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In these notes, we collect some basic general facts about dynamical systems with symmetry.
Most of the results are known in the literature or even standard, but some are less well-
known than they perhaps should be. An example is the quasi-periodicity of relative periodic
solutions when the shift element is elliptic, cf. the first statement in Proposition 8.5.

1 The Dynamical System

We assume throughout these notes that v is a smooth vector field on a smooth manifold M .
Here “smooth” = C∞ = Ck = k times continuously differentiable for arbitrary k. All

statement can also be phrased in a Ck setting with finite k, but then one has to keep track
of the orders of differentiablity of the various objects. In the other direction, all statements
remain true without any change in the proofs if C∞ is replaced by “real analytic”, with the
exception of some global statements in which smooth partitions of unity have been used.

We recall the following general facts about the flow induced by the vector field v, cf.
Coddington and Levinson [5]. For each m ∈M there is a unique solution γ = γm : Im →M ,
defined on a maximal open interval Im around 0 in R, of the differential equation

dγ(t)

dt
= v(γ(t)), t ∈ Im, (1.1)

which satisfies the initial condition
γ(0) = m.

The set
D := {(t, m) ∈ R×M | t ∈ Im}

is open in R×M and the mapping

Φ : (t, m) 7→ γm(t),

called the flow of the vector field v, is a smooth mapping from D to M .
Because the domain of defintion D of the flow Φ is an open subset of R ×M , we have

for each t ∈ R that

Dt := {m ∈M | (t, m) ∈ D} = {m ∈M | t ∈ Im}
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is an open subset of M , and the smoothness of Φ implies that

et v : m 7→ Φ(t, m) = γm(t),

called the flow after time t, is a smooth mapping from Dt to M . The exponential notation
reflects the defining equations

d

dt
et v(m) = v

(
et v(m)

)
, e0 v(m) = m.

Obviously D0 = M and e0 v is equal to the identity in M .
The flow satisfies the group property that if s, t ∈ R and m ∈ Ds and es v(m) ∈ Dt, then

m ∈ Ds+t and
et v (es v(m)) = e(s+t) v(m). (1.2)

It follows that et v is a diffeomorphism from Dt onto D−t, with inverse equal to e−t v.
One has s := sup Im < ∞, if and only if for each compact subset K of M there exists

an ε > 0 such that et v(m) /∈ K for every t ∈ ]s− ε, s[ ∩ Im. In other words, the solution of
(1.1) which starts at m runs out of every compact subset of M in a finite time. Similarly
i := inf Im > −∞, if and only if for each compact subset K of M there exists an ε > 0 such
that et v(m) /∈ K for every t ∈ ]i, i+ ε, s[ ∩ Im.

Definition 1.1 The vector field v is called complete if, for every m ∈ M , we have that
Im = R. In other words, if no solution runs out of every compact subset of M in a finite
time. It follows that if M is compact, then every smooth vector field on M is complete. �

The vector field v is complete if and only if, for every t ∈ R, we have that Dt = M , and
the flow after time t is a diffeomorphism from M onto M . The group property (1.2) then
implies that t 7→ et v is a smooth homomorphism from the additive group of the real numbers
(R, +) to the group Diff(M) of all diffeomorphisms of M .

2 The Group Action

Definition 2.1 A smooth action of a Lie group G on the manifold M is a smooth mapping
A : G×M →M such that

A(g, A(h, m)) = A(g h, m), m ∈M, g, h ∈ G. (2.1)

For each g ∈ G we will denote its action m 7→ A(g, m) : M → M by gM . The equation
(2.1) means that g 7→ gM is a smooth homomorphism from G to Diff(M). Note that if v is
a complete vector field on M , then its flow is a smooth action on M of (R, +).

If there is no danger of confusion, then we we will use the shorthand notation

g ·m := gM(m) := A(g, m), g ∈ G, m ∈M.

�
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Definition 2.2 Let g = T1G denote the Lie algebra of G. For every X ∈ g and m ∈ M ,
we write

X ·m := XM(m) :=
d

dt

(
et X
)

M
(m)

∣∣∣∣
t=0

∈ TmM

for the infinitesimal action of X on the element m of M . Then XM : m 7→ XM(m) is a
smooth vector field on M , it is complete and we have

et XM =
(
et X
)

M
, t ∈ R.

Actually, the infinitesimal action α : X 7→ XM is a homomorphism of Lie algebras from g to
the Lie algebra X∞(M) of all smooth vector fields on M , if the latter is provided with the
opposite of the usual Lie brackets of vector fields. We will write αm for the linear mapping
X 7→ XM(m) from g to TmM . �

Definition 2.3 For any m ∈M , the stabilizer or isotropy group of m in G is defined as

Gm := {g ∈ G | g ·m = m} . (2.2)

Gm is a closed Lie subgroup of G, with Lie algebra equal to

gm = {X ∈ g | X ·m = 0} = kerαm. (2.3)

m is called a fixed point for the G-action, if Gm = G, i.e. if g ·m = m for every g ∈ G. �

We have h ∈ Gg·m if and only if h · (g ·m) = g ·m if and only if (g−1 h g) ·m = m if and
only if g−1 h g ∈ Gm. This shows that Gg·m is conjugate in G to Gm by means of the element
g ∈ G, in the sense that

Gg·m = g Gm g
−1. (2.4)

Definition 2.4 The set
G ·m := {g ·m | g ∈ G}

is called the orbit through m.
The mapping Am : g 7→ A(g, m) : G→M induces a mapping

Ãm : g Gm 7→ A(g, m) : G/Gm →M, (2.5)

which is bijective from G/Gm onto G ·m. It intertwines the transitive action of G on G/Gm

defined by left multiplications with the transitive action of G on the orbit through m. Here
we use the terminology that a mapping f : X → Y intertwines the action A of G on X with
the action B of G on Y if f(A(g, x)) = B(g, f(x)) for every g ∈ G and x ∈ X. One also
says in this case that the mapping f is equivariant with respect to the actions of G on X
and Y . �
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The mapping Ãm is a smooth immersion from G/Gm into M , which exhibits the orbit
through m as a smoothly immersed submanifold of M , with tangent space at m equal to

Tm(G ·m) = αm(g). (2.6)

Definition 2.5 Two orbits are either equal to each other or disjoint, which implies that
M is partitioned into orbits. The set

G\M := {G ·m | m ∈M}

of all orbits in M is called the orbit space for the group action A. The mapping

π : m 7→ G ·m : M → G\M

is called the canonical projection from M onto G\M . The fibers of π are the G-orbits in
M . �

Until now the orbit space is just defined as a set, without any further structure. At some
points, especially when we want to consider nearby orbits, we will need more structure on
the orbit space. For instance, it is natural to provide the orbit space G\M with the strongest
topology for which the projection π : M → G\M is continuous, i.e. a subset V of G\M is
declared to be open in G\M if and only if the G-invariant subset π−1(V ) is open in M .

In general the orbit structure can be very complicated, already for flows of complete
vector fields. For instance, orbits need not be closed, not even embedded submanifolds,
and the topology in G\M need not be Hausdorff. For this reason we will make additional
assumptions about the action, when we need these in order to get further conclusions.

For instance, the orbit structure is already much better in the following case.

Definition 2.6 (Palais [25, Def. 1.2.2] A mapping f from a topological space X to
a topological space Y is called proper if for every compact subset K of Y the pre-image
f−1(K) is a compact subset of X.

The action of G on M is called proper if the mapping

(g, m) 7→ (m, g ·m) : G×M →M ×M

is proper. This is equivalent to the condition that if mj and gj is an infinite sequence in M
and G, respectively, such that for j →∞ the sequences mj and gj ·mj converge in M , then
there is a subsequence j = j(k) →∞ such that the gj(k) converge in G as k →∞. �

If the action is proper, then for every m ∈ M the stabilizer subgroup Gm is a compact,
hence closed, hence Lie subgroup of G, cf. [10, Cor. 1.10.7]. Moreover, the orbit G ·m is
a properly embedded submanifold of M , and therefore a closed subset of M . Finally, the
topology of the orbit space G\M is Hausdorff, cf. [10, Lemma 1.11.3].

Although proper Lie group actions are quite special among the general Lie group actions,
they do occur quite often in applications. For instance, an effective Lie group action on a
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paracompact smooth manifold M is proper if and only if there exists a Riemannian structure
on M which is invariant under the Lie group action, cf. [10, Prop. 2.5.2 and p.106].

Definition 2.7 The action A is called free at the point m ∈ M if Gm = {1}, and it is
called free if it is free at every point of M . �

The situation is particularly nice if the action is proper and free. Then G\M has a unique
smooth manifold structure such that the projection π : M → G\M is a smooth fibration,
and dim(G\M) = dimM − dimG. In this case π : M → G\M is called a principal fiber
bundle with structure group equal to G, cf. [10, Th. 1.11.4].

Remark 2.8 Let us explain this terminology in more detail.
The fact that π : M → G\M is a smooth fibration implies that there exist local smooth

sections. This means that for every b ∈ G\M there is an open neighborhood V of b in G\M
and a smooth mapping σ : V → M of π : π−1(V ) → V , such that π ◦ σ is equal to the
identity in V . The mapping τ = τσ : (v, g) 7→ g · σ(v) is a diffeomorphism from V × G
onto π−1(V ), such that π ◦ τ is equal to the projection (v, g) 7→ v : V ×G→ V on the first
components. In other words, τ−1 : π−1(V ) → V ×G is a local trivialization of the fibration
over the open subset V of the base space.

If σ′ : V ′ → M is another smooth local section for π defined on another open subset V ′

of G\M , then we have for each v ∈ V ∩ V ′ a unique ρ(v) ∈ G, which depends smoothly on
v, such that σ′(v) = ρ(v) · σ(v). Then τσ′(v, g) = g · ρ(v) · σ(v) = τσ(v, g · ρ(v)), or

τ−1
σ ◦ τσ′(v, g) = (v, g · ρ(v)), v ∈ V ∩ V ′, g ∈ G.

Now a principal fiber bundle with structure group equal to G is defined as a smooth
fibration π : M → B with an open covering Vi, i ∈ I, of B and local trivializations τ−1

i :
π−1(Vi) → Vi ×G, such that

τ−1
i ◦ τj(v, g) = (v, g · ρij(g)), i, j ∈ I, v ∈ Vi ∩ Vj, g ∈ G

for smooth mappings ρij : Vij → G. It is easily verified that the actions (g′, (v, g)) 7→
(v, g′ g) : G × (Vi × G) of G on the spaces Vi × G are intertwined by the mappings τi :
Vi ×G→M with a unique smooth action of G on M which is free and proper. In this way
“free and proper G-action” and “principal fibration with structure group G” are equivalent
concepts. �

Remark 2.9 The condition that the action is proper and free is equivalent to Axiom
(FP) on [4, p. 6-05] who, in the more general framework of a continuous action of a locally
compact topological group G on a locally compact topolological space M , took this as the
definition of a principal fiber bundle. He then observed that (FP) implies that, for each
m ∈ M , G · m is a closed subset of M and g 7→ G · m is a homeomorphism from G onto
G ·m, and that G\M is a locally compact Hausdorff space.

