Solutions for the final exam UCU SCI 211, December 2002

1a) Since the initial velocity is zero and the wave propagation speed is $c=1$, the d'Alembert formula takes the form $v(x, t)=\frac{1}{2}(f(x+t)+f(x-t))$; in particular, for $x=0$ we have $v(0, t)=\frac{1}{2}(f(t)+f(-t))=0$ for every t (because f is an odd function, so $f(-t)=-f(t)$).
Remarks. Being a restriction to $x \geq 0$ of a solution $u(x, t)$ of the wave equation, $v(x, t)$ is itself a solution in the domain $x>0$ (this is tautology: $\frac{\partial^{2} v(x, t)}{\partial t^{2}}=\frac{\partial^{2} u(x, t)}{\partial t^{2}}$ and $\frac{\partial^{2} v(x, t)}{\partial x^{2}}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}$ for all positive x (because $v(x, t)=u(x, t)$ for $x>0$), so $\frac{\partial^{2} v(x, t)}{\partial t^{2}}=\frac{\partial^{2} v(x, t)}{\partial x^{2}}$ (for all t and $0<x<\infty$), because $\frac{\partial^{2} u(x, t)}{\partial t^{2}}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}$). The initial condition is satisfied tautologically, too: $v(x, 0)=u(x, 0)=f(x)=\varphi(x)$ for $x>0$ (the first equality says that we use u as v when $x>0$, the second equality holds because $f(x)$ is the initial condition for $u(x, t)$, the last one holds because f is a continuation of φ, which coincides with φ for $x>0$). The boundary condition is $v(0, t)=0$, and this is indeed so: $v(0, t)=u(0, t)=0$ by virtue of d'Alembert's formula, as it is shown above. Finally, vanishing of the second derivative $\varphi^{\prime \prime}(0)$ (which is, strictly speaking, not defined at the endpoint of the domain of φ), mentioned in the problem, guarantees that the solution $u(x, t)$ is twice continuously differentiable everywhere.

Figure 1. Graphs of $v(x, 1)$ and $v(x, 4)$
1b) See the pictures above.
Remark. The hump splits into two equal humps of height $1 / 2$. One of them runs to the right with unit velocity; the other one first moves to the left, but bounces at the endpoint $x=0$ and gets reverted. See the notebook partialDE.nb for more examples.

2a) The Fourier series for $f(t)$ is $\sum_{k=1}^{\infty} b_{k} \sin (k \pi t)$; there are sine terms only, because f is an odd function. The Fourier coefficients are $b_{k}=2 \int_{0}^{1} f(t) \sin (k \pi t) d t=$
$\ldots=\frac{2}{k \pi}\left(1-(-1)^{k}\right)$, so $b_{k}=0$ if k is even and $b_{k}=\frac{4}{k \pi}$ if k is odd. So we have

$$
f(t)=\sum_{k \geq 1, k \text { odd }} \frac{4}{k \pi} \sin (k \pi t)
$$

and this equals 1 for $0<t<1$ (see Theorem 1.1 in the Guide Book). The double infinite sum below does not converge absolutely, so we will treat it as the limit of finite sums:

$$
\begin{aligned}
& \sum_{l \geq 1, l \text { odd }} \sum_{k \geq 1, k \text { odd }} \frac{4}{k \pi} \sin (k \pi x) \frac{4}{l \pi} \sin (l \pi y) \\
& \quad=\lim _{N \rightarrow \infty}\left(\sum_{l=1, l \text { odd }}^{N} \sum_{k=1, k \text { odd }}^{N} \frac{4}{k \pi} \sin (k \pi x) \frac{4}{l \pi} \sin (l \pi y)\right) \\
& \quad=\lim _{N \rightarrow \infty}\left(\sum_{k=1, k \text { odd }}^{N} \frac{4}{k \pi} \sin (k \pi x)\right)\left(\sum_{l=1, l \text { odd }}^{N} \frac{4}{l \pi} \sin (l \pi y)\right) \\
& \quad=\sum_{k \geq 1, k \text { odd }} \frac{4}{k \pi} \sin (k \pi x) \sum_{l \geq 1, l \text { odd }} \frac{4}{l \pi} \sin (l \pi y) \\
& \quad=f(x) f(y)=1, \quad 0<x<1, \quad 0<y<1 .
\end{aligned}
$$

