Solutions for the final exam UCU SCI 211, December 2001

1a) By the chain rule, $\frac{d}{d t}\left(x(t)^{2}+y(t)^{2}\right)=2 x(t) \frac{d x(t)}{d t}+2 y(t) \frac{d y(t)}{d t}=2 x(t) y(t)+$ $2 y(t)(-x(t))=0$. The function $x(t)^{2}+y(t)^{2}$ is constant, because its derivative is zero. This constant equals $x(0)^{2}+y(0)^{2}=1$.

Remark. The derivative $v(t)=r^{\prime}(t)=(y(t),-x(t))$ of the radius-vector $r(t)$ is perpendicular to it (because $\left\langle r(t), r^{\prime}(t)\right\rangle=0$. This implies the conservation law for the length of the radius-vector: the square of this length equals $\langle r(t), r(t)\rangle$, the derivative of which is $\left\langle r^{\prime}(t), r(t)\right\rangle+\left\langle r(t), r^{\prime}(t)\right\rangle=2\left\langle r(t), r^{\prime}(t)\right\rangle=0$.
1b) Initial conditions: $x_{0}=1, y_{0}=0$; step: $x_{n+1}=x_{n}+h y_{n}, y_{n+1}=y_{n}-h x_{n}$. Now we prove by induction on n that $x_{n}^{2}+y_{n}^{2}=\left(1+h^{2}\right)^{n}$. Base: $x_{0}^{2}+y_{0}^{2}=1^{2}+0^{2}=1$. Step: suppose that $x_{n}^{2}+y_{n}^{2}=\left(1+h^{2}\right)^{n}$ for all $n \leq k$. For $n=k+1$ we have the following: $x_{k+1}^{2}+y_{k+1}^{2}=\left(x_{k}+h y_{k}\right)^{2}+\left(y_{k}-h x_{k}\right)^{2}=x_{k}^{2}+2 h x_{k} y_{k}+h^{2} y_{k}^{2}+y_{k}^{2}-$ $2 h y_{k} x_{k}+h^{2} x_{k}^{2}=\left(x_{k}^{2}+y_{k}^{2}\right)\left(1+h^{2}\right)$. By the induction hypotesis, this is equal to $\left(1+h^{2}\right)^{k}\left(1+h^{2}\right)=\left(1+h^{2}\right)^{k+1}$, which proves the step of induction.

Remark. The vector $r_{n+1}=\left(x_{n+1}, y_{n+1}\right)$ can be viewed as the hypotenuse of the right triangle with two other sides $r_{n}=\left(x_{n}, y_{n}\right)$ and $\delta r_{n}=h\left(y_{n},-x_{n}\right)$. By the Pythagoras theorem, $r_{n+1}^{2}=r_{n}^{2}+\left(\delta r_{n}\right)^{2}=r_{n}^{2}+h^{2} r_{n}^{2}=\left(1+h^{2}\right) r_{n}^{2}$. Make a picture!
1c) According to the previous step, $\left(x_{N}^{2}+y_{N}^{2}\right)^{1 / 2}=\left(1+h^{2}\right)^{N / 2}=\left(1+(t / N)^{2}\right)^{N / 2}$. Let $f(x)=(1+x)^{N / 2}$. Then $f^{\prime}(x)=\frac{N}{2}(1+x)^{\frac{N}{2}-1}>N / 2$ for $x>0$. Therefore $\left(x_{N}^{2}+y_{N}^{2}\right)^{1 / 2}=f\left(\frac{t^{2}}{N^{2}}\right)>f(0)+\frac{N}{2} \frac{t^{2}}{N^{2}}=1+\frac{t^{2}}{2 N}$. On the other hand, $\ln (1+a)<a$ for $a>0$ (because $\ln ^{\prime}(1+x)=1 /(1+x)<1$ and $\ln (1+x)=0$ when $x=0$; by the way, $\ln (1+a)<a$ for $-1<a<0$, too). Thus $\ln \left(\left(x_{N}^{2}+y_{N}^{2}\right)^{1 / 2}\right)=$ $\frac{N}{2} \ln \left(1+(t / N)^{2}\right)<\frac{N}{2} \frac{t^{2}}{N^{2}}=\frac{t^{2}}{2 N}$, or equivalently $\left(x_{N}^{2}+y_{N}^{2}\right)^{1 / 2}<e^{t^{2} / 2 N}$.