On [4, p. 6-08] he mentioned the theorem of Gleason that, for a free and smooth action
of a compact Lie group on a smooth manifold, the fibration is smooth and locally trivial. He
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also remarked that the fibration is locally trivial if G is locally connected and metrisable,
and G\M is a manifold, but that “the proof is difficult and would take take us out of the
framework of these expositions”. We think that it is fair to say that the equivalence between
“proper free actions” and “principal fiber bundles” originates in H. Cartan [4].

�

3 Isotropy Types and Orbit Types

This section can be ignored if the action is free.

3.1 Reduction to Free Actions

Definition 3.1 For each m ∈ M the isotropy group Gm of m is a closed, hence Lie
subgroup of G, cf. [10, Cor. 10.7]. For each closed Lie subgroup H of G we introduce the
subset

MH := {m ∈M | Gm = H} (3.1)

of M , which is called the isotropy type in M for the subgroup H of G. The sets MH , where
H ranges over the closed Lie subgroups of G for which MH is non-empty, form a partition
of M , and therefore are the equivalence classes of an equivalence relation in M . �

Definition 3.2 The normalizer of H in G is defined as

N(H) = NG(H) := {g ∈ G | g H g−1 = H}. (3.2)

�

N(H) is a closed, hence Lie subgroup of G. It is the largest subgroup N of G which
contains H as a normal subgroup, in the sense that H ⊂ N ⊂ N(H) for every such subgroup
N of G. As a consequence N(H)/H is a Lie group, cf. [10, Cor. 1.11.5].

The following lemma can be viewed as a reduction of a general action to a free one.

Lemma 3.3 Let H be a closed Lie subgroup of G such that MH 6= ∅, and let g ∈ G. Then

g ∈ N(H) ⇐⇒ g ·MH = MH ⇐⇒ (g ·MH) ∩MH 6= ∅.

The action of N(H) on MH induces a free action of N(H)/H on MH .

Proof If m ∈ MH , then Gm = H, and it follows from (2.4) that g · m ∈ MH , i.e.
Gg·m = H = Gm, if and only if g ∈ N(H). �

It follows from Lemma 3.3 that the subset MH of M is not G-invariant, unless N(H) = G,
i.e. unless H is a normal subgroup of G.

7



Definition 3.4 We say that H ′ ⊂ G is conjugate to H by means of an element of G if there
exists an element g ∈ G such that H ′ = g H g−1. Clearly H ′ is a closed Lie subgroup of G
if H ′ is conjugate to the closed Lie subgroup H of G, and we see from (2.4) that MH′ 6= ∅ if
and only if MH 6= ∅. The conjugacy class of H, the set of all subgroups H ′ of G which are
conjugate to H by means of an element of G, will be denoted by [H]. �

Definition 3.5 The set

M[H] := {m ∈M | Gm = g H g−1 for some g ∈ G} (3.3)

is called the orbit type of [H] in M . �

This name comes from the fact that m and m′ belong to the same orbit type if and only
if there exists a G-equivariant bijection from G · m onto G · m′, cf. [10, Lemma 2.6.2,(i)].
This defines an equivalence relation in M , which is coarser than the relation of belonging
to the same isotropy type. It follows that M is partitioned into orbit types, and that each
orbit type is partitioned into isotropy types for conjugate subgroups of G.

Definition 3.6 The subset G\M[H] := π(M[H]) is called the orbit type in the orbit space
of the conjugacy class [H]. �

Also the orbit space G\M is partitioned into orbit types. Note that if G is commutative,
then the orbit types types are equal to the isotropy types. We summarize the situation in
the following lemma.

Lemma 3.7 Let H be a closed Lie subgroup of G such that MH 6= ∅. Then

a) M[H] is the smallest G-invariant subset of M which contains MH . It is partitioned into
the isotropy types MH′, H ′ ∈ [H], and we have

g ·MH = Mg H g−1 for every g ∈ G. (3.4)

The mappings g 7→ g H g−1 7→Mg H g−1 induce a G-equivariant bijection from G/N(H)
onto the collection of the isotropy types in the orbit type M[H], where in G/N(H) we
use the action of G by left multiplications.

b) If π denotes the canonical projection from M onto the orbit space G\M , then π(MH) =
G\M[H]. The fibers of π|MH

are the N(H)/H-orbits in MH .

3.2 When the Action is Proper

Until now all the considerations in this section have been purely set-theoretical. In this
subsection, we will assume that the action is proper.

Let m ∈M . Recall that αm(g) is equal to the tangent space at m of the G-orbit through
the point m, cf. (2.6). For every g ∈ Gm, the linear transformation Tm gM in TmM leaves
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αm(g) invariant, and we obtain an induced linear action of the compact group H := Gm on
the vector space E := TmM/αm(g). For any open H-invariant subset B of E, we have the
action of h ∈ H on G×B which sends (g, b) ∈ G×B to (g h−1, h · b). This action is proper
and free, and therefore its orbit space G×H B is a smooth manifold. Because the action of
G on G×B by multiplication from the left on the first factor commutes with the H-action
on G×B, it passes to an action of G on G×H B.

Theorem 3.8 (Tube theorem) Let m ∈M and write H := Gm. There exists a G-invariant
open neighborhood U of m in M , an open H-invariant neighborhood of the origin in E, and
a diffeomorphism Φ from G ×H B onto U which intertwines the G-action on G ×H B with
the G-action on U .

In the proof of the tube theorem, see for instance [10, 2.4.1], B is identified with a suitable
submanifold of M through m, called a slice, and the diffeomorphism Φ is induced by the
mapping (g, b) 7→ g · b from G×B to M .

The tube theorem is the basic tool in the investigation of the action of G in G-invariant
neighborhoods of orbits, and in the local study of the orbit space G\M .

Theorem 3.9 Suppose that H = Gm for some m ∈ M , which implies that H is a compact
Lie subgroup of G. Then

a) MH is a locally closed smooth submanifold of M , where it is allowed that different
connected components have different dimensions.

b) The Lie group N(H)/H acts smoothly on MH , and this action is free and proper. In
view of Lemma 3.7, b), there is a unique smooth manifold structure on the orbit type
G\M[H] such that π|MH

: MH → G\M[H] is a principal fiber bundle with structure
group N(H)/H.

c) M[H] is a G-invariant locally closed smooth submanifold of M , where it is allowed that
different connected components have different dimensions. The G-action in Lemma
3.7, a) induces a G-equivariant diffeomorphism from the associated fiber bundle
(G/H) ×N(H)/H MH onto M[H]. Furthermore, the projection π : M[H] → G\M[H] is a
smooth fibration, of which the fibers are G-equivariantly diffeomorphic to the homoge-
neous space G/H.

Proof Let

MH := {m ∈M | h ·m = m for every h ∈ H} = {m ∈M | H ⊂ Gm} (3.5)

denote the set of all the common fixed points of all the elements of H.
Obviously MH ⊂ M[H] ∩ MH . Now assume that m ∈ M[H] ∩ MH . This means that

Gm is conjugate to H by means of an element of G and that H ⊂ Gm. The properness of
the action implies that Gm is compact. Because H is conjugate to Gm, H is compact as
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well and has the same dimension and the same finite number of connected components as
Gm. In combination with H ⊂ Gm this leads to the conclusion that H = Gm, and therefore
m ∈MH . We therefore have proved that

MH = M[H] ∩MH , (3.6)

and the theorem now follows from [10, Th. 2.6.7], in the proof of which the tube theorem is
the essential ingredient. �

Remark 3.10 Lemma 3.7 and Theorem 3.9 are due to Borel [3, Ch. XII, §1], in the
framework of compact Lie group actions, and with M[H] ∩MH instead of the isotropy types
MH , which are not mentioned explicitly. Still for compact Lie group actions, Theorem 3.9
is formulated in terms of the MH in Jänich [17, §1.5], with a reference to Borel [3, Ch. XII,
§1], but without an argument for the inclusion M[H] ∩MH ⊂MH .

Jänich [17, p. 6] warned that different connected components of the orbit type M[H] can
have different dimensions, and it follows from Theorem 3.9, c) that the same holds for the
isotropy type MH . This is one of the reasons why in [10, Th. 2.6.7] the orbit type M[H]

has been replaced by the local action type M≈
x , the equivalence class of x for the equivalence

relation x ≈ y ⇐⇒ there exists a G-equivariant diffeomorphism from a G-invariant open
neighborhood of x onto a G-invariant open neighborhood of y in M . The local action
types are open and closed subsets of the orbit types, and have a constant dimension. They
are determined by the conjugacy class of the isotropy subgroup H = Gx together with
the equivalence class of the linear representation of H defined by the induced action on
TxM/Tx(G · x).

The proofs in the aforementioned references for compact G carry over without change to
proofs for proper Lie group actions. �

Definition 3.11 A stratification of a smooth manifold M is a collection S of locally
closed connected smooth submanifolds of M , called the strata of S, such that the following
is satisfied.

i) S is a locally finite partition of M , i.e.

a) S ∩ S ′ = ∅ if S, S ′ ∈ S, S 6= S ′,

b) M is equal to the union of all S ∈ S, and

c) For each m ∈ M there is a neighborhood U of m in M such that the set of all
S ∈ S such that S ∩ U 6= ∅ is finite.

ii) For each S ∈ S the closure S of S in M is equal to the union of S and a collection of
S ′ ∈ S such that dimS ′ < dimS.

The stratification S is called a Whitney stratification if in addition the following conditions
are met.
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A) If S, S ′ ∈ S, S ′ ⊂ S, S ′ 6= S, and sj is a sequence in S which converges to s′ ∈ S ′ and
for which Tsj

S converges to the linear subspace L of Ts′ M , then Ts′ S
′ ⊂ L.

B) If sj is a sequence as in A) and s′j ∈ S ′ which also also converges to s′, then each limit of
the one-dimensional subspaces Rλ(sj, s

′
j) is contained in L. Here λ is a diffeomorphism

from an open neighborhood of the diagonal in M ×M to an open neighborhood of the
zero section in TM such that λ(m, m) = 0 ∈ TmM for every m ∈M .

