y →M = P ×G Y is the projection defined by ψ(p, y) = G (p, y).

Remark 9.1 The formula (9.4) is the same as the formula (5.6) when P = FM . However, in
Section 5 we started out with a linear connection in M , which we used to define a G-invariant
connection in P = FM for which the identity (5.6) holds. Here the procedure has been the other
way around: starting from a G-invariant connection on a general principal G-bundle P , we define
the linear connection on the associated vector bundle M = G×G Y by means of the formula (9.4).
�

In order to compute the curvature of the connection HM in M , we write, for any s ∈ Γ(M) and
u, v ∈ X (X),

RM (u, v) s = [∇u, ∇v] s−∇[u, v] s = (ds) ([uhor, vhor]− [u, v]hor) ,

where in the first and second identity we have used (3.8) and (9.4), respectively.
Now the vector field w = [uhor, vhor]− [u, v]hor is vertical, which implies that we can write, for

any p ∈ P ,

w(p) = XP (p), X = θp(w(p)) = θp ([uhor, vhor]) = −dθ (uhor(p), vhor(p)) ,

cf. (8.3) and (1.2). On the other hand the G-equivariance (9.3) implies that

iX
P

ds = LX
P
s = ρ′(X) s,

if

ρ′(X) =
d

dt
ρ
(
et X

)∣∣∣
t=0

denotes the infinitesimal representation of X ∈ g in Y . (The mapping ρ′ is a homomorphism of Lie
algebras from g to the Lie algebra Lin(Y, Y ) of linear mappings from Y to Y .) If we combine our
formulas with (8.7), we arrive at the formula

RM (u, v) s = −ρ′(Ω(uhor, vhor)) s, (9.6)

valid for any u, v ∈ X (X) and s ∈ Γ(M) = (F(P )⊗ Y )G, which expresses the curvature of HM in
terms of the curvature form of the G-invariant connection in P .

If we have a ρ(G)-invariant inner product on Y , then (6.2) defines a covariantly constant inner
product β on the fibers of the accociated vector bundle M = P ×G Y . Similarly, if Y is a complex
vector space with Hermitian form h and ρ(G) ⊂ U(Y, h), then M = P ×G Y is a complex vector
bundle over X and (6.4) defines a covariantly constant Hermitian structure on the fibers of M .
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Remark 9.2 There are quite a number of sign issues in differential geometry. To begin with, if
G is a Lie group acting smoothly on a manifold M then the infinitesimal action of an element X
of the Lie algebra g of G is a smooth vector field X

M
on M . For any X, Y ∈ g we have

[X, Y ]
M

= − [X
M
, Y

M
] , (9.7)

which means that the mapping X 7→ X
M

: g→ X (M) is not a homomomorphism of Lie algebras,
but an anti-homomorphism. This is caused by the fact that XM f is equal to the derivative with
respect to t at t = 0 of the pullback of the function f by means of the time t flow of the vector field
XM , and the mapping which assigns to g ∈ G the pullback operator (g

M
)∗ is not a homomorphism

from G to the group of linear transformations in F(M), but an anti-homomorphism.
In the literature one often denotes the action of g ∈ G = GL(l, R) on the frame bundle P = FM

not by g
P

as in (5.1), but by g̃
P

: f 7→ f g. This lead to an anti-homomorphism g 7→ g̃
P

from G to
the group of diffeomorphisms of P . Such an anti-homorphism is also called a right action of G on
P , whereas a homomorphism from G to Diffeo(P ) is called a left action of G on P .

If one has a right action g 7→ g̃
P

on P , then the connection form θ in (8.3) is replaced by

the form θ̃ which has kernel equal to H and is equal to X when applied to X̃
P
. Because of the

anti-homomorphism property, the equivariance (8.5) is replaced by

(g̃
P
)∗θ̃ = (Ad g)−1 θ̃, g ∈ G, (9.8)

hence
i
X̃

P

dθ̃ = −(ad X) θ̃, X ∈ g. (9.9)

It follows that the curvature form, the horizontal extension of dθ̃ on H ×H, is given by

Ω̃(u, v) = (dθ̃)(u, v) + [θ̃(u), θ̃(v)], (9.10)

instead of (8.7).
In a similar fahsion, the equivariance (9.3) for sections s of M is replaced by

s(g̃
P
(p)) = ρ(g)−1(s(p)), g ∈ G, p ∈ P, (9.11)

which makes that ρ′ in (9.6) has to be replaced by −ρ′, which leads to the formula

RM (u, v) = ρ′(Ω̃(uhor, vhor)) (9.12)

for the curvature in M in terms of the curvature form Ω̃ on P .
Therefore the use of right actions leads to the disappearance of the minus sign in (9.6). On

the other hand it leads to less natural formulas for the equivariance of the connection form, the
curvature form, and sections of the associated vector bundle. �
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10 Principal Circle Bundles

