SOLUTIONS FOR THE FINAL EXAM UCU SCI 211, DECEMBER 2001

1a) By the chain rule, 4 (z(t)% + y(t)?) = 2z(t )dw(t) + 2y(t )dy(t) = 2z(t)y(t) +
2y(t) (—x(t)) = 0. The function x( )2 + y(t)? is constant, because its derivative is
zero. This constant equals z(0)? + y(0)? = 1.

Remark. The derivative v(t) = r'(t) = (y(t), —z(t)) of the radius-vector r(t) is

perpendicular to it (because (r(t),r’(¢t)) = 0. This implies the conservation law
for the length of the radius-vector: the square of this length equals (r(t),r(t)), the
derivative of which is (r/(t),r(t)) + (r(t),r'(t)) = 2(r(¢t),r'(t)) = 0.

1b) Initial conditions: xg = 1, yg = 0; step: Tp+1 = Tn+hAYn, Ynt1 = Yn—hx,. Now
we prove by induction on n that 22 +y2 = (1 + h?)". Base: 23 +y3 = 1>+ 0% = 1.
Step: suppose that 22 + y2 = (1 + h?)" for all n < k. For n = k + 1 we have the
following;: mi_H + y,%_H = (zk + hyr)? + (yx — hag)? = 22 + 2hary, + h2y2 + Y3 —
2hyrxy, + h?zi = (23 + y2)(1 + h?). By the induction hypotesis, this is equal to
(1+h2)*(1 + h?%) = (1 + h?)* 1 which proves the step of induction.

Remark. The vector r,+1 = (Tp41,Ynt+1) can be viewed as the hypotenuse of the
right triangle with two other sides r,, = (z,,y,) and ér, = h(yn, —z,). By the
Pythagoras theorem, 72, = r2 + (dry,)? = r2 + h?r2 = (14 h*)r2. Make a picture!
1c) According to the previous step, (3, +4%)"/? = (1+h%)N/2 = (14 (t/N)?)N/2,
Let f(z) = (14 x)N/2. Then f'(z ) =01 +a:)ﬂ_1 > N/2 for z > 0. Therefore
(z% +y3)1 /2% = f<N2> f(0)+ 2N2 —1—|—ﬁ On the other hand, In(1+a) < a
for a > 0 (because In'(1 +x) = 1/(1+z) < 1 and In(1 + z) = 0 when z = 0;
by the way, In(1 + a) < a for —1 < a < 0, too). Thus In ((23 + y%)'/?) =
TIn(1+ (t/N)?) < %]@—22 = %, or equivalently (z2 + y%)1/2 < ¢!’ /2N

Combining these estimates of (z% +y3%,)/? with the fact that x(t)? +y(t)? = 1,
we get (1} +R)"2 — (2(t)* + ()2 > 14 45 — 1 = 4 and (2} +93)"/% -
(x(t)Q —|—y(t)2)1/2 < et’/2N _ 1.

2a) The wave propagation speed is ¢ = 1, so we have

x+t

(f(x—t)+f($+t))+%/x g(s)ds.

—t

N =

u(zx,t) =

2b) See Figure 1.

Remarks. Since g(z) = 0 for all z, we have u(z,t) = 3(f(z —t) + f(z +1)). To
plot u(z,t) with some fixed ¢, shift a copy of the plot of f(z) by ¢ to the right (this
gives f(z —t)) and to the left (this gives f(x + t)) and draw the average (for any
x) of the plots obtained. Details are shown on the second graph in the interval
—4 < x < —1. The green dashed line represents f(z —1/2) and the red dotted line
is the plot of f(z +1/2).

First graph corresponds to ¢t = 0 and shows 2-periodic extension of the function
x? from the interval [—1,1]. The graph for t = 2 is the same as for t = 0 because
u(z,2) = 1 (f(@—2)+f(z42)) = 5(f(z )+f( )) = f(z) due to 2- periodicity of f(x).

For the third graph we have u(z, 1) s(f@=D)+f(z+1) =5 (flea—1)+ f(z—
1)) = f(z—1) (because of 2- perlodlclty) so it is a horisontal shlft of the first graph
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FIGURE 1. Graphs of u(z,t) for t =0, 1/2, 1, 3/2, 2

by 1. The second and the fourth graphs coincide, because f(z —1/2) = f(z+3/2)
and f(x 4+ 1/2) = f(x — 3/2) by periodicity, therefore u(z,1/2) = u(zx,3/2).