�

The connected components of the orbit types in M form a Whitney stratification in M ,
cf. [10, Th. 2.7.4] or Pflaum [26, Th. 4.3.7]. Note that the orbit type Mα itself is fibered by
the isotropy types MH , H ∈ α, where for each H ∈ α the codimension of MH in Mα is equal
to dimG−dimN(H), cf. c) in Theorem 3.9. This implies that, as soon as dimN(H) < dimG,
the isotropy types do not form a stratification.

In order to be able to state that the orbit types in G\M form a Whitney stratification,
we need that, at least locally, G\M is embedded in some natural way in a smooth manifold.
This will be discussed, among other things, in Section 4

Example 3.12 An example of a highly non-free action is given by M = G and the action
of G on itself by means of conjugation, i.e.

A : (g, x) 7→ g x g−1 : G×G→ G.

Indeed, if G is nontrivial, i.e. G 6= {1}, then there are no points at which the action is free,
because G1 = G 6= {1} and, if x 6= 1, the fact that x ∈ Gx implies that Gx 6= {1}.

If G is compact and connected, and x is a so-called principal element of G, then Gx is
equal to a maximal torus T in G, cf. [10, Cor. 3.3.2]. The isotropy type of a maximal torus
T is equal to the set of principal elements in T , and N(T )/T is a finite reflection group,
called the Weyl group of T , cf. [10, 3.7.2]. The corresponding orbit type is equal to the set of
all principal elements in G, which is a dense open subset of G, and the corresponding orbit
type in in the orbit space is a connected dense open subset of the orbit space, cf. [10, 2.8.5].

It was the strategy in [10, Ch. 3] that the structure theory of compact Lie groups is an
application of the theory of proper group actions to the action of conjugation. �

4 Smooth Structure on the Orbit Space

We keep the assumption that the action of G on M is proper, but not neccessarily free.

4.1 Differential Spaces

Definition 4.1 For every open subset V of G\M , the function f : V → R is called smooth
if the function π∗(f) := f ◦ π : π−1(V ) → R is smooth. The space of smooth functions on V
will be denoted by C∞(V ). �
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It follows from the definition that π∗ is an isomorphism of algebras from C∞(V ) onto
the algebra C∞(U)G of all G-invariant smooth functions on the G-invariant open subset
U = π−1(V ) of M . The mapping V 7→ C∞(V ), where V ranges over all the open subsets of
G\M , defines a sheaf of functions on G\M , which is called the smooth structure of G\M .
See for instance Gunning [13, §2] for basic facts about sheaves.

Definition 4.2 (Sikorski [31], [32]) A differential space is a pair (Q, C∞(Q)), in which Q
is a topological space, and C∞(Q) is a set of continuous real-valued functions on Q, with the
following properties.

i) The sets f−1(I), with f ∈ C∞(Q) and I an open interval in R, form a subbasis for the
topology of Q.

ii) For every positive integer n, F ∈ C∞(Rn), and f1, . . . , fn ∈ C∞(Q), we have F ◦ f ∈
C∞(Q), where we have written f(q) = (f1(q), . . . , fn(q)) ∈ Rn for every q ∈ Q.

iii) If f : Q → R and for every q ∈ Q there is an open neighborhood Vq of q in Q and
fq ∈ C∞(Vq) such that f |Vq = fq|Vq , then f ∈ C∞(Q). Here g|A denotes the restriction
of a function g to a subset A of the domain of definition of g.

C∞(Q) is called the differential structure of (Q, C∞(Q)). When there is no danger of confu-
sion, one also refers to Q as the differential space. �

Note that ii) implies that C∞(Q) is an algebra of functions.

Definition 4.3 If (P, C∞(P )) and (Q, C∞(Q)) are differential spaces, then a smooth map-
ping f from (P, C∞(P )) to (Q, C∞(Q)) is defined as a continuous mapping ϕ : P → Q such
that ϕ∗(C∞(Q)) ⊂ C∞(P ). ϕ is called a diffeomorphism from (P, C∞(P )) to (Q, C∞(Q))
if ϕ is a homeomorphism from P onto Q and both ϕ and ϕ−1 are smooth. Note that
this is equivalent to the condition that ϕ is a homeomorphism from P onto Q such that
ϕ∗(C∞(Q)) = C∞(Q), because this implies that

(ϕ−1)∗(C∞(P )) = (ϕ−1)∗(ϕ∗(C∞(Q))) = (ϕ ◦ ϕ−1)∗(C∞(Q)) = C∞(Q).

�

With the smooth mappings as morphisms, the differential spaces form a category.

Definition 4.4 Let (Q, C∞(Q)) be a differential space and let S be any subset of Q. Then
C∞(S) is defined as the set of all f : S → R such that for every s ∈ S there exists an open

neighborhood Vs of s in S and an fs ∈ C∞(Q), such that f |Vs = fs|Vs . �

Property iii) in Definition 4.2 just says that this C∞(S) is equal to the C∞(Q) we started
out with, if S = Q.

For any subset S of Q, provided with the induced topology, (S, C∞(S)) is a differential space
and the inclusion S → Q is a smooth mapping from (S, C∞(S)) to (Q, C∞(Q)). Actually,
C∞(S) is the smallest differential structure on S such that the inclusion S → Q is smooth.
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Remark 4.5 The mapping V 7→ C∞(V ), where V ranges over all open subsets of Q,
defines a sheaf of functions over Q. In the literature a smooth structure on a given speace is
usually defined as a sheaf of functions of locally defined “smooth functions” on the space.

If q ∈ Q and V is a neighborhood of q in Q, then it follows from i) in Definition 4.2
that there exists a positive integer n, open subset W of Rn, and f1, . . . , fn ∈ C∞(Q), such
that f−1(W ) ⊂ V . There exists a cutoff function F ∈ C∞(Rn) such that F = 1 on a
neighborhood of f(q) in Rn, and the support of F is equal to a compact subset K of W . It
follows from ii) in Definition 4.2 that F ◦ f ∈ C∞(Q). Furthermore, the support of F ◦ f is
equal to the closed subset f−1(K) of V , which is compact if V is compact. This shows that
if the topological space Q is locally compact, then we have cutoff functions in C∞(Q).

If X is a topological space, F(X) is a space of functions on X and V is an open covering
of X, then a partition of unity in F(X) which is subordinate to V is a family χj ∈ F(X),
j ∈ J , with the following properties. First, for each j ∈ J , the support of χj is a compact
subset of some Vj ∈ V . Second, the supports of the χj form a locally finite family of compact
subsets of X, and

∑
χj = 1 on X.

A Hausdorff topological space X is called paracompact if every open covering of X has a
locally finite refinement. If X is Hausdorff and locally compact, then X is paracompact, if
and only if every connected component of X is equal to the union of a countable collection
of compact subsets, cf. Dieudonné [7]. Cutoff functions in F(X) now can be used to obtain
partitions of unity as in Dieudonné [8, 6.1.4.(ii) and 16.4.1].

This means that if the topological space Q of the differential space (Q, C∞(Q)) is Haus-
dorff, locally compact and paracompact, then for every open covering V of Q there exists a
partition of unity in C∞(Q) which is subordinate to V . In other words, the sheaf V 7→ C∞(V )
over Q is fine, cf. Gunning [13, p. 36].

The sheaf of analytic functions on an analytic manifold of positive dimension is not fine.
In this respect differential spaces are quite different from analytic spaces. �

If M is a smooth manifold, in particular if M = Rn, and C∞(M) denotes the space of all
smooth functions on M , then (M, C∞(M)) is a differential space. The property ii) then
expresses that f : Q → Rn is a smooth mapping from the differential space (Q, C∞(Q)) to
the differential space (Rn, C∞(Rn)).

If S is a subset of a smooth manifold M , then S is an embedded smooth submanifold of M
if and only if the differential space (S, C∞(S)), defined as in Definition 4.4 with Q = M , is
diffeomorphic as a differential space to a smooth manifold. For the “if” part, let S have the
structure of a smooth manifold such that C∞(S) is equal to the space of smooth functions
on S with respect to the manifold structure of S. This implies that the identity S →M is a
smooth mapping from the manifold S into the manifold M , and also the manifold topology
of S agrees with the restriction topology. If s ∈ S and dimS = r, then there exist smooth
functions f1, . . . , fr on M , such that the fi|S form a local system of coordinates for S in
an open neighborhood of s in S. But this implies that the identity S → M has injective
tangent mappings, and therefore it is a smooth embedding.

If S is a smooth submanifold of M , then C∞(S) is equal to the space of all smooth functions
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on S. For the proof one uses smooth cutoff functions in order to show that a smooth function
on a neighborhood in S of a point in S agrees on some smaller neighborhood with a smooth
function on M .

These considerations allow to refer, for any differential space (Q, C∞(Q)), to C∞(Q) as the
space of smooth functions on Q.

4.2 The Orbit Space as a Differential Space

We now return to the orbit space G\M of our proper G-acton on the smooth manifold M ,
with C∞(G\M) as in Definition 4.1.

Lemma 4.6 For every q ∈ G\M and every open neighborhood V of q in G\M , there exists
a cutoff function χ ∈ C∞(G\M) such that χ = 1 on a neighborhood of q and χ = 0 on the
complement of a compact neighborhood of q in V .

Let M be paracompact. Then G\M is paracompact, and there exists for every open
covering V of G\M a partition of unity in C∞(G\M), which is subordinate to V.

Proof It follows from the tube theorem 3.8 with U = π−1(V ) and H = Gm that the
mapping H · b 7→ G · b defines a homeomorphism from H\B onto G\U = V .

Because H is a compact group acting linearly on E, averaging of an arbitrary inner
product on E over H leads to an H-invariant inner product on E. There is an ε > 0 such
that x ∈ E, ‖x‖ ≤ ε implies that x ∈ B. There exists a ψ ∈ C∞(R) such that ψ = 1
on a neighborhood of 0 in R and ψ(r) = 0 when r ≥ ε. Then f(g, b) = ψ(‖b‖) defines a
smooth and G-invariant function f on G× B, which corresponds to a g ∈ C∞(V ) of which
the support is a compact subset of V . Extending g by zero in the complement of V in G\M ,
we obtain the desired function χ.

The paracompactness of M implies that the Hausdorff space G\M is paracompact. For
the proof, let C be a connected component of G\M . Because G need not be connected,
π−1(C) need not be connected, but C = π(D) for every connected component D of M .
Because M is paracompact, D is equal to the union of a countable family Ki of compact
subsets. Because π is continuous, the π(Ki) form a countable family of compact subsets of
C, with union equal to π(D) = C.

The cutoff functions now can be used to obtain partitions of unity as in Remark 4.5. �

Proposition 4.7 With Definition 4.1, (G\M, C∞(G\M)) is a differential space, and the
orbit map π : M → G\M is a smooth mapping from (M, C∞(M)) to (G\M, C∞(G\M)).