The horizontality of the curvature form Ω implies that for every x ∈ X and p ∈ Px, there is a
unique two-form ωp on TxX, such that Ωp = (Tp π)∗ ωp. However, this only will define a two-form
ω on X if ωp = ωx does not depend on the choice of p ∈ Px. This will be the case if and only if,
for every g ∈ G, g∗

P
Ω = Ω, which in view of the equivariance property (8.8) of Ω is equivalent to

the condition that (Ad g)Ω = Ω for every g ∈ G.
It follows that if the adjoint representation of G on g is trivial, which happens in particular when

G is commutative, then the is a unique ω ∈ Ω2(X) ⊗ g such that Ω = π∗ω. Note that in this case
the formula (8.7) also simplifies to Ω = dθ. It follows that π∗(dω) = d(π∗ω) = dΩ = d(dθ) = 0,
which implies that dω = 0, i.e. the two-form ω on X is closed, and therefore it defines a de Rham
cohomology class

[ω] ∈ H2
de Rham

(X) ⊗ g.

Furthermore, if θ′ is another invariant connection form, then θ ′ = θ+π∗λ for some λ ∈ Ω(X)⊗g.
Therefore Ω′ = dθ′ = dθ + d(π∗λ) = π∗ω + π∗(dλ) = π∗(ω + dλ), which shows that the de Rham
cohomology class of ω does not depend on the choice of the invariant connection.

The circle group
G = U(1) := {z ∈ C | |z| = 1} ,

with the multiplication of complex numbers as the group structure, is commutative and has Lie
algebra equal to u(1) = iR, the purely imaginary axis in C.

Theorem 10.1 Let P be a principal U(1)-bundle over X and let Ω be the curvature of an invariant
connection in P . Let σ ∈ Ω2(X) be the closed two-form on X such that

−
1

2π i
Ω = π∗σ. (10.1)

Then the cohomology class [σ] is integral, in the sense that it belongs to the image of the natural
homomorphism

i : H2
Čech

(X, Z)→ H2
Čech

(X, R)
∼
→ H2

de Rham
(X)

from the Čech cohomology group H2
Čech

(X, Z) to the de Rham cohomology group H2
de Rham

(X).

Conversely, for every closed two-form σ ∈ Ω2(X) such that [σ] = i(c), c ∈ H2
Čech

(X, Z), there
is a U(1)-bundle over X with an invariant connection and corresponding curvature form Ω, such
that (10.1) holds.

Proof For the Čech cohomology which we use here, we refer to [21, §2–4]. In the proof we will
spell out what the homomorphism i from H2

Čech
(X, Z) to H2

de Rham
(X) means.

We start with the closed two-form σ on X such that [σ] = i(c), c ∈ H2
Čech

(X, Z). Let Uα

be an open covering of X such that every non-empty intersection of finitely many Uα’s is con-
tractible. (This can be arranged by taking the Uα’s equal to sufficiently small balls with respect to
a Riemannian metric in X.)

Using the Poincaré lemma in Uα, we can write

σ = dτα on Uα, (10.2)

for some τα ∈ Ω1(Uα).
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If Uα ∩ Uβ 6= ∅, then we have d(τα − τβ) = dτα − dτβ = σ − σ = 0 on Uα ∩ Uβ, and applying
the Poincaré lemma on Uα ∩ Uβ, we find fαβ ∈ F(Uα ∩ Uβ), such that

τα − τβ = dfαβ on Uα ∩ Uβ. (10.3)

By replacing fα β by (fαβ − fβα)/2, we still have(10.3), but in addtion we have the antisymmetry
fβα = −fαβ.

If Uα ∩ Uβ ∩ Uγ 6= ∅, we consider

gαβγ := fαβ + fβγ + fγα on Uα ∩ Uβ ∩ Uγ . (10.4)

It follows from (10.3) that dgαβγ = (τα − τβ) + (τβ − τγ) + (τγ − τα) = 0, which means that the
gαβγ ∈ R are real constants.

The gαβγ therefore define a two-cochain with values in R, and the condition that [σ] = i(c) for
some c ∈ H2

Čech
(X, Z) now means that there exists a two-cochain cαβγ ∈ Z with values in Z and a

one-cochain dαβ ∈ R with values in R, such that

gαβγ := cαβγ + dαβ + dβγ + dγα whenever Uα ∩ Uβ ∩ Uγ 6= ∅. (10.5)

It follows from (10.6) and (10.5) that, if we replace fαβ by fαβ−dαβ , then still (10.3) holds, whereas
(10.4) is replaced by

cαβγ = fαβ + fβγ + fγα ∈ Z. (10.6)

