
Solutions for the final exam UCU SCI 211, December 2001

1a) By the chain rule, d
dt (x(t)2 + y(t)2) = 2x(t) dx(t)

dt + 2y(t) dy(t)
dt = 2x(t)y(t) +

2y(t) (−x(t)) = 0. The function x(t)2 + y(t)2 is constant, because its derivative is
zero. This constant equals x(0)2 + y(0)2 = 1.

Remark. The derivative v(t) = r′(t) = (y(t),−x(t)) of the radius-vector r(t) is
perpendicular to it (because 〈r(t), r′(t)〉 = 0. This implies the conservation law
for the length of the radius-vector: the square of this length equals 〈r(t), r(t)〉, the
derivative of which is 〈r′(t), r(t)〉+ 〈r(t), r′(t)〉 = 2〈r(t), r′(t)〉 = 0.

1b) Initial conditions: x0 = 1, y0 = 0; step: xn+1 = xn+hyn, yn+1 = yn−hxn. Now
we prove by induction on n that x2

n + y2
n = (1 + h2)n. Base: x2

0 + y2
0 = 12 + 02 = 1.

Step: suppose that x2
n + y2

n = (1 + h2)n for all n ≤ k. For n = k + 1 we have the
following: x2

k+1 + y2
k+1 = (xk + hyk)2 + (yk − hxk)2 = x2

k + 2hxkyk + h2y2
k + y2

k −

2hykxk + h2x2
k = (x2

k + y2
k)(1 + h2). By the induction hypotesis, this is equal to

(1 + h2)k(1 + h2) = (1 + h2)k+1, which proves the step of induction.

Remark. The vector rn+1 = (xn+1, yn+1) can be viewed as the hypotenuse of the
right triangle with two other sides rn = (xn, yn) and δrn = h(yn,−xn). By the
Pythagoras theorem, r2

n+1 = r2
n +(δrn)2 = r2

n +h2r2
n = (1+h2)r2

n. Make a picture!

1c) According to the previous step, (x2
N +y2

N )1/2 = (1+h2)N/2 = (1+(t/N)2)N/2.

Let f(x) = (1 + x)N/2. Then f ′(x) = N
2

(1 + x)
N
2
−1 > N/2 for x > 0. Therefore

(x2
N +y2

N )1/2 = f
(

t2

N2

)

> f(0)+ N
2

t2

N2 = 1+ t2

2N
. On the other hand, ln(1+a) < a

for a > 0 (because ln′(1 + x) = 1/(1 + x) < 1 and ln(1 + x) = 0 when x = 0;
by the way, ln(1 + a) < a for −1 < a < 0, too). Thus ln

(

(x2
N + y2

N )1/2
)

=
N
2 ln

(

1 + (t/N)2
)

< N
2

t2

N2 = t2

2N , or equivalently (x2
N + y2

N )1/2 < et2/2N .

Combining these estimates of (x2
N + y2

N )1/2 with the fact that x(t)2 + y(t)2 = 1,

we get (x2
N + y2

N )1/2 − (x(t)2 + y(t)2)1/2 > 1 + t2

2N − 1 = t2

2N and (x2
N + y2

N )1/2 −

(x(t)2 + y(t)2)1/2 < et2/2N − 1.

2a) The wave propagation speed is c = 1, so we have

u(x, t) =
1

2

(

f(x − t) + f(x + t)
)

+
1

2

∫ x+t

x−t

g(s) ds.

2b) See Figure 1.

Remarks. Since g(x) = 0 for all x, we have u(x, t) = 1
2

(

f(x − t) + f(x + t)
)

. To
plot u(x, t) with some fixed t, shift a copy of the plot of f(x) by t to the right (this
gives f(x − t)) and to the left (this gives f(x + t)) and draw the average (for any
x) of the plots obtained. Details are shown on the second graph in the interval
−4 < x < −1. The green dashed line represents f(x− 1/2) and the red dotted line
is the plot of f(x + 1/2).

First graph corresponds to t = 0 and shows 2-periodic extension of the function
x2 from the interval [−1, 1]. The graph for t = 2 is the same as for t = 0 because
u(x, 2) = 1

2

(

f(x−2)+f(x+2)
)

= 1
2

(

f(x)+f(x)
)

= f(x) due to 2-periodicity of f(x).

For the third graph we have u(x, 1) = 1
2

(

f(x− 1)+ f(x+1)
)

= 1
2

(

f(x− 1)+ f(x−

1)
)

= f(x−1) (because of 2-periodicity), so it is a horisontal shift of the first graph
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Figure 1. Graphs of u(x, t) for t = 0, 1/2, 1, 3/2, 2

by 1. The second and the fourth graphs coincide, because f(x− 1/2) = f(x + 3/2)
and f(x + 1/2) = f(x − 3/2) by periodicity, therefore u(x, 1/2) = u(x, 3/2).