2c) According to the d’Alembert formula, u(z,t) = $(f(z —¢) + f(z + 1)) +

3 ;j—ttg(s)ds: s(fl@—t)+ fle+1t) +5(fle+t)— f(x—t)) = f(x+1) (compare

with Exercise 3.3 from the notebook PartialDE.nb). In this case we have a standing
wave running to the left with constant speed 1.

FIGURE 2. Graph of u(z,1/2) for Problem 2c)

If f(x) is as in b) and g(z) is a 2-periodic function such that g(z) = 2x for —1 <
x < 1, then g(z) = df(x)/dt. Thus u(x,t) = f(x +t), in particular, u(x,1/2) =



f(x 4+ 1/2). See Figure 2 for the graph.

3a) Using the given expression of the Laplace operator in polar coordinates, we

can rewrite the diffusion equation in the following form:
oU(r,0,t)  9%U(r,0,t) N 10U(r,6,t) N 1 92U (r,0,t)
ot B or? roor rz2 0602 7

Differentiating with respect to ¢ the Fourier series U(r,0,t) = >, o, Ur(r, t)e™*?,
aU(r,e,t) — Y eme

O<r<l1,t>0.

we get the Fourier series for the left hand side of the equation:

with ¢, = cx(r,t) = w%i(tr’t). The Fourier series for the right hand side of the

equation is > ¢, e’ with

O?Ui(r,t)  10Uk(r,t) k2
¢, = ci(r,t) = ;r(; ) + " g(: ) _ —Uk(r t).

Here we use that e”*? does not depend on r and ¢, so it is treated as a constant
when differentiating with respect to r or ¢ (in the left hand side and in the first two
summands in the right hand side); Ug(r,t) does not depend on 6 and is treated as
a constant when differentiating with respect to 6 (the last summand in the right
hand side, where 5992 e = (ik)%etk0 = —E2eik0),

Since the left hand side of the equation equals its right hand side, the Fourier
coefficients are equal, too: ci(r,t) = ¢ (r,t) for all k € Z, r € (0,1), ¢ > 0. This
gives (1). The boundary condition says that U = 0 on the boundary of the unit
disk, i.e., U(1,6,t) = 0. Then U(1,t) =0 for all k € Z, t > 0 (the Ui(1,t) are the
Fourier coefficients of U(1,60,t) = 0), which proves (2). The Fourier coefficients of
the 2m-periodic functions 6 — U(r, 6,0) and 6 — F(r, §) are equal due to the initial
condition U(r, 0,0) = F(r,0); these Fourier coefficients are Uy(r,0) and Fy(r) with
any k € Z and 0 < r < 1, whence (3).

3b) The nth order Bessel function J,, (p) satisfies the following differential equation:
p2J! (p) + pJ! (p) + (p* —n?)Jn(p) = 0 (see eq. (11.16) in the Guide Book). Below
we will use it in the form

n2

1
Tn(p) + =T (p) = —3Ju(p) = —=Ju(p).
p p
If Upm(r,t) = e ® 1, (Rr) (with R = Ry, ), then the left hand side of (1) is

w’“éi’;“t) —R?Uy, (7, t). Further, put p = Rr; then 1/r = R/p, 1/r? = R?/p?,

and dp/dr = R. Now we have 8U’“+T(T’t) e‘RQtRJ’( ) (by the chain rule, with
= dp/dr) and M _RQtRQJ”( ). Consequently, the right hand side

of (1) equals

n2

B2 () + 2000 = S 0ul0) ) =~ ) = ~ R0 (),
which is nothing but the left hand side of (1). Thus equation (1) is satisfied.

For r = 1 we have Uy, (1,t) = e FtJ(R) = 0 for all k € Z and t > 0,
because R = R,, ,,, is a zero of the function J,,. This yields (2). Finally, if Fy(r) =
Jn(Rp,mr), then for t = 0 we get Uy (1, 0) = Jp(Rp,mr) = Fi(r) for all k € Z and
r € [0, 1], which proves (3).