Now define
φαβ := e2π i fαβ ∈ U(1) on Uα ∩ Uβ (10.7)

when Uα ∩ Uβ 6= ∅. It then follows from fαβ + fβγ + fγα ∈ Z that

φαβ φβγ φγα = 1 on Uα ∩ Uβ ∩ Uγ 6= ∅. (10.8)

This implies that the trivial U(1)-bundles Uα×U(1) can be glued together to a smooth U(1)-bundle
P over X, by identifying (x, zα) ∈ Uα ×U(1) with (x, zβ) ∈ Uβ ×U(1) if x ∈ Uα ∩ Uβ and

zα = (π∗φαβ) zβ on π−1(Uα ∩ Uβ). (10.9)

Here zα is viewed as the smooth mapping from the open subset π−1(Uα) of P to U(1), such that
p 7→ (π(p), zα(p)) is the corresponding local trivialization over Uα of the U(1)-bundle P .

Let θ be a U(1)-invariant connection form on P . On π−1(Uα) we have that g∗
P
zα = g zα for every

g ∈ U(1), hence iX
P

dzα = X zα for every X ∈ u(1), which means that the logarithmic derivative

d(ln zα) = z−1
α dzα of zα is a connection form in π−1(Uα). It follows from (8.3) that the one-form

θ− z−1
α dzα is horizontal, and because it also is U(1)-invariant, there is a unique θα ∈ Ω1(Uα) such

that
θ − z−1

α dzα = π∗θα on π−1(Uα). (10.10)

If we take the logarithmic derivative of both sides in (10.10, then we obtain

z−1
α dzα = (π∗φαβ)−1 d(π∗φαβ) + z−1

β dzβ = π∗
(
φ−1

αβ dφαβ

)
+ z−1

β dzβ ,

where in the second identity we have used that d commutes with π∗ and that π∗ is an algebra
homomorphism. If we insert this in (10.10), then we see that the z−1

α dzα + π∗θα piece togeher to
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a global connection form θ in P , if and only if π∗
(
φ−1

αβ dφαβ

)
+ π∗θα = π∗θβ on π−1(Uα ∩ Uβ),

which is equivalent to
φ−1

αβ dφαβ + θα = θβ on Uα ∩ Uβ (10.11)

when Uα ∩ Uβ 6= ∅.
It follows from (10.7) and (10.3) that

φ−1
αβ dφαβ = 2π i dfαβ = 2π i (τα − τβ),

and therefore (10.11) is equivalent to 2π i τα + θα = 2π i τβ + θβ on Uα∩Uβ, which means that there
is a globally defined one-form λ ∈ Ω1(X) on X such that

λ = 2π i τα + θα on Uα. (10.12)

This can for instance be arranged with λ = 0 by taking θα := −2π i τα.
If we take the exterior derivative of both sides of (10.12) and (10.10), then we obtain in view

of (10.2) and the fact that the exterior derivive of the logarithmic derivative of zα is equal to zero,
that dλ = 2π iσ + dθα and Ω = dθ = d(π∗θα), respectively. Combining these two equations, we
arrive at the conclusion that

Ω = π∗(−2π i σ + dλ). (10.13)

This completes the proof of the second statement in Theorem 10.1. For the first statement,
one starts with the retrivializations (10.7), for which (10.6) defines the Čech cohomology class
c ∈ H2(X, Z). The discussion following (10.9) then proves (10.1), whereas [σ] = i(c), follows from
(10.3) and (10.2). 2

Let L be the complex line bundle which is associated to the principal U(1)-bundle P by means of
the standard representation of U(1) in C, where ρ(g) is equal to the multiplication by the complex
number g ∈ U(1). In other words, P = UFL, cf. (6.3). Then the cohomology class c ∈ H2(X, Z)
which is assigned to P = UF(L) by means of Theorem 10.1 is called the Chern class c(L) of L.

Note that the standard Hermitian structure on C induces a Hermitian structure on L which
is covariantly constant with respect to the connection in L. Conversely every complex line bundle
L over X with Hermitian structure h and connection such that h is covariantly constant arises in
this way for a unique closed two-form σ ∈ Ω2(X), which is called the Chern form defined by the
Hermitian connection in L.

In view of (10.1) and (9.6) with ρ(g) = g, the Chern class corresponds to 1
2π i

times the curvature
of the connection in L. Note that c(L1 ⊗ L2) = c(L1) + c(L2).

A general complex representation ρ of U(1) in a complex vector space Y splits as a direct sum
of complex one-dimensional representations. For each one-dimensional representation there is an
integer m such that, for each g ∈ U(1), ρ(g) is equal to multiplication by the complex number gm.
This means that the associated vector bundle P ×U(1) Y is a direct sum of complex line bundles of
the form L⊗m, with Chern class equal to m c(P ).