For any open subset V of G\M , the space C∞(V ) in Definition 4.1 is equal to the space
C∞(V ) in Definition 4.4 with Q = G\M and S = V .

Proof If χ is a cutoff function as in Lemma 4.6, then χ−1(]1/2, 3/2[ ⊂ V . This proves i)
in Definition 4.2.
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Let f1, . . . fn ∈ C∞(G\M) and F ∈ C∞(Rn). Then fj ◦ π ∈ C∞(M)G hence F ◦ f ◦ π ∈
C∞(M)G, and therefore F ◦ f ∈ C∞(G\M). This proves ii) in Definition 4.2.

Now let f : G\M → R and assume that for every q ∈ G\M there exists an open
neighborhood Vq of q in G \M and an fq ∈ C∞(G\M), such that f |Vq = fq|Vq . Then F ◦π is
G-invariant, and equal to the smooth function fq ◦π on π−1(Vq). Because the π−1(Vq) form a
covering of M , it follows that f ◦π is smooth, f ◦π ∈ C∞(M)G, and therefore f ∈ C∞(G\M).
This proves iii) in Definition 4.2.

π is smooth because π∗(C∞(G\M)) = C∞(M)G ⊂ C∞(M).
Finally let V be an open subset of G\M and f : V → R. Write U = π−1(V ). If

f locally agrees with elements of C∞(G\M) then we obtain as in the proof of iii) that
f ◦π ∈ C∞(U)G, hence f ∈ C∞(V ) according to Definition 4.1. Now assume conversely that
f : V → R and f ◦ π ∈ C∞(U)G. For every q ∈ V there exists, according to Lemma 4.6,
a function χ ∈ C∞(G\M), such that the support of χ is a compact subset of V and χ = 1
on a neighborhood of q in V . Define fq : G\M → R by fq = χ f in V and fq = 0 in the
complement of V in G\M . Then fq = 0 in the complement W of K in G\M . V and W
are open subsets of G\M and V ∪W = G\M . It follows that π−1(V ) and π−1(W ) are open
subsets of M and π−1(V ) ∪ π−1(W ) = M . On π−1(V ) we have fq ◦ π = (χ ◦ π) (f ◦ π),
which is smooth and G-invariant. On π−1(W ) we have fq ◦ π = 0, which is also smooth and
G-invariant. The conclusion is that fq ∈ C∞(G\M). Because f = fq in a neighborhood of
q, we have proved that f ∈ C∞(V ) according to Definition 4.4 with Q = G\M and S = V .
�

Lemma 4.8 In the notation of the tube theorem 3.8, the mapping ϕ : b 7→ Φ(1, b) : B → U
induces a homeomorphism φ from H\B onto G\U and the restriction of ϕ∗ : C∞(U) →
C∞(B) to C∞(U)G is an isomorphism from C∞(U)G onto C∞(B)H .

In other words, φ is a diffeomorphism from the differential space H\B onto the differential
space G\U , where C∞(H\B) ' C∞(B)H and C∞(G\U) ' C∞(U)G.

Proof Write i : b 7→ (1, b) : B → G×B and ψ for the canonical projection from G×B onto
G×H B. Then i induces a homeomorphism from H\B onto (G×H)\(G×B) and ψ induces
a homeomorphism from (G × H)\(G × B) onto G\(G ×H B). Because the G-equivariant
diffeomorphism Φ : G ×H B → U induces a homeomorphism from G\(G ×H B) onto G\U ,
it follows that ϕ = Φ ◦ ψ ◦ i induces a homeomorphism from H\B onto G\U .

If f : U → R, then f ∈ C∞(U)G if and only if g := Φ∗(f) := f ◦ Φ ∈ C∞(G×H B). The
latter condition is equivalent to the condition that h := ψ∗(g) ∈ C∞(G×B)G×H . If π2 denotes
the projection from G×B onto the second factor B, then π∗2 is an isomorphism from C∞(B)
onto C∞(G×B)G, which restricts to an isomorphism π∗2 : C∞(B)H → C∞(G×B)G×H . The
restriction of i∗ : C∞(G×B) → C∞(B) to C∞(G×B)G×H is equal to the inverse of π∗2. We
conclude that ϕ∗ = (Φ◦ψ ◦ i)∗ = i∗ ◦ψ∗ ◦Φ∗ is an isomorphism from C∞(U)G onto C∞(B)H .
�

The isotropy group H := Gm is compact and acts linearly on the finite-dimensional
vector space E. It is a classical result of invariant theory that the algebra P(E)H of all
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H-invariant polynomial functions f : E → R is finitely generated, i.e. there exist n ∈ Z≥0

and p1, . . . , pn ∈ P(E)H such that every f ∈ P(E)H can be written in the form f =
F (p1, . . . , pn) for some polynomial function F : Rn → R. See Pflaum [26, Th. 4.4.2], also
for further references to the literature. One can choose the pi homogeneous of degrees di > 0.
Even with a minimal set of such generators, called a Hilbert basis, in general the polynomial
F : Rn → R is not unique, as there can exist nontrivial polyomial relations between the
pi. Because P(E)H separates the H-orbits in E, the mapping p : x 7→ (p1(x), . . . , pn(x))
induces a continuous and injective mapping p̃ from H\E onto the subset p(E) of Rn.

The Tarski-Seidenberg theorem, cf. Hörmander [15, Appendix A.2] for a nice proof, states
that the image of any semi-algebraic set under a polynomial mapping is semi-algebraic, and
therefore p(E) is a semi-algebraic subset of Rn. Because p(t x) = (td1 p1(x), . . . , t

dn pn(x)),
the set p(E) is quasi-homogeneous in the sense that (td1 y1, . . . , t

dn yn) ∈ p(E) if y ∈ p(E)
and t ∈ R. In particular p(E) is contractible to the origin in Rn. Averaging an arbitrary
inner product on E over H, we obtain an H-invariant inner product β on E. Because
x 7→ β(x, x) ∈ P(E)H , there exists a polynomial F : Rn → R such that β(x, x) = F (p(x))
for every x ∈ E. This implies that the mapping p : E → Rn is proper, which in turn
implies that p(E) is a closed subset of Rn. Because the mapping p̃ : H\E → p(E) is
continuous, bijective and proper, it is a homeomorphism from the locally compact Hausdorff
space H\E onto p(E). By shrinking B (and therefore U) if necessary, we can arrange that
B = {x ∈ E | β(x, x) < c} for a suitable c > 0. Then p̃ defines a homeomorphism from
G\U ' H\B onto the set p(B) = {y ∈ p(E) | F (y) < c}, which is an open semi-algebraic
subset of the closed semi-algebraic subset p(E) of Rn.

The theorem of Schwarz [29], see also Mather [23], says that for any set p1, . . . , pn of
generators of P(E)H and every f ∈ C∞(E)H there exists a ϕ ∈ C∞(Rn) such that f = ϕ◦p.

Lemma 4.9 Let φ be as in Lemma 4.8. Then the mapping p̃◦φ−1 is a diffeomorphism from
the differential space G \ U onto the differential space p(B), viewed as a subset of Rn.

Proof Let f ∈ C∞(p(B)) and b ∈ B. Then there exists an open neighborhood Y of p(b)
in Rn and an g ∈ C∞(Rn), such that f = g on p(B) ∩ Y . It follows that f ◦ p = g ◦ p is
smooth on the open neignborhood p−1(Y ) of b in B. Because this holds for every b ∈ B, the
conclusion is that f ◦ p ∈ C∞(B). Because f ◦ p is invariant under H = Gm, it follows that
p∗(C∞(p(B)) ⊂ C∞(B)H .

On the other hand, the theorem of Schwarz states that C∞(B)H ⊂ p∗(C∞(E)). If ι
denotes the embedding p(E) → E, ι∗(C∞(E)) ⊂ C∞(p(B)), whereas p = ι ◦ p, hence

C∞(B)H ⊂ p∗(C∞(E)) = p∗(ι∗(C∞(E))) ⊂ p∗(C∞(p(B))).

We conclude that p∗(C∞(p(B))) = C∞(B)H , or equivalently that p̃∗(C∞(p(B))) = C∞(H\B).
Because p̃ is a homeomorphism from H\B onto p(B), this completes the proof that p̃ is a
diffeomorphism from the differential space H\B onto the the differential space p(B). �

Definition 4.10 A differential space is Q called subcartesian, if Q is Hausdorff and locally
diffeomorphic to a subset of a Cartesian space Rn.
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That is, if for every point q ∈ Q there is a neighborhood V of q in Q, an n ∈ Z≥0, a
subset S of Rn, and a diffomorphism ϕ from (V, C∞(V )) to (S, C∞(S)). �

Because the G\U in Lemma 4.9 form an open covering of G\M , we conclude:

Corollary 4.11 The differential space G\M , with C∞(G\M) ' C∞(M)G, is subcartesian.
More precisely, G\M has a covering by open subsets which are diffeomorphic as differential
spaces with open subsets p(B) of the closed semi-algebraic sets p(E) in front of Lemma 4.9.

Remark 4.12 The fact that p(E) is a closed semi-algebraic subset of Rn, means that
p(E) is determined by polynomial equalities and inequalities (of the type ≥ 0) between the
coordinates of Rn. The polynomial equalities represent the polynomial relations between
the generators p1, . . . , pn of P(E)H . More information about the polynomial inequaties is
given by Procesi and Schwarz [27]. �

4.3 The Orbit Type Stratification of the Orbit Space

We now investigate the orbit types G\M[H] in the differential space. G\M . For a charac-
terization of the connected components of the orbit types in G\M in terms of the smooth
structure on G\M only, see Corollary 6.11.

If MH denotes the isotropy type of H = Gm in M , then it follows from b) in Theorem 3.9
that π(MH) = G\M[H], and there is a unique smooth manifold structure on G\M[H] such
that π|MH

: MH → G\M[H] is a principal N(H)/H-bundle.
In the situation of the tube theorem 3.8, Let g ∈ G, e ∈ E, h ∈ H. Then g · (1, e) =

(g, e) = (1h−1, h · e) if and only if g = h−1 and h · e = e. That is, the isotropy subgroup
in G for the G-action on G ×H E of the H-orbit [(1, e)] through (1, e) is equal to the
isotropy subgroup in H of e for the H-action on E. This isotropy group is equal to H,
i.e. [(1, e)] belongs to the isotropy type of H in G ×H E, if and only if h · e = e for every
h ∈ H. Let EH = {e ∈ E | h · e = e} denote the set of common fixed points for the
action of H on E. Then π(MH) = G\M[H], in combination with Lemma 4.8, yields that
G\U[H] = φ(H\(B ∩ EH)). Here H\(B ∩ EH) denotes the image of B ∩ EH under the
canonical projection from B onto the H-orbit space H\B.