2c) According to the d’Alembert formula, u(x, t) = 1
2

(

f(x − t) + f(x + t)
)

+
1
2

∫ x+t

x−t
g(s) ds = 1

2

(

f(x− t)+f(x+ t)
)

+ 1
2

(

f(x+ t)−f(x− t)
)

= f(x+ t) (compare

with Exercise 3.3 from the notebook PartialDE.nb). In this case we have a standing
wave running to the left with constant speed 1.
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Figure 2. Graph of u(x, 1/2) for Problem 2c)

If f(x) is as in b) and g(x) is a 2-periodic function such that g(x) = 2x for −1 <
x < 1, then g(x) = df(x)/dt. Thus u(x, t) = f(x + t), in particular, u(x, 1/2) =



f(x + 1/2). See Figure 2 for the graph.

3a) Using the given expression of the Laplace operator in polar coordinates, we
can rewrite the diffusion equation in the following form:

∂U(r, θ, t)

∂t
=

∂2U(r, θ, t)

∂r2
+

1

r

∂U(r, θ, t)

∂r
+

1

r2

∂2U(r, θ, t)

∂θ2
, 0 < r < 1, t > 0.

Differentiating with respect to t the Fourier series U(r, θ, t) =
∑

k∈Z
Uk(r, t)eikθ,

we get the Fourier series for the left hand side of the equation: ∂U(r,θ,t)
∂t =

∑

ckeikθ

with ck = ck(r, t) = ∂Uk(r,t)
∂t . The Fourier series for the right hand side of the

equation is
∑

c′keikθ with

c′k = c′k(r, t) =
∂2Uk(r, t)

∂r2
+

1

r

∂Uk(r, t)

∂r
−

k2

r2
Uk(r, t).

Here we use that eikθ does not depend on r and t, so it is treated as a constant
when differentiating with respect to r or t (in the left hand side and in the first two
summands in the right hand side); Uk(r, t) does not depend on θ and is treated as
a constant when differentiating with respect to θ (the last summand in the right

hand side, where ∂2

∂θ2 eikθ = (ik)2eikθ = −k2eikθ).
Since the left hand side of the equation equals its right hand side, the Fourier

coefficients are equal, too: ck(r, t) = c′k(r, t) for all k ∈ Z, r ∈ (0, 1), t > 0. This
gives (1). The boundary condition says that U = 0 on the boundary of the unit
disk, i.e., U(1, θ, t) = 0. Then Uk(1, t) = 0 for all k ∈ Z, t ≥ 0 (the Uk(1, t) are the
Fourier coefficients of U(1, θ, t) = 0), which proves (2). The Fourier coefficients of
the 2π-periodic functions θ 7→ U(r, θ, 0) and θ 7→ F (r, θ) are equal due to the initial
condition U(r, θ, 0) = F (r, θ); these Fourier coefficients are Uk(r, 0) and Fk(r) with
any k ∈ Z and 0 ≤ r ≤ 1, whence (3).

3b) The nth order Bessel function Jn(ρ) satisfies the following differential equation:
ρ2J ′′

n (ρ) + ρJ ′

n(ρ) + (ρ2 − n2)Jn(ρ) = 0 (see eq. (11.16) in the Guide Book). Below
we will use it in the form

J ′′

n(ρ) +
1

ρ
J ′

n(ρ) −
n2

ρ2
Jn(ρ) = −Jn(ρ).

If Uk,m(r, t) = e−R2tJn(Rr) (with R = Rn,m), then the left hand side of (1) is
∂Uk,m(r,t)

∂t = −R2Uk,m(r, t). Further, put ρ = Rr; then 1/r = R/ρ, 1/r2 = R2/ρ2,

and dρ/dr = R. Now we have
∂Uk,m(r,t)

∂r = e−R2tRJ ′

n(ρ) (by the chain rule, with

R = dρ/dr) and
∂2Uk,m(r,t)

∂r2 = e−R2tR2J ′′

n (ρ). Consequently, the right hand side
of (1) equals

R2e−R2t

(

J ′′

n (ρ) +
1

ρ
J ′

n(ρ) −
n2

ρ2
Jn(ρ)

)

= −R2e−R2tJn(ρ) = −R2Uk,m(r, t),

which is nothing but the left hand side of (1). Thus equation (1) is satisfied.

For r = 1 we have Uk,m(1, t) = e−R2tJn(R) = 0 for all k ∈ Z and t ≥ 0,
because R = Rn,m is a zero of the function Jn. This yields (2). Finally, if Fk(r) =
Jn(Rn,mr), then for t = 0 we get Uk,m(r, 0) = Jn(Rn,mr) = Fk(r) for all k ∈ Z and
r ∈ [0, 1], which proves (3).