Remark 10.1 If σ is a symplectic form on X, then the symplectic manifold (X, σ) can be viewed
as the phase space of a classical mechanical system. If [σ] = i(c) with c ∈ H2(X, Z), then we have
the complex line bundle L with Chern class equal to c. A suitable subspace of the space of sections
of L may be proposed as the Hilbert space on which the linear operators of quantum mechanics
act. This is the the program of geometric quantization of Kostant [24]. �
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11 Equivariant Cohomology

Equivariant cohomology is a structure which is attached to any smooth action of a Lie group G on
a smooth manifold P . In the theory of Henri Cartan [8], it is a variation of de Rham cohomology,
in which the algebra Ω∗(P ) of smooth differential forms on P is replaced by the algebra

A := (C[g]⊗ Ω∗(M))G (11.1)

of polynomial mappings α : g→ Ω∗(P ) from the Lie algebra g of G to Ω∗(P ), which are equivariant
in the sense that

α((Ad g)X) = (g∗
P
)−1(α(X)), g ∈ G, X ∈ g. (11.2)

(Because it is convenient to allow complex valued differential forms, all algebras will be over C.)
The algebra A has a double grading: as a vector space it is equal to the direct sum of the Ak, l,

in which α ∈ Ak, l if α ∈ A and α is a homogenous polynomial of degree k with values in the space
Ωl(P ) of differential forms of degree l. Ak, 0 is the space of homogeneous C-valued polynomials of
degree k on g, whereas A0, l = Ωl(P )G is the space of G-invariant differential forms of degree l on
P , constant as a polynomial on g. The total degree of α ∈ Ak, l is the number m = 2k + l, this
prepares for the substution of X ∈ g by components of the curvature form in Theorem 11.1 below.
The space of equivariant forms of total degree m will be denoted by

Am :=
⊕

k, l| 2k+l=m

Ak, l. (11.3)

The equivariant exterior differentiation dg in the algebra A is defined as the following combina-
tion of the exterior differentiation of differential forms and the inner product with the infinitesimal
action of g on P :

(dg α)(X) = d(α(X)) − iX
P
(α(X)), α ∈ A, X ∈ g. (11.4)

We say that α is equivariantly closed if dg α = 0, and equivariantly exact if there exist a β ∈ A
such that α = dg β. If α ∈ Ak, l, then the first and the second term in the right hand side of (11.4)
belong to Ak, l+1 and Ak+1, l−1, respectively, and it follows that dg maps Am to Am+1.

If in (11.2) we replace g by e−t X , with t ∈ R and X ∈ g, and differentiate with respect to t

at t = 0, then we get in view of (Ad g)X = X that 0 = LX
P
α(X) =

{
d ◦ iX

P
+ iX

P
◦ d
}
α(X),

where in the second identity we used the homotopy identity for the Lie derivative. Using this, we
obtain that dg ◦ dg = 0, or dg(A) ⊂ ker dg. Therefore we can define the equivariant cohomology of
the G-action on P as

H∗
G(P ) := ker dg / dg(A). (11.5)

The equivariant cohomology is graded, i.e. H∗
G(P ) is equal to the direct sum over all m ∈ Z≥0 of

the equivariant cohomology groups Hm
G (P ) of degree m, which are defined by

Hm
G (P ) := (ker dg ∩A

m)/ dg(Am−1). (11.6)

The equivariant form α ∈ A is called basic if α ∈ A ∩ Ω∗(P ) = Ω∗(P )G, i.e. α is a G-invariant
differential form on P , constant as a function on g, and moreover is horizontal in the sense that
iX

P
α = 0 for every X ∈ g. The basic forms form a subalgebra of A which will be denoted by

Ω∗
fopbas(P ), and dg = d on Ω∗

fopbas(P ). We have the basic cohomology group

H∗
bas

(P ) := (ker d∩Ω∗
bas

(P ))/ d(Ω∗
bas

(P )), (11.7)
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and the mapping α+ d(Ω∗
bas

(P )) 7→ α+ dg(A) leads to a homomorphism

ibas : H∗
bas

(P )→ H∗
G(P ) (11.8)

from the basic cohomology to the equivariant cohomology of P .
If π : P → X is a principal G-bundle over X then the pullback π∗ : Ω∗(X)→ Ω∗

bas
(P ) by means

of the projection π is an isomorphism which commutes with the exterior derivative, and we have
the corresponding isomorphism

π∗ : H∗(X)
∼
→ H∗

bas
(P ) (11.9)

between the (ordinary) de Rham cohomology of X and the basic cohomology of P . The theorem
of Henri Cartan, Theorem 11.1 below, implies that if π : P → X is a principal G-bundle, then the
mapping ibas ◦ π

∗ : H∗(X) → H∗
G(P ) is an isomorphism from the de Rham cohomology of X onto

the equivariant cohomology of P . If X is compact, then the dimension of H∗(X), and it follows
that the dimension of H∗

G(P ) is finite.
In contrast, if there exist p ∈ P and X ∈ g such that X 6= 0 and X

P
(p) = 0, then the

equivariant cohomology H∗
G(P ) of P is infinite-dimensional, even if both P and G are compact.