Because H acts on E by means of linear transformations, EH is a linear subspace of E.
If F denotes the orthogonal complement of EH in E with respect to the H-invariant inner
product β, then F is H-invariant and FH = F ∩EH = {0}. The mapping (x, y) 7→ x+ y is
a linear isomorphism from EH × F onto E, which is H-equivariant if we let h ∈ H act on
EH × F by sending (x, y) to (x, h · y).

We note in passing that the common β-orthogonal complement in E of all vectors of the
form h · e− e, h ∈ H, e ∈ E, is equal to EH . Therefore F is equal to the linear span of all
the vectors h · e− e, h ∈ H, e ∈ E, which implies that F is independent of the choice of the
H-invariant inner product β in E.
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If x1, . . . , xl is a coordinate system in EH , then every p ∈ P(EH × F ) can be written in
a unique fashion as a finite sum

p(x, y) =
∑

α

xα qα(y),

in which α = (α1, αn), αi ∈ Z≥0, x
α denotes the monomial

xα =
l∏

i=1

xi
αi ,

and qα is a polynomial on F . We have p ∈ P(EH × F )H if and only if qα ∈ P(F )H for
every multi-index α. This shows that a Hilbert basis of P(E)H ' P(EH × F )H is given by
x1, . . . , xl, q1, . . . qm, in which the qj form a Hilbert basis of P(F )H .

It follows that under the map p : E → Rn = Rl × Rm the set B ∩ EH is sent to an
open subset of Rl×{0}, which is a smooth l-dimensional submanifold of Rn. It follows that
the differential subspace p(B ∩EH) of the differential space p(E) is a smooth l-dimensional
manifold. In view of the identification of H\(B ∩ EH) ' p(B ∩ EH) with the orbit type
G\U[H] in G\U , and the identification in Lemma 4.9 of the differential space G \ U with
the differential subspace p(B) of Rn, we conclude that each connected component C of each
orbit type G\M[H] in G\M is a smooth manifold, when regarded as a differential subspace of
the differential space G\M . Moreover, this manifold structure is equal to the one for which
π|MH

: MH → G\M[H] is a smooth principal fibration, cf. b) in Theorem 3.9.
The orbit types for the action of H in E ' EH×F are of the form EH×R, in which R is

an orbit type for the action of H in F . Furthermore, if t ∈ R, t 6= 0, then the multiplication
by t in F is a linear isomorphism of F which commutes with the action of H in F , and it
follows that t R = R. We conclude that if S denotes the unit sphere in F with respect to
β, then R 7→ R ∩ S is a bijective mapping from the set of all orbit types in F which are
not equal to the origin onto the set of all orbit types for the action of H on S. It follows
by induction on the dimension of S, that there are only finitely many orbit types for the
action of H on a compact manifold S, and we conclude that there are only finitely many
orbit types for the action of H on E.

It follows from the quasihomogeneity of the mapping p : E → Rn = Rl ×Rm that p(E)
is invariant under the transformations

(x1, . . . , xl, q1, . . . , qm) 7→
(
x1, . . . , xl, t

d1 q1, . . . , t
dm qm

)
, t ∈ R>0,

in which dj = deg qj. Note that the right hand sides are different for different t’s in R>0

when q 6= 0. Therefore each orbit type in p(E) which is different from Rl × {0} is equal to
the Cartesian product of Rl with a submanifold of Rm of dimension at least equal to one. It
follows that each orbit type near a given orbit type in G\M has a strictly larger dimension,
and we have proved:

Proposition 4.13 The connected components of the orbit types in G\M , viewed as differ-
ential subspaces of the differential space G\M , are smooth manifolds. These manifolds define
a stratification S of G\M , called the orbit type stratification of the orbit space.
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The following simple but important observations are due to Bierstone [2, Lemma 2.12].

Let q ∈ P(F )H be homogeneous of degree one, which implies that q is an element of the
dual space F ∗ of all linear forms on F . Note that β : f 7→ (g 7→ β(f, g)) is a bijective linear
mapping from F onto F ∗. Then the H-invariance of q implies that β−1(q) ∈ FH = {0},
which in turn implies that q = 0. This shows that dj := deg qj ≥ 2 for every 1 ≤ j ≤ m.
Because y 7→ β(y, y) is H-invariant and homogenous of degree 2, it is a linear combination
of the qj with dj = 2, which means that we can arrange that q1(y) = β(y, y), y ∈ F .

Let S = {y ∈ F | q1(y) = 1} denote the unit sphere in F with respect to β and let, for
each 2 ≤ j ≤ m, Cj be the maximum of the |qj(y)| such that y ∈ S. For any y ∈ F \{0} and
1 ≤ j ≤ m, write t = d1(y)

1/2, which implies that t−1 y ∈ S. Because qj(y) = qj(t (t
−1 y)) =

tdj qj(t
−1 y) and |qj(t−1 y)| ≤ Cj, we conclude that |qj(y)| ≤ d1(y)

dj/2Cj, which inequality
also holds for y = 0. This leads to the estimate

p(E) ⊂
{

(x, q) ∈ Rl ×Rm | q1 ≥ 0 and |qj| ≤ Cj q
dj/2
1 for every 2 ≤ j ≤ m

}
(4.1)

for the subset p(E) of Rn.

Lemma 4.14 Let I be an open interval in R, γ : I → p(E), and write γ(t) = (x(t), q(t)),
t ∈ I. Assume that 0 ∈ I, q1(0) = 0, and that t 7→ q(t) is diffferentiable at t = 0 as a
function from I to Rm. Then q′(0) = 0.

Proof It follows from γ(I) ⊂ p(E) and (4.1) that q1(t) ≥ 0 for every t ∈ I. Because
q1(0) = 0, we obtain in view of the variational principle that q′1(0) = 0, i.e. q1(t)/t → 0 as
t→ 0. On the other hand, if 2 ≤ j ≤ m, then γ(I) ⊂ p(E) and (4.1) imply that

|qj(t)|/|t| ≤ Cj q1(t)
dj/2/|t| = Cj |q1(t)/t|dj/2 |t|(dj/2)−1,

where the right hand side converges to zero as t→ 0 becuase q1(t)/t→ 0 and (dj/2)−1 ≥ 0.
This proves that q′j(0) = 0. �

It follows from Lemma 4.14 that if S is a C1 submanifold of Rn = Rl ×Rm, S ⊂ p(E), and
0 ∈ S, then T0 S ⊂ Rl × {0}. In particular dimS ≤ l. Because all strata in p(E) different
from Rl × {0} have dimension > l, this in turn implies that no union of Rl × {0} with
different strata in p(E) can be a C1 manifold through the origin. This leads to the following

Corollary 4.15 The orbit type stratification of G\M is minimal in the sense that no union
of different strata can be a connected smooth manifold in the differential space G\M .

If G\M is connected, then the differential space G\M is a smooth manifold if and only
if there is only one orbit type.

Note that actually no union of different strata can be a connected C1 manifold in the dif-
ferential space G\M , where we replace the C∞ differential structure by a C1 differential
structure in an obvious way. Also, if G\M is a connected C1 manifold, then there is only
one orbit type and G\M is a C∞ manifold.
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Remark 4.16 A theorem of Bierstone [1, Th. A] states that in the local model p(B) ⊂
Rn, cf. Lemma 4.9, the orbit type stratification coincides with the primary semi-analytic
stratification of the semi-algebraic subset p(B) of Rn. This implies that in the local model
p(B) ⊂ Rn the orbit type stratification is a Whitney stratification. �

Remark 4.17 If C is a connected component of G\M , then π−1(C) is an open and closed
G-invariant subset of M (connected if G is connected), and in all the discussions we may
replace M and G\M by π−1(C) and C, respectively. Therefore we may assume without loss
of generality that G\M is connected.

If G\M is connected, then G\M contains a unique open orbit type, which moreover is
a dense subset of G\M , and it is connected, cf. [10, Thm. 2.8.5]. It is called the prinicpal
orbit type G\M princ in G\M . Because G\M princ is a connected orbit type, it is a stratum
of the orbit type stratification of G\M , and it is the unique one which is an open subset of
G\M . Also, because G\M princ is dense in G\M , it approaches every point of every other
stratum.

Because every other stratum has a strictly smaller dimension than G\M princ, the dimen-
sion of G\M princ is called the dimension dim(G\M) of G\M . �

4.4 Cohomology of the Orbit Space

A smooth differential form ω on M is called basic if

i) ω is G-invariant in the sense that g∗Mω = ω for every g ∈ G, and

ii) ω is horizontal in the sense that iXM
ω = 0 for every X ∈ g.

We write Ωp

basic(M) for the space of all basic smooth differential forms of degree p on M .
For smooth functions = differential forms of degree zero, we only have condition i), and
therefore Ω0

basic(M) = C∞(M)G ' C∞(M\G).
It follows from i) that, for every X ∈ g,

0 = LXM
ω = d iXM

ω + iXM
dω,

in which Lu and iu denotes the Lie derivative with respect to and the inner product with
the vector field u, respectively. The second identity is the homotopy identity for the Lie
derivative. Therefore iXM

dω = 0 if iXM
ω = 0. Because the exterior derivative commutes

with pull-backs by means of any smooth mapping we have that dω is G-invariant if ω is
G-invariant, and therefore dω is basic if ω is basic. The cohomology of the complex of the
basic differential forms on M with the exterior derivative as the boundary operator is called
the basic cohomology of M . That is,

Hp

basic(M) := ker dp /dp−1(Ω
p−1

basic(M)), dr = d : Ωr
basic(Ω) → Ωr+1

basic(Ω).
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The V 7→ Ωp

basic(π
−1(V )), where V ranges over the open subsets of G\M , defines a sheaf

of vector spaces over G\M . Because Ωp

basic(π
−1(V )) is a module over Ω0(π−1(V )) ' C∞(V ),

the partitions of unity of Lemma 4.6 make that the sheaf V 7→ Ωp

basic(π
−1(V )) is fine.

In the local model of Thm. 3.8, the radial contractions in B lead to a Poincaré lemma
for basic differential forms. That is, if p > 0, ω ∈ Ωp

basic(U) and dω = 0, then there exists

an α ∈ Ωp−1

basic(U), such that ω = dα. In other words, the sequence of sheaves

0 → R → Ω0
basic

d0→ Ω1
basic

d1→ Ω2
basic

d2→ . . .

is exact. Because the sheaves Ωp

basic are fine, this exact sequence is a fine resolution of the
sheaf of locally constant functions on G\M . Because a fine resolution of a sheaf S induces a
canonical isomorphism of the cohomology of the sheaf S with the cohomology of the operator
d, cf. [13, §3, Thm. 3], we arrive at the following conclusion.