This proves statement a).
2b) If x or y equals 0 or 1 , then $\sin (k \pi x) \sin (l \pi y)=0$, so all summands vanish on the boundary of the unit square. Thus $u(x, t)$ satisfies the boundary conditions. To compute the Laplacian of $u(x, y)$, we take the sum of Laplacians of the summands. Note that $\frac{\partial^{2}}{\partial x^{2}} \sin (k \pi x)=-k^{2} \pi^{2} \sin (k \pi x)$ and $\Delta(\sin (k \pi x) \sin (l \pi y))=$ $-\left(k^{2}+l^{2}\right) \pi^{2} \sin (k \pi x) \sin (l \pi y)$.

$$
\begin{aligned}
\Delta u(x, y) & =\frac{\partial^{2} u(x, y)}{\partial x^{2}}+\frac{\partial^{2} u(x, y)}{\partial y^{2}} \\
& =-\sum_{l \geq 1, l \text { odd }} \sum_{k \geq 1, k \text { odd }} \Delta\left(\frac{16}{\pi^{4} k l\left(k^{2}+l^{2}\right)} \sin (k \pi x) \sin (l \pi y)\right) \\
& =-\sum_{l \geq 1, l \text { odd }} \sum_{k \geq 1, k \text { odd }} \frac{16}{\pi^{4} k l\left(k^{2}+l^{2}\right)}\left(-\pi^{2}\left(k^{2}+l^{2}\right) \sin (k \pi x) \sin (l \pi y)\right) \\
& \left.=\sum_{l \geq 1, l \text { odd }} \sum_{k \geq 1, k \text { odd }} \frac{4}{k \pi} \frac{4}{l \pi} \sin (k \pi x) \sin (l \pi y)\right)=1
\end{aligned}
$$

inside the unit square, according to problem 2 a).
3a) Euler step: $x_{n+1}=x_{n}+h c x_{n}$. Initial condition $x(0)=a$ yields base of induction: $x_{0}=a=a(1+h c)^{0}$. Induction step: suppose we know that $x_{n}=$ $a(1+h c)^{n}$ for all $n \leq k$. Then for $n=k+1$ we have $x_{k+1}=x_{k}+h c x_{k}=$ $(1+h c) x_{k}=(1+h c) a(1+h c)^{k}=a(1+h c)^{k+1}$, so the formula $x_{n}=a(1+h c)^{n}$ holds for $n=k+1$, too.

3b) The solution of the differential equation $d x(t) / d t=c x(t)$ with the initial condition $x(0)=a$ is $x(t)=a e^{c t}$, so $\ln x(t)=c t+\ln a$. Combining $x_{N}=a(1+h c)^{N}$ with $h=t / N$, we get $\ln x_{N}(t)=\ln a+N \ln (1+c t / N)$, and then $v(t)=c t-N \ln (1+c t / N)$, which implies $v(0)=0$ and $\frac{d v(t)}{d t}=c-N \frac{1}{1+c t / N} \frac{c}{N}=\frac{c^{2} t}{N+c t}$. If $0 \leq t \leq T$, then $N \leq N+c t \leq N+c T$, thus

$$
\begin{equation*}
\frac{c^{2} t}{N+c T} \leq \frac{d v(t)}{d t} \leq \frac{c^{2} t}{N} \tag{1}
\end{equation*}
$$

Finally, $v(t)=v(0)+\int_{0}^{t} v^{\prime}(s) d s$. Taking into account that $v(0)=0$, we deduce from (1) that $\frac{c^{2}}{N+c T} \int_{0}^{t} s d s \leq v(t) \leq \frac{c^{2}}{N} \int_{0}^{t} s d s$, or

$$
\frac{c^{2} t^{2}}{2(N+c T)} \leq v(t) \leq \frac{c^{2} t^{2}}{2 N}
$$

for all $t \in[0, T]$, q.e.d.