This makes equivariant cohomology a very sensitive tool in the investigation of actions which are
not proper and free. An expression of this property is the localization formula of Berline-Vergne
[6] and Atiyah-Bott [4]. For a survey, see ([15]).

Let us return to the case that the G-action on P is proper and free, or slightly more generally,
that the G-action admits a connection form, a g-valued smooth one-form θ on P which satisfies
(8.3) and (8.4). (Such a generalization is useful in the category of orbifolds.)

Choose a basis in g and denote the coordinates of X ∈ g with respect to this basis by Xi. Then,
for any α ∈ A, we can write α(X) as a sum of monomials

α(X) =
∑

µ

(
∏

i

Xi
µi

)
αµ, (11.10)

in which the µ are multi-indices, and the “monomial coefficients” aµ ∈ Ω∗(P ) are uniquely defined
differential forms on P . Then the differential form

α(Ω) =
∑

µ

(
∏

i

Ωi
µi

)
αµ ∈ Ω∗(P ) (11.11)

on P , obtained by ”substituting X by Ω in α(X)”, is independent of the choice of the basis in g.
Note that the order of the factors Ωi does not matter, because two-forms commute with forms of
any degreee.

Every α ∈ A can be written in a unique way as a sum of β and elements of the form

α = β +

dimg∑

j=1

∑

i1<...<ij

θi1 ∧ . . . ∧ θij ∧ βi1, ..., ij , (11.12)

in which β and βi1, ..., ij are horizontal elements of A. αhor := β is called the horizontal part of α
with respect tot the connection form θ. For ordinary differential forms on P this agrees with the
horizontal part defined in Section 8.
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Theorem 11.1 If the action of G on P admits a connection from θ, then the homomorphism
(11.8), from the basic cohomlogy of P to the equivariant cohomology of P , is an isomorphism. if P
is a principal G-bundle over X, then ibas ◦ π

∗ : H∗(X)→ H∗
G(P ), where π∗ is defined in (11.9), is

an isomorphism from the de Rham cohomology of X onto the equivariant cohomology of P .
More specifically, if α is an equivariantly closed form, then (αhor)(Ω) = (α(Ω))hor, and this

form β is basic, closed, and equivariantly cohomologous to α. Here α(Ω) is obtained from α by
substituting the variable X ∈ g in α(X) by the curvature form Ω, as in (11.11).

A workout of the proof of Henri Cartan [8] can be found in [16, pp. 229–234].
If we take α equal to an AdG-invariant polynomial f on g, which is an equivariantly closed

form of degree zero as a differential form on P , then Theorem 11.1 implies the following theorem
of André Weil [33]:

Corollary 11.2 Let P is a principal G-bundle over X with connection form θ and corresponding
curvature form Ω. If f is an AdG-invariant homogeneous polynomial f of degree j on g, then
f(Ω) = π∗ω for a uniquely determined closed differential form ω ∈ Ω2j(X) of degree 2j on X. If
the connection form θ is replaced by another connection form θ̃, with curvature form Ω̃, then ω is
replaced by a closed differential form ω̃ ∈ Ω2j(X) which is cohomologous to ω. In other words, the
de Rham cohomology class w(f) := [ω] ∈ H2j(X) does not depend on the choice of the connection
form θ. In this way one obtains a homomorphism w : C[g]Ad G → Heven(X) from the algebra of
AdG-invariant polynomials on g to the algebra of de Rham cohomolgy classes of even degree on
X.

Note that the fact that f(Ω) and f(Ω̃) both are equivariantly cohomologous to f implies that ω̃ is
cohomologous to ω. The homomorphism w is called the Weil homomorphism and the cohomology
classes w(f), f ∈ C[g]Ad G are called the characteristic classes of the principal G-bundle P over X.
If P is a frame bundle of a vector bundle M , then the characteristic classes of P are also called
the characteristic classes of M . The forms ω ∈ Ω2j(X), defined in terms of the connection form θ
and curvature form Ω on P , are called the characteristic forms of the principal G-bundle (or vector
bundle) over X.

For G = U(1) and g ' iR, the Chern form is the characteristic form which is assigned to the
polynomial X 7→ −(2π i)−1X : g → R, which is invariant because G is commutative. As we have
seen in Section 10, the Chern form classifies complex line bundles with Hermitian linear connections
Although in general the characteristic forms do not classify vector bundles with linear connections,
they have numerous applications.