Combining these estimates of $\left(x_{N}^{2}+y_{N}^{2}\right)^{1 / 2}$ with the fact that $x(t)^{2}+y(t)^{2}=1$, we get $\left(x_{N}^{2}+y_{N}^{2}\right)^{1 / 2}-\left(x(t)^{2}+y(t)^{2}\right)^{1 / 2}>1+\frac{t^{2}}{2 N}-1=\frac{t^{2}}{2 N}$ and $\left(x_{N}^{2}+y_{N}^{2}\right)^{1 / 2}-$ $\left(x(t)^{2}+y(t)^{2}\right)^{1 / 2}<e^{t^{2} / 2 N}-1$.

2a) The wave propagation speed is $c=1$, so we have

$$
u(x, t)=\frac{1}{2}(f(x-t)+f(x+t))+\frac{1}{2} \int_{x-t}^{x+t} g(s) d s
$$

2b) See Figure 1.
Remarks. Since $g(x)=0$ for all x, we have $u(x, t)=\frac{1}{2}(f(x-t)+f(x+t))$. To plot $u(x, t)$ with some fixed t, shift a copy of the plot of $f(x)$ by t to the right (this gives $f(x-t)$) and to the left (this gives $f(x+t)$) and draw the average (for any x) of the plots obtained. Details are shown on the second graph in the interval $-4<x<-1$. The green dashed line represents $f(x-1 / 2)$ and the red dotted line is the plot of $f(x+1 / 2)$.

First graph corresponds to $t=0$ and shows 2 -periodic extension of the function x^{2} from the interval $[-1,1]$. The graph for $t=2$ is the same as for $t=0$ because $u(x, 2)=\frac{1}{2}(f(x-2)+f(x+2))=\frac{1}{2}(f(x)+f(x))=f(x)$ due to 2-periodicity of $f(x)$. For the third graph we have $u(x, 1)=\frac{1}{2}(f(x-1)+f(x+1))=\frac{1}{2}(f(x-1)+f(x-$ $1))=f(x-1)$ (because of 2-periodicity), so it is a horisontal shift of the first graph

Figure 1. Graphs of $u(x, t)$ for $t=0,1 / 2,1,3 / 2,2$
by 1 . The second and the fourth graphs coincide, because $f(x-1 / 2)=f(x+3 / 2)$ and $f(x+1 / 2)=f(x-3 / 2)$ by periodicity, therefore $u(x, 1 / 2)=u(x, 3 / 2)$.
2c) According to the d'Alembert formula, $u(x, t)=\frac{1}{2}(f(x-t)+f(x+t))+$ $\frac{1}{2} \int_{x-t}^{x+t} g(s) d s=\frac{1}{2}(f(x-t)+f(x+t))+\frac{1}{2}(f(x+t)-f(x-t))=f(x+t)$ (compare with Exercise 3.3 from the notebook PartialDE.nb). In this case we have a standing wave running to the left with constant speed 1.

Figure 2. Graph of $u(x, 1 / 2)$ for Problem 2c)
If $f(x)$ is as in b) and $g(x)$ is a 2-periodic function such that $g(x)=2 x$ for $-1<$ $x<1$, then $g(x)=d f(x) / d t$. Thus $u(x, t)=f(x+t)$, in particular, $u(x, 1 / 2)=$
$f(x+1 / 2)$. See Figure 2 for the graph
3a) Using the given expression of the Laplace operator in polar coordinates, we can rewrite the diffusion equation in the following form:

$$
\frac{\partial U(r, \theta, t)}{\partial t}=\frac{\partial^{2} U(r, \theta, t)}{\partial r^{2}}+\frac{1}{r} \frac{\partial U(r, \theta, t)}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} U(r, \theta, t)}{\partial \theta^{2}}, \quad 0<r<1, t>0
$$

Differentiating with respect to t the Fourier series $U(r, \theta, t)=\sum_{k \in \mathbb{Z}} U_{k}(r, t) e^{i k \theta}$, we get the Fourier series for the left hand side of the equation: $\frac{\partial U(r, \theta, t)}{\partial t}=\sum c_{k} e^{i k \theta}$ with $c_{k}=c_{k}(r, t)=\frac{\partial U_{k}(r, t)}{\partial t}$. The Fourier series for the right hand side of the equation is $\sum c_{k}^{\prime} e^{i k \theta}$ with

$$
c_{k}^{\prime}=c_{k}^{\prime}(r, t)=\frac{\partial^{2} U_{k}(r, t)}{\partial r^{2}}+\frac{1}{r} \frac{\partial U_{k}(r, t)}{\partial r}-\frac{k^{2}}{r^{2}} U_{k}(r, t) .
$$