Theorem 4.18 (Koszul [18]) For a proper action of a Lie group G on a smooth manifold
M , the Čech chomology Hp(G\M, R) of the orbit space G\M is canonically isomorphic to
the basic cohomomolgy Hp

basic(M) of the G-space M .

When G = {1}, hence G\M = M , this is the De Rham theorem for smooth manifolds. In
this sense Theorem 4.18 is a generalization of the De Rham theorem.

It is a general fact in algebraic topology that the Čech cohomology is canonically iso-
morphic to any other cohomology of a complex which satisfies the Steenrod axioms, such as
the singular cohomology with values in R. If the orbit space does not possess strata S of
codimension one, i.e. such that dimS = dim(G\M) − 1, cf. Remark 4.17, then the basic
cohomology of the G-space M is also canonically isomorphic to what is called the de Rham
cohomology of G\M , cf. Pflaum [26, Thm. 5.3.5].

5 Dynamical System with Symmetry

We assume that we have a vector field v and an action of a Lie group G on the manifold M
as in Section 1 and 2, respectively. Recall that Im is the interval of definition of the maximal
solution of (1.1) which starts at m.

Lemma 5.1 The following conditions are equivalent.

i) The vector field v is invariant under the action of G, in the sense that

(Tm gM) v(m) = v(gM(m)) (5.1)

for every g ∈ G and m ∈M .

ii) The flow of v commutes with the action of G in the sense that Im = Ig·m and

gM

(
et v(m)

)
= et v(gM(m)) (5.2)

for every g ∈ G, m ∈M , and t ∈ Im.
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Proof Suppose that i) holds. Then

d

dt
gM

(
et v(m)

)
= (Tm gM) v

(
et v(m)

)
= v

(
gM

(
et v(m)

))
and gM (e0 v(m)) = gM(m). This shows that γ(t) := gM (et v(m)) is equal to the solution of
(1.1) with γ(0) = gM(m). This implies ii).

Conversely i) follows by differentiating ii) with respect to t at t = 0. �

Definition 5.2 We will say that the action of G is a symmetry of the dynamical system
defined by the vector field v, or that v is invariant under the action of G, if one of the
equivalent conditions in Lemma 5.1 holds. �

In the remainder of these notes we assume that the group action is a symmetry for the
dynamical system.

The first basic observation is that (5.2) implies that, for each m ∈ M and t ∈ Im, the time
t flow et v maps the G-orbit through m, in a G-equivariant way, onto the G-orbit through
et v(m). It follows that the time t flow induces a transformation Φt in the orbit space, which

is the unique mapping Φt : π(Dt) → G\M such that

Φt ◦ π = π ◦ et v on Dt. (5.3)

Let t ∈ R. The set Dt is an open G-invariant subset of of M and therefore the domain of
definition π(Dt) of Φt is an open subset of G\M , equal to G\M if the vector field v in M
is complete. The mapping Φt is a homeomorphism from π(Dt) onto π(Dt), with Φ−t as its
inverse. Furthermore (1.2) implies the group property that if s, t ∈ R, x ∈ π(Ds), Φs(x) ∈
π(Dt), then x ∈ π(Ds+t) and Φt(Φs(x)) = Φt+s(x). In other words, the transformations Φt

define a continuous flow in the orbit space G\M , which is called the reduced flow, or the
reduced dynamical system.

In the case that the reduced system in the orbit space G\M is simpler than the system in
M , the strategy will be to first analyse the reduced system and then try to obtain conclusions
about the flow in M from the properties of the flow in G\M . This last step is called
reconstruction.

Lemma 5.3 If the action is proper and free, then there is a unique vector field w = π∗(v)
on G\M , such that w(π(m)) = (Tm π) v(m) for every m ∈M . The vector field w is smooth
and the flow Φt in G\M is equal to the flow et w of the vector field w.

Proof If g ∈ G, then π ◦ gM = π and therefore we have for every m ∈ M that
Tg·m π ◦ Tm gM = Tm π. Applying Tg·m π to (5.1), we therefore obtain that (Tm π) v(m) =

(Tg·m π) v(g ·m). Defining w(π(m)) as the common value of all (Tg·m π) v(g ·m), g ∈ G, we
obtain the first statement in the lemma.

It follows from (5.3) that

d

dt
Φt(m)(π(m)) =

d

dt
π ◦ et v(m) =

(
Tet v(m) π

)
v(et v(m)) = w(π ◦ et v(m)) = w(Φt(m)),
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which in combination with Φ0(m)(π(m)) = π(m) shows that Φt(π(m)) = et w(π(m)). �

Because for a proper and free action the dimension of G\M is smaller than the dimension
of M if the Lie group G has a positive dimension, there is a good chance that the dynamical
system in G\M is simpler than the one in M .

5.1 Reconstruction in a Principal Fiber Bundle

For the reconstruction we follow the description of Marsden [22, Sec. 6.2]. Let δ : I → G\M ,
in which I is an open interval around 0, be the solution curve of

dδ(t)

dt
= w(δ(t)), t ∈ I (5.4)

such that δ(0) = π(m). In order to find the solution curve γ : I → M of (1.1) such that
γ(0) = m, we start with an arbitrary smooth curve β : I → M which is a lift of δ in the
sense that π(β(t)) = δ(t) for every t ∈ I, and satisfies β(0) = m.

Because π ◦γ is a solution curve of (5.4) which starts at π(m), we have π ◦γ = δ = π ◦β,
which means that for every t ∈ I there is an element g(t) ∈ G such that γ(t) = g(t)M(β(t).
Because π : M → G\M is a principal fibration, the element g(t) is uniquely determined
and t 7→ g(t) : I → G is a smooth curve in G, with g(0) = 1, the identity element of G.
Differentiating γ(t) = g(t) · β(t) = g(t)M(β(t)) with repect to t and using the sum rule for
differentiation, we obtain that(

Tβ(t) g(t)M

)
v(β(t)) = v(γ(t)) = γ′(t) = Tβ(t) g(t)M (β′(t) +X(t)M(β(t))) , (5.5)

where in the first identity we have used (5.1). The last term comes from differentiating

g(t+ h)M(β(t)) = g(t)M ◦
(
g(t)−1 g(t+ h)

)
M

(β(t))

with respect to h at h = 0, and we have written

X(t) :=
d

dh
g(t)−1 g(t+ h)

∣∣∣∣
h=0

∈ g. (5.6)

The equation (5.5) is equivalent to

X(t)M(β(t)) = v(β(t))− β′(t), t ∈ I. (5.7)

The curve t 7→ X(t) : I → g in the Lie algebra g of G is given by the formula (5.10) below,
from which we read off that this curve is smooth.

The reconstruction is completed by solving the ordinary differential equation (5.6) for
g(t), in which the smooth curve t 7→ X(t) : I → g is given by (5.10), with the initial condition
g(0) = 1. For any Lie group G with Lie algebra g and any continuous curve t 7→ X(t) : I → g,
in which I is an open interval around 0 in R, there is a unique C1 solution t 7→ g(t) : I → G
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of (5.6) such that g(0) = 1. See for instance the first statement in [10, Prop. 1.13.4], which
is also valid if we replace right multiplications by left multiplications. If g is abelian, then

g(t) = e
R t
0 X(s) ds .

For noncommutative groups the solution g(t) is the product integral over the interval [0, t]
of s 7→ X(s) introduced by Volterra [35].

In order to obtain an explicit formula for X(t), we can use a connection form for the principal
fiber bundleM → G\M , which is a g-valued smooth one-form θ onM which has the following
properties.

a) For every m ∈M and X ∈ g we have

θm(XM(m)) = X. (5.8)

b) θ is equivariant in the sense that for every m ∈M , v ∈ TmM and g ∈ G we have

θg·m(Tm gM(v)) = (Ad g)(θm(v)). (5.9)

The linear subspace Hm = ker θm of TmM is complementary to the fiber Tm(G · m) of
the fiber through m, and is called the horizontal subspace defined by the connection form
θ. Together the horizontal subspaces Hm, m ∈ M , define a smooth vector subbundle H.
(A smooth vector subbundle of TM is also called a distribution in M .) It follows from a)
and b) that H is invariant under the induced action of G on TM . Conversely, if H is a
G-invariant smooth vector subbundle which is complementary to the tangent spaces of the
fibers, then there is a unique connection form θ on M such that H = ker θ. In general a
smooth vector subbundle which is complementary to the fibers of a fibration is called an
infinitesimal connection for the fibration. Therefore, giving a connection form is equivalent
to giving a G-invariant infinitesimal connection.

Piecing together connection forms in local trivializations of the bundle by means of a
partition of unity in the base space G\M , cf. Lemma 4.6, one can construct a connection
form θ in any paracompact principal fiber bundle M . If we now apply θ to (5.7), then we
obtain the explicit formula

X(t) = θβ(t) (v(β(t))− β′(t)) (5.10)

for X(t) in terms of the lift β(t) in M of the curve δ(t) in G\M .
The formula (5.10) simplifies to X(t) = θβ(t)(v(β(t))) if β is a so-called horizontal lift of

δ, i.e. π ◦ β = δ and, for every t ∈ I, β′(t) ∈ Hβ(t) = ker θβ(t). With a proof similar to the
proof of the first statement in [10, Prop. 1.13.4], one can show that, for any m ∈ M , every
smooth curve δ : I → G\M with δ(0) = π(m) has a unique horizontal lift β : I → M such
that β(0) = m. This completes the proof that the above reconstruction procedure always
can be carried out. This also shows that

Corollary 5.4 The domain of definition of the maximal solution of (5.4) which starts at
π(m) is equal to the domain of definition of the maximal solution of (1.1) which starts at m.
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In the G-invariant open subset M ′ of M where v(m) /∈ TmG·m, corresponding to the domain
in G\M where w has no zeros, there exists a connection form θ such that θm(v(m)) = 0
for every m ∈ M ′. Such connection forms can be constructed by piecing together such
connection forms in local trivializations by means of a partition of unity in the base space.
In this case the equation (5.10) simplifies further to X(t) = 0, and the solutions γ of (1.1)
such that π ◦ γ = δ are just the horizontal lifts of δ.

In general the equation β′(t) ∈ Hβ(t) for horizontal lifts is a system of ordinary diffferential
equations with no obvious explicit formulas for the solutions, which means that in general
the above reconstruction procedure is not so explicit as one might wish. However, in a
local trivialization π−1(U) = U × G over some open subset U of G\M , one will take the
H(u, g) := Tu U × {0} as the horizontal spaces. In this case the horizontal lifts of δ are just
the curves t 7→ (δ(t), g) in which g is a constant element of G. The disadvantage of this
procedure is that it will only work for the whole curve δ if δ(t) ∈ U for all t ∈ I.