Remark 11.1 Let E and F be vector bundles over a compact smooth manifold X and let
P : Γ(E) → Γ(F ) be an elliptic elliptic linear partial differential operator, mapping sections of E
to sections of F . Then the dimension of the kernel of P and the codimension of the range of P
are finite numbers, and the difference dim(kerP ) − codim(rangeP ) is called the index of P . The
Atiyah-Singer index formula [5, Thm. (2.12)] expresses the index of P as an integral over the base
manifold of a characteristic form of a vector bundle defined by the so-called principal symbol of P .

A special case is P = d + d∗, viewed as an operator which maps even differential forms to
odd differential forms, where the Hodge adjoint d∗ is taken with respect to a suitable Riemannina
structure on X. in this case the index of P is equal to Euler number χ(X) of X. The integral
formula for χ(X) in terms of a characteristic form of (the orthogonal frame bundle of) TX is
the generalization to arbitrary dimensions of the classical Gauss-Bonnet theorem, which states
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that the Euler number of a compact oriented surface is equal to 1/4π times the integral of the
scalar curvature. In the case when X is a submanifold of a Euclidean space, this generalization
had been found by Allendoerfer [1], then was generalized to so-called “Riemannian polyhedra” by
Allendoerfer and Weil, [2], and proved intrinsically, for “abstract” Riemannian manifolds, by Chern
[9]. Weil did not mention this application of characteristic classes in [33]. �
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12 The Ambrose-Singer Theorem

Although this section has not been discussed in the course, it is included as a natural sequel to
Section 4.

Lemma 12.1 Any invariant connection H in a principal G-bundle P over X admits lifting.

Proof Let γ : I → X be a smooth curve in X, where I is an interval in R, and let b ∈ I. Write
x = γ(b) and choose p ∈ Px. Then there exists an open interval Jb around b in I, such that γ|Jb

has a horizontal lift δ : Jb →M with δ(b) = p. Because the connection H is G-invariant, it follows
that, for every g ∈ G, the curve δg : Jb → P defined by δg(t) := g

P
(δ(t), t ∈ Jb is a horizontal lift

δg of γ such that δg(b) = g
P
(p). Because Px is equal to the set of all g

P
(p) such that g ∈ G, the

conclusion of the lemma now follows from Lemma 4.1. 2

We assume in the sequel that H is an invariant connection in P . As in Section 4, the parallel
transport along a piecewise smooth continuous curve γ : [a, b] → X defines a diffeomorphism
hγ : Pγ(a) → Pγ(b) from the fiber over γ(a) onto the fiber over γ(b). If γ(a) = x = γ(b), Hγ is a
diffeomorphism of Px and γ 7→ hγ is a homomorphism from the group of loops starting and ending
at x to the group of diffeomorphisms of Px. The image is a subgroup Hx of Diffeo(Px), called the
holonomy group of transformations of Px defined by the connection H in P .

As already observed in the proof of Lemma 12.1, we have that, for any g ∈ G, g
P
◦ δ is a

horizontal lift of γ if δ is a horizontal lift of γ, and therefore

g
P
◦ hγ = hγ ◦ gP

, g ∈ G. (12.1)

Let x ∈ X and p ∈ Px. Because G acts freely and transitively on Px, we obtain that for each
h ∈ Hx there is a unique g = φp(h) ∈ G such that h(p) = g

P
(p), and it follows from (12.1) that

φp(h1 ◦ h2)P
(p) = h2 ◦ h1(p)) = h2 ◦ φp(h1)P

(p) = φp(h1)P
◦ h2(p) = φp(h1)P

◦ φp(h2)P
(p),

which implies that φp : h 7→ φp(h) defines an anti-homomorphism from the group Hx to the group

G. It follows that the image Ĥp := φp(Hx) is a subgoup of G, which is called the holonomy sugroup
of G based at the point p ∈ P .

Assume in the sequel also that the basis manifold X is connected. If p, q ∈ P , then there exists
a (piecewise) smooth curve γ : [a, b] → X such that γ(a) = x := π(p) and γ(b) = y := π(q).
Because hγ(p) and q both belong to Pγ(b), there is a unique g ∈ G such that q = g

P
◦ hγ(p). For

any h ∈ Hy we have that h′ := h−1
γ ◦ h ◦ hγ ∈ Hp, and therefore

φq(h)P
(q) = h(q) = h ◦ g

P
◦ hγ(p) = g

P
◦ hγ ◦ h

′(p) = g
P
◦ hγ ◦ φp(h

′)
P
(p) = g

P
◦ φp(h

′)
P
◦ hγ(p)