Here we use that $e^{i k \theta}$ does not depend on r and t, so it is treated as a constant when differentiating with respect to r or t (in the left hand side and in the first two summands in the right hand side); $U_{k}(r, t)$ does not depend on θ and is treated as a constant when differentiating with respect to θ (the last summand in the right hand side, where $\left.\frac{\partial^{2}}{\partial \theta^{2}} e^{i k \theta}=(i k)^{2} e^{i k \theta}=-k^{2} e^{i k \theta}\right)$.

Since the left hand side of the equation equals its right hand side, the Fourier coefficients are equal, too: $c_{k}(r, t)=c_{k}^{\prime}(r, t)$ for all $k \in \mathbb{Z}, r \in(0,1), t>0$. This gives (1). The boundary condition says that $U=0$ on the boundary of the unit disk, i.e., $U(1, \theta, t)=0$. Then $U_{k}(1, t)=0$ for all $k \in \mathbb{Z}, t \geq 0$ (the $U_{k}(1, t)$ are the Fourier coefficients of $U(1, \theta, t)=0$), which proves (2). The Fourier coefficients of the 2π-periodic functions $\theta \mapsto U(r, \theta, 0)$ and $\theta \mapsto F(r, \theta)$ are equal due to the initial condition $U(r, \theta, 0)=F(r, \theta)$; these Fourier coefficients are $U_{k}(r, 0)$ and $F_{k}(r)$ with any $k \in \mathbb{Z}$ and $0 \leq r \leq 1$, whence (3).
3b) The nth order Bessel function $J_{n}(\rho)$ satisfies the following differential equation: $\rho^{2} J_{n}^{\prime \prime}(\rho)+\rho J_{n}^{\prime}(\rho)+\left(\rho^{2}-n^{2}\right) J_{n}(\rho)=0$ (see eq. (11.16) in the Guide Book). Below we will use it in the form

$$
J_{n}^{\prime \prime}(\rho)+\frac{1}{\rho} J_{n}^{\prime}(\rho)-\frac{n^{2}}{\rho^{2}} J_{n}(\rho)=-J_{n}(\rho) .
$$

If $U_{k, m}(r, t)=e^{-R^{2} t} J_{n}(R r)$ (with $R=R_{n, m}$), then the left hand side of (1) is $\frac{\partial U_{k, m}(r, t)}{\partial t}=-R^{2} U_{k, m}(r, t)$. Further, put $\rho=R r ;$ then $1 / r=R / \rho, 1 / r^{2}=R^{2} / \rho^{2}$, and $d \rho / d r=R$. Now we have $\frac{\partial U_{k, m}(r, t)}{\partial r}=e^{-R^{2} t} R J_{n}^{\prime}(\rho)$ (by the chain rule, with $R=d \rho / d r)$ and $\frac{\partial^{2} U_{k, m}(r, t)}{\partial r^{2}}=e^{-R^{2} t} R^{2} J_{n}^{\prime \prime}(\rho)$. Consequently, the right hand side of (1) equals

$$
R^{2} e^{-R^{2} t}\left(J_{n}^{\prime \prime}(\rho)+\frac{1}{\rho} J_{n}^{\prime}(\rho)-\frac{n^{2}}{\rho^{2}} J_{n}(\rho)\right)=-R^{2} e^{-R^{2} t} J_{n}(\rho)=-R^{2} U_{k, m}(r, t)
$$

which is nothing but the left hand side of (1). Thus equation (1) is satisfied.
For $r=1$ we have $U_{k, m}(1, t)=e^{-R^{2} t} J_{n}(R)=0$ for all $k \in \mathbb{Z}$ and $t \geq 0$, because $R=R_{n, m}$ is a zero of the function J_{n}. This yields (2). Finally, if $F_{k}(r)=$ $J_{n}\left(R_{n, m} r\right)$, then for $t=0$ we get $U_{k, m}(r, 0)=J_{n}\left(R_{n, m} r\right)=F_{k}(r)$ for all $k \in \mathbb{Z}$ and $r \in[0,1]$, which proves (3).