5.2 Non-free Actions

We now apply the reduction in Lemma 3.3, of non-free actions to free actions, to our dynam-
ical system with symmetry. We begin with the following observation, which holds without
any assumption on the action. Recall that Im is the interval of definition of the maximal
solution of (1.1) which starts at m.

Lemma 5.5 Each path component C of each isotropy type is invariant under the flow of v,
in the sense that if m ∈ C, then et v(m) ∈ C for every t ∈ Im.

Proof We have

g ∈ Gm ⇐⇒ gM(m) = m⇐⇒ gM(et v(m)) = et v(gM(m)) = et v(m) ⇐⇒ g ∈ Get v(m),

where we have used (5.2) in the middle statement. In other words, Gm = Get v(m), which
means that the v-flow leaves each isotropy type invariant. Because t 7→ et v(m) is a continuous
curve in M , it follows that the v-flow actually leaves every path component of every isotropy
type invariant. �

Remark 5.6 For compact G, Lemma 5.5 follows from Field [11, Prop. A2]. �

There is only one isotropy type if and only if there is a closed normal subgroup H of G such
that Gm = H for every m ∈M , in which case one replaces the action of G on M by the free
action of the Lie group G/H on M . For this reason Lemma 5.5 can be viewed as a law of
conservation as a consequence of non-freeness of the action. Such a law of conservation is
stronger if the path component C of the isotropy type is smaller.

Remark 5.7 If m is a path-isolated point of MGm in the sense that C = {m}, then Lemma
(5.5) implies that m is an equilibrium point of the v-flow, i.e. v(m) = 0.

This may be compared with the theorem of Michel [24, Th. 1], which states that for a
smooth action of a compact Lie group G, every smooth G-invariant function is critical at
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the point m, if and only if G ·m is an isolated element of the orbit type G\M[Gm] of G ·m
in the orbit space G\M . (Michel’s theorem actually holds for proper Lie group actions.) �

5.3 Reconstruction for Proper Non-free Actions

It follows from a) in Theorem 3.9 that each isotropy type MH is a smooth embedded sub-
manifold of M , where it is allowed that different connected components C (= the path
components of MH) have different dimensions. Because C is invariant under the v-flow, v is
tangent to C and the restriction to C of the v-flow is equal to the flow of the vector field v|C
in C. Because N(H) is a subgroup of G which preserves v (commutes with the v-flow), the
free and proper action of N(H)/H on MH is a symmetry of the restriction of the dynamical
system to MH . It follows from b) in Theorem 3.9 and Lemma 5.3, that there is a unique
smooth vector field w = π∗(v) in the orbit type G\M[H] in the orbit space G\M , such that
w(π(m)) = (Tm π) v(m) for every m ∈ MH , where π = π|MH

: MH → G\M[H] denotes the
canonical projection in Theorem 3.9, b).

Because et wH = Φt = et wH′ if H ′ is conjugate to H ′, i.e. if [H ′] = [H], the vector field
wH in G\M[H] does not depend on the choice of H ∈ [H], which is why in the sequel we will
delete the subscript H from the vector field w. In other words, we have a smooth vector field
w = π∗(v) in each orbit type in the orbit space, such that, for each m ∈M and each t ∈ Im,
we have that et v(m) belongs to the same orbit type as m and π(et v(m)) = Φt(π(m)) =
et w(π(m)). We will call w = π∗(v) the vector field on G\M[H] induced by v.

The reconstruction of Subsection 5.1 can now be applied to each orbit type, in the
following way. For each p ∈ G\M there exists a unique conjugacy class α of compact Lie
subgroups of G such that p belongs to the orbit type G \Mα in the orbit space G\M . Let
δ : I → G \ Mα be the maximal solution curve of (5.4) in G \ Mα such that δ(0) = p.
Choose H ∈ α, i.e. α = [H]. In view of b) in Theorem 3.9, we can apply the reconstruction
procedure of Subsection 5.1 with M and G replaced by MH and N(H)/H, respectively. This
yields for any m ∈MH the maximal solution γ : I →MH in MH of (1.1) such that γ(0) = m.
Note that δ(I) has a paracompact open neighborhood in G \Mα, over which there exists a
connection form.

Because of Lemma 5.5 we have that I = Im, the interval of definition of the maximal
solution γ of (1.1) in M which starts at m. Because of Corollary 5.4, π ◦ γ is the maximal
solution curve of (1.1) with M and v replaced by G\M[H] and w, respectively. Therefore we
have proved:

Corollary 5.8 Let γ : I → M be a maximal solution of (1.1), 0 ∈ I, and γ(0) = m. Write
H = Gm. Then γ(I) is contained in the isotropy type MH in M and π ◦ γ(I) is contained in
the orbit type G\M[H] in G\M . If γ runs out of every compact subset of M in a finite time,
then π ◦ γ runs out of every compact subset of G\M[H] in the same time.

Remark 5.9 Corollary 6.9 below implies that actually π ◦ γ runs out of every compact
subset of G\M in the same time. Note that this conclusion is trivial if G is compact, because
then the canonical projection π : M → G\M is a proper mapping. �
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For any g ∈ G the maximal solution of (1.1) in M which starts at g · m is given by t 7→
g ·γ(t) : Im →M , cf. (5.2). In view of a) in Lemma 3.7 we obtain in this way all the solutions
of (1.1) in M[H] = π−1(G\M[H]). Because M is equal to the union of the disjoint orbit types
M[H], this leads to the reconstruction of all solutions of (1.1) in M . The reconstructions can
be made as explicit as the reconstruction in Subsection 5.1, with M and G replaced by MH

and N(H)/H, respectively, can be made explicit.

5.4 A Local Model for the Invariant Vector Fields

We keep the assumption that the action is proper, but not necessarily free.

Let m ∈ M . Identifying U with G ×H B as in the tube theorem 3.8, we view v as a G-
invariant vector field in G×HB. Because H = Gm is compact and the adjoint representation
is continuous, AdH is a compact group of linear transformations in g, and averaging an
arbitrary inner product in g over AdH we obtain an AdH-invariant inner product β on g,
i.e. Adh is a β-orthogonal linear transformation in g for every h ∈ H. The Lie algebra
h = gm of H is an AdH-invariant linear subspace of g, and it follows that the β-orthogonal
linear complement q of h is H-invariant.

If X ∈ g, we denote by XL the vector field on G which is invariant under the action of G
on itself by means of multiplications from the left, and which is equal to X at the identity
element. That is, for any g ∈ G, XL(g) is equal to the derivative with respect to t at t = 0
of g et X . If q is any AdH-invariant linear complement of h in g, then we write

q
L(g) :=

{
XL(g) | X ∈ q

}
, g ∈ G.

Then
C(g, b) := q

L(g)× E ⊂ Tg G× E ' T(g, b)(G×B), (g, b) ∈ G×B,

is a linear subspace of T(g, b)(G×B) which is complementary to the tangent space at (g, b) of
the H-orbit through (g, b). In other words, the C(g, b), (g, b) ∈ G×B, form an infinitesimal
connection C for the principal H-bundle G×B. For any h ∈ H, X ∈ g, t ∈ R we have

g et X h−1 = g h−1 h et X h−1 = g h−1 et (Adh) X , (5.11)

where (Adh)X ∈ q if X ∈ q. This shows that the infinitesimal connection C is H-invariant.
It is obviously also G-invariant.

Let C be any H-invariant and G-invariant connection in the G-invariant principal H-
bundle G×B. Write π : G×B → G×H B for the canonical projection. Every G-invariant
vector field v on G ×H B has a unique horizontal lift with respect to C, a vector field vhor

on G×B such that vhor(g, b) ∈ C(g, b) for every (g, b) ∈ G×B and such that π intertwines

vhor with v in the sense that (
T(g, b) π

)
vhor(g, b) = v(π(g, b))

for every (g, b) ∈ G × B. vhor is smooth and G-invariant if v is smooth and G-invariant,
respectively. Actually, the mapping v 7→ vhor defines an isomorphism from the space of all
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smooth G-invariant vector fields on G ×H B onto the space of all smooth horizontal vector
fields in G×B which are both H-invariant and G-invariant.

The fact that vhor is G-invariant means that there are smooth mappings X : B → g and
u : B → E, such that vhor(g, b) = (X(b)L, u(b)) for every (g, b) ∈ G × B. The fact that
vhor is horizontal then is equivalent to the condition that X(b) ∈ q for every b ∈ B. Finally
the condition that vhor is H-invariant is equivalent to the conditions that the mapping
X : B → q is H-equivariant and the vector field u in B is H-invariant. The H-equivariance
of the mapping X : B → q means that X(h · b) = (Adh)(X(b)) for every h ∈ H, b ∈ B,
which makes sense because the linear subspace q of g is AdH-invariant. The equivariance of
X : B → q is based on (5.11). This leads to the following conclusion.

Proposition 5.10 The mapping which assigns to each H-equivariant smooth mapping X :
B → g and each smooth H-invariant vector field u on B the vector field (g, b) 7→ (X(b)L, u(b))
leads to an isomorphism from

C∞(B, q)H ×X∞(B)H (5.12)

onto the space of all smooth G-invariant vector fields on G ×H B, and therefore onto the
space X∞(U)G of all smooth G-invariant vector fields on the G-invariant open neighborhood
U of m in M . Here C∞(B, q)H and X∞(B)H denotes the space of all H-equivariant smooth
mappings from B to q and H-invariant smooth vector fields on B, respectively.

The dynamical system in G×B defined by vhor is determined by the system of ordinary
differential equations

dg

dt
= X(b)L,

db

dt
= u(b). (5.13)

The second equation in (5.13) is the general H-invariant dynamical system in B defined by
a vector field w which does not depend on the first component g.

Substituting a maximal solution b : I → B of db/dt = u(b) in the first equation in
(5.13), we arrive at dg/dt = ξ(t)L, in which ξ(t) := X(b(t)) is a smooth curve in g, which
actually runs inside q. This equation has a unique solution g1 : I → G such that g1(0) = 1,
and then the general solution is given by g(t) = g(0) g1(t). Note that g1(t) is obtained as a
Volterra product integral over the interval from 0 to t of s 7→ ξ(s). Under the G-equivariant
diffeomorphism Φ from G ×H B onto U , the solution curve (g1(t), b(t)) is mapped to the
solution curve t 7→ g1(t) · β(t) of (1.1), in which the curve β(t) := Φ(π(1, b(t))) runs in the
slice through the point m which has been used in the proof of the tube theorem 3.8.

Remark 5.11 For compact Lie groups G acting linearly on Rn, the decompositions (5.13)
and et v(β(0)) = g1(t) · β(t) have been found by Krupa [20, Th. 2.1 and Th. 2.2]. To
these statements we have added the Gm-equivariance of the mapping X : B → q, and the
isomorphism of X∞(U)G with (5.12). �

The projection from G × B onto the second factor leads to an identification of the G-
orbits in U ' G×H B with the H-orbits in B, and therefore to an identification of the open
neighborhood G \ U of G ·m in G\M with the space H\B of the H-orbits in B. This leads
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to an identification of the flow in G\U induced by the v-flow in U with the flow in H\B
induced by the u-flow in B. In this way the study of the flow in the orbit space can locally
be reduced to the case when the symmetry group is a compact group acting by means of
linear transformations in an invariant open neighborhood of the origin in a vector space.

Lemma 5.12 Let M be paracompact. For every stratum S of the orbit type stratification in
G\M as in Proposition 4.13, every subset K of S which is closed in M , and every smooth
vector field w in S, there exists a G-invariant smooth vector field v on M such that w = π∗(v)
on K. Here π∗(v) is the smooth vector field in S as defined in Subsection 5.3.

Proof In the notation of Subsection 4.3, the isotropy type M[H] ∩ V corresponds to G×H

(EH ∩ B), in which EH denotes the set of all fixed points in E of all h ∈ H. EH is a linear
subspace of E. Let π denote the linear projection from E onto EH along the H-invariant
linear complement F of EH in E. Then for any smooth vector field w : EH → EH the vector
field u : w ◦ π : E → EH ⊂ E is an H-invariant vector field u in E, which in turn, with the
choice X(b) ≡ 0, leads to a G-invariant smooth vector field v in U , such that π∗(v) = w on
EH .

It follows that for every s ∈ S there is an open neighborhood Vs of s in G\M and a
smooth G-invariant vector field vs on π−1(Vs), such that π∗(vs) = w on S ∩ Vs. Let V be the
open covering of G\M which consists of the Vs, s ∈ S, together with the complement K c

of K in G\M . Let χj be a partition of unity in C∞(G\M) which is subordinate to V , cf.
Lemma 4.6. For each j we have that either the support suppχj of χj is a compact subset of
some Vs(j), or of K c. In the first case we define vj = (χj ◦ π) vs(j) on π−1(Vs(j)) and vj = 0
in the complement of π−1(suppχj) in M . In the second case we take vj = 0. Then the vj

are smooth G-invariant vector fields on M , their supports form a locally finite collection of
subsets of M , and hence their sum v is a smooth G-invariant vector field on M .

If s ∈ K, then s /∈ K c, hence vj = (χj ◦ π) vs(j) on π−1(s) and therefore (π∗(vj))(s) =
χj(s)w(s) for every j. Summing over j yields that (π∗(v))(s) = w(s). �

For the subsets K in Lemma 5.12 one can take any compact subset of S. Or K = S, if the
stratum S is a closed subset of G\M , a stratum of locally minimal dimension.

6 Smooth Vector Fields in the Orbit Space

We keep the assumption that the action is proper, but not necessarily free.

6.1 Derivations and Vector Fields in a Differential Space

Definition 6.1 If A is an algebra over R, then a derivation of A is a linear mapping D :
A → A such that D(f g) = (Df) g+ f (Dg) for all f, g ∈ A. The set of all derivations of A
will be denoted by Der(A), which is a Lie algebra with the brackets [D, D′] := D◦D′−D′◦D.

�
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Let (Q, C∞(Q)) be a differential space as in Definition 4.2. If Q is a smooth manifold and w
is a smooth vector field on Q, i.e. a smooth section of the tangent bundle TQ of Q, then for
each f ∈ C∞(Q) the partial derivative ∂vf(x) := 〈v(x), df(x)〉 of f in the direction of the
vector field v defines an element ∂vf ∈ C∞(Q). The mapping D := ∂v : C∞(Q) → C∞(Q)
is a derivation of C∞(Q). Moreover, the mapping ∂ : v 7→ ∂v is an isomorphism of Lie
algebras from X∞(Q) onto Der(C∞(Q)). Actually, in many expositions smooth vector fields
are defined as derivations of C∞(Q), after which tangent spaces are introduced and it is
shown that the derivations correspond to smooth sections of the tangent bundle.

Definition 6.2 Let (Q, C∞(Q)) be a differential space, not necessarily equal to a smooth
manifold, and D ∈ Der(C∞(Q)) a derivation. Then an integral curve of D is a smooth
mapping γ : I → Q, in which I is an interval in R, such that

df(γ(t))

dt
= (D(f))(γ(t))

for every f ∈ C∞(Q) and every t ∈ I. In other words, if (f ◦ γ)′ = (Df) ◦ γ for every
f ∈ C∞(Q). Or, still more abstractly, if ′ ◦ γ∗ = γ∗ ◦ D, where ′ denotes the derivation
f 7→ f ′ of C∞(I). �

Proposition 6.3 Let (Q, C∞(Q)) be a locally compact and subcartesian differential space,
and let D ∈ Der(C∞(Q)). Assume that for every q ∈ Q there is an open interval I in R
and an integral curve γ : I → Q of D such that γ(0) = q. Then we have the following
conclusions.

For each q ∈ Q there is a unique integral curve γ = γq : Iq → Q of D, defined on a
maximal open interval Iq arond 0 in R such that γ(0) = q. The set Ω of all (t, q) ∈ R×Q
such that t ∈ Iq is open in R×Q, and the mapping Φ : (t, q) 7→ γq(t) is a smooth mapping
from Ω to Q. For each t ∈ R, the set Qt of all q ∈ Q such that t ∈ Iq is an open subset of
Q, and the mapping Φt : q 7→ γq(t), called the flow of D after time t, is a smooth mapping
from Qt to Q. If s, t ∈ R, q ∈ Qs and Φs(q) ∈ Qt, then q ∈ Qs+t, and Φt(Φs(q)) = Φs+t(q).
It follows that Φt is a diffeomorphism from Qt onto Q−t, with inverse equal to Φ−t.

One has s := sup Iq < ∞, if and only if for each compact subset K of Q there exists an
ε > 0 such that Φt(q) /∈ K for every t ∈ ]s− ε, s[ ∩ Iq. Similarly i := inf Iq > −∞, if and
only if for each compact subset K of Q there exists an ε > 0 such that Φt(q) /∈ K for every
t ∈ ]i, i+ ε[ ∩ Iq.

Proof For a subcartesian differential space (Q, C∞(Q)), the condition that the topological
space Q is locally compact is equivalent to the following condition. For every q ∈ Q we have,
for every (some) diffeomorphism ψ from an open neighborhood V of q in Q onto a subset
ψ(V ) in Rn as in Definition 4.10, that ψ(V ) is a locally closed subset of Rn.

In order to simplify the notation, we identitfy V with a locally closed subset of Rn. On
Rn we use the coordinate functions xi, 1 ≤ i ≤ n. Then, for each i, D(xi) ∈ C∞(V ),
which implies that there exists an open neighborhood Ui of q in Rn and δi ∈ C∞(Ui), such
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that D(xi) = δi|Ui
. If U denotes the intersection of the Ui, 1 ≤ i ≤ n, then U is an open

neighborhood of q in Rn, and δ : U → Rn is a smooth vector field in U such thatD(xi) = δi|U
for every 1 ≤ i ≤ n. By shrinking U further if necessary, we can arrange that V ∩ U is a
closed subset of U .

If γ : I → V ∩ U is an integral curve of D, then

dγi(t)

dt
=

dxi(γ(t))

dt
= (D(xi))(γ(t)) = δi(γ(t)), 1 ≤ i ≤ n,

shows that γ is a solution of (1.1) with v = δ. Therefore the local uniqueness theorem for
solutions of (1.1) with smooth v implies a local uniqueness theorem for the integral curves
of D with prescribed initial values. This implies that for each q ∈ V ∩ U there is a unique
integral curve γ : I → V ∩ U of D, defined on a maximal open interval I arond 0 in R such
that γ(0) = q. Moreoever, if Ĩ denotes the maximal domain of definition of γ̃ : t 7→ et δ(q),

then I ⊂ Ĩ and γ = γ̃|I .
We will now prove that I = Ĩ. Suppose that s := sup I ∈ Ĩ. Write r = γ̃(s) ∈ U . Then

r = lim
t↑s

γ̃(t) = lim
t↑s

γ(t) ∈ V ∩ U,

because γ(t) ∈ V ∩ U for every t ∈ I and V ∩ U is closed in U . The assumption in the
proposition implies that we have an open interval J around 0 in R and an integral curve
β : J → V ∩ U of D such that β(0) = r. According to the previous paragraph,

β(t− s) = e(t−s) δ(r) = e(t−s) δ(es δ(q)) = et δ(q) = γ(t)

for all t ∈ I∩ (s+J). It follows that γ and t 7→ β(t−s) piece together to an integral curve of
D on I ∪ (s+ J), in contradiction with the maximility of the interval I. A similar argument

shows that i := inf I /∈ Ĩ, and the conclusion is that I = Ĩ.
If Ω̃ ⊂ R × U denotes the domain of definition of the flow Φ̃ : Ω̃ → U of δ ∈ X∞(U),

and Φ : Ω → V ∩ U is defined as in the proposition with Q replaced by V ∩ U , then we
have just proved that Ω = Ω̃ ∩ (R × (V ∩ U)) and Φ = Φ̃|Ω. Because Ω̃ is an open subset

of R × U and the mapping Φ̃ : Ω̃ → U is smooth, it follows that Ω is an open subset of
R× (V ∩ U) and the mapping Φ : Ω → V ∩ U is smooth as a mapping between differential
spaces. Because these are local properties, we have proved that the set Ω in the proposition
is an open subset of R×Q and the mapping Φ : Ω → Q is smooth. The other statements in
the proposition now follow in the same way as for the solutions of (1.1) for a smooth vector
field v on a smooth manifold M . �

The integral curves of the derivation D in Proposition 6.3 define a smooth flow Φ in Q in the
same way as the solutions of (1.1) for a smooth vector field v on a smooth manifold define
a smooth flow in M . Note that the definition of the Φt, t ∈ R, implies that

df(Φt(q))

dt

∣∣∣∣
t=0

= (D(f))(q), f ∈ C∞(Q), q ∈ Q,
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or more abstractly, D is equal to the derivative of (Φt)∗ with respect to t at t = 0. This is
the motivation for the following

Definition 6.4 Let (Q, C∞(Q)) be a locally compact and subcartesian differential space,
and let D ∈ Der(C∞(Q)). Then D is called a flow derivation of (Q, C∞(Q)), if for every
q ∈ Q there is an open interval I in R and an integral curve γ : I → Q of D such that
γ(0) = q. The set of all flow derivations of (Q, C∞(Q)) will be denoted by X (Q, C∞(Q)).

�

Definition 6.5 (Pflaum