= g
P
◦ φp(h

′)
P
◦ g−1

P
(q),

which implies that φq(h) = g φp(h
′) g−1. It follows that Ĥq = g Ĥp g

−1, which implies that all the

holonomy subgroups of G are conjugate by elements of G. Note also that Ĥq = Ĥp if q = hγ(p).
Let p ∈ P and denote by Pp the subset of all q ∈ Q which can be connected with p by means of a

horizontal curve. Let hp be the Lie subalgebra of g which is generated by all Ωq(u, v) = (dθ)q(u, v),
in which q ∈ Pp and u, v ∈ Hq. Then the theorem of Ambrose and Singer [3] states:
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Theorem 12.2 Assume that P is a principal G-bundle over a connected and paracompact manifold
X. Assume that H is an invariant connection in P . Then, for any p ∈ P , the holonomy subgroup
Ĥp of G is an immersed Lie subgroup of G with Lie algebra equal to hp. The connected component

Ĥo
p in Ĥp of the identity element is equal to the set of g ∈ G such that g

P
(p) = hγ(p), in which γ

ranges over the piecewise smooth curves in X, starting and ending at x = π(p), which are homotopic
to the constant curve at the point x.

It follows that [γ] 7→ φp(hγ) Ĥo
p is an anti-homomorphism from the fundamental group π1(X, x) of

X (which is countable) onto the component group Ĥp/Ĥ
o
p of Ĥp. This homomorphism is sometimes

called the monodromy representation of the fundamental group of X.
Another consequence is that Pp is an immersed smooth submanifold of P which is a principal

Ĥp-bundle over X. Moreover, for every q ∈ Pp we have that Hq ⊂ Tq Pp, which means that the Hq,

q ∈ Pp define a Ĥp-invariant connection in Pp. Conversely, if Ĥ is an immersed Lie subgroup of G

and Q is a smoothly immersed submanifold of P which at the same time is a principal H̃-bundle
over X such that Hq ⊂ Tq Q for every q ∈ Q, then we have, for every p ∈ Q, that Ĥp ⊂ Ĥ and

Pp ⊂ Q. In other words, Pp is the smallest principal subbundle Q over X containing p and Ĥp is

the smallest structure group Ĥ, such that the restriction of H to Q is tangent to Q.
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13 Exercises

Exercise 13.1 Let αi ∈ Ω1(M), 1 ≤ i ≤ l, be linearly independent at every point and let the
vector subbundle H of TM be defined by (1.1). Prove that H is integrable if and only if there exist
βi

j ∈ Ω1(M) such that

dαi =
l∑

j=1

βi
j ∧ α

j , 1 ≤ i ≤ l.

This is Élie Cartan’s form of the integrability condition. �

Exercise 13.2 Prove that if v ∈ X (X), then the horizontal lift of the curve t 7→ et v(x) which
starts at m ∈Mx is equal to t 7→ et v

hor(m).
Now let u, v ∈ X (X) and [u, v] = 0. Let γh be the closed curve in X which is composed of

et u(x), 0 ≤ t ≤ h, followed by et v ◦ eh u(x), 0 ≤ t ≤ h, followed by e−t u ◦ eh v ◦ ehu(x), 0 ≤ t ≤ h,
and concluded by e−t v ◦ e−h u ◦ ehv ◦ eh u(x), 0 ≤ t ≤ h. Let δh be the horizontal lift of γh which
starts at the point m ∈Mx, and let m(h) denote the endpoint of δh.

Prove that m(h) ∈Mx. Prove that h−2 (m(h)−m) converges as h ↓ 0, and express the limit in
terms of the curvature. �

Exercise 13.3 Verify the Leibniz rule (3.6) for covariant differentiation. �

Exercise 13.4 Prove that in any bundle with connection, there exist through each point of the
bundle a local section of which the tangent space is horizontal. Verify that a local section of the
frame bundle of a vector bundle corresponds to a local trivialization of the bundle. Prove that
if the local section has horizontal tangent space at a given point, then at the corresponding base
point the Christoffel symbols vanish. �

Exercise 13.5 Verify the formula (3.8) by expressing the left and right hand side (which is
defined in (2.5)) in terms of Christoffel symbols. The computations are simplified if one chooses
the local trivialization of the bundle such that, at the special point, the Christoffel symbols vanish.
�

Exercise 13.6 Let H be a linear connection in the vector bundle M over X and let βx be an
inner product on Hx, depending smoothly on x ∈ X. Prove that β is covariantly constant with
respect to the connection H if and only if, for every r, s ∈ Γ(M), and v ∈ X (X), we have that
v(β(r, s)) = β(∇vr, s) + β(r, ∇vs). �

Exercise 13.7 Let (X, β) be a Riemannian manifold and R the Riemannian curvature tensor of
(X, beta). Let ei denote a βx-orthonormal basis of TxX. Prove that the curvature coefficents

Rijkl := βx (R(x)(ek, el) ej , ei)

satisfy the antisymmetry conditions that Rijkl = −Rijlk and Rijkl = −Rjikl.
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Prove that if n = 2, then the scalar K := R1221, called the Gaussian curvature, is independent
of the choice of the orthonormal basis, and R is completely determined by K. �

Exercise 13.8 Assume that G is a closed Lie subgroup of a Lie group F , where g and f denotes the
Lie algebra of G and F , respectively. On F we have the right action (g, f) 7→ f g−1 : G× F → F
of G, which exhibits F as a principal G-bundle over F/G. On F we also have the left action
(φ, f) 7→ φ f : F × F → F of F . Prove that for every linear subspace h of f such that f = h ⊕ g

there is a unique connection H in F → F/G which is invariant under the left action of F on F ,
and such that H1 = h. Prove that H is also invariant under the right action of G on F , which is
what we always require for a connection in a principal G-bundle, if and only if (Ad g)(h) = h for
every g ∈ G. Prove that the connection form θ and the curvature form Ω are invariant under the
left action of F on F , and describe Ω1 in terms of the Lie brackets of elements in f, g and h. Prove
that the connection is flat if and only if h is a Lie subalgebra of f, which then automatically is an
ideal in f.

Comments Such a principal G-bundle is called a homogeneous principal fiber bundle. (Usually
F and G are denoted in the literature by G and H, respectively.) If ρ is a linear representation
of G in a vector space Y , then F acts (from the left) on the space (F(F ) ⊗ Y )G of sections of the
associated vector bundle F ×G Y . These is the induced representation of F , as used in the course
of Erik van den Ban. �

Exercise 13.9 Prove that (9.5) defines a connection in M , which moreover satisfies (9.4). �

Exercise 13.10 Let (M, σ) be a symplectic manifold and G a connected Lie group with Lie
algebra g, which acts in a Hamiltoninan fashion on (M, σ), with momentum mapping µ : P → g∗,
cf. the course on Symplectic Geometry. Define α(X) := 〈X, µ〉−σ ∈ F(P )⊕Ω2(M), X ∈ g. Prove
that α ∈ A = (C[g]⊗ Ω∗(M))G, and that dg α = 0.

Now assume that M is a principal G-bundle over a manifold Q, with projection π : M → Q,
and let θ be a connection form in P . Prove that there exists a unique closed two-form γ ∈ Ω2(Q)
on Q such that 〈Ω, µ〉 − σhor = π∗γ.

(When G is a torus, this conclusion is closely related to the proof of [17, Thm. 1.1].) �
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14 Appendix: Some Notations

If M is a smooth manifold, and m ∈M , then TmM denotes the tangent space of M at m, which is
the fiber over m of the tangent bundle TM of M . If Φ : M → N is a smooth mapping from M to
a smooth manifold N , then for each m ∈ M the tangent mapping of Φ at m is denoted by Tm Φ,
it is a linear mapping from TmM to TΦ(m) N .

F(M) denotes the space of smooth functions on a smooth manifold M , with pointwise addition
and multiplication these form a commutative algebra.

X (M) denotes the space of smooth vector fields on M , it is a Lie algebra with respect to the Lie
brackets [u, v] of the vector fields, which are given by the commutatator [u, v] f = u (v f)− v (u f)
if the vector fields are viewed as derivations on the algebra F(M).

Ωp(M) denotes the space of smooth differential forms of degree p on M . One has the exterior
derivative d : Ωp(M) → Ωp+1(M) and the wedge product α ∧ β ∈ Ωp+q(M) for α ∈ Ωp(M) and
β ∈ Ωq(M). The sum

Ω∗(M) :=
dimM⊕

p=0

Ωp(M)

is an associative algebra with respect to the wedge product, supercommutative in the sense that
α ∧ β = (−1)p qβ ∧ α if α ∈ Ωp(M) and β ∈ Ωq(M).

If Φ : M → N and α ∈ Ωp(N), then the pull-back Φ∗α ∈ Ωp(M) is defined by

Φ∗αm(v1, . . . , vp) = αΦ(m)(Tm Φ v1, . . . , Tm Φ vp).

If v is a smooth vector field on M then et v denotes its flow after time t, defined by et v(m) = γ(t)
if d γ(t)/ dt = v(γ(t)) and γ(0) = m. In the terminology of Lie [26], t 7→ et v is the one-parameter
group of transformations in M which is generated by the “infinitesimal transformation” v.

The inner product iv α ∈ Ωp−1(M) of α ∈ Ωp(M) with v is defined by

(iv α)m(v2, . . . , vp) = αm(v(m), v2, . . . , vp)

The Lie derivative Lvα ∈ Ωp(M) satisfies

Lvα :=
d

dt

(
et v
)∗
α
∣∣
t=0

= d(iv α) + iv(dα),

in which the second identity is called the homotopy identity.
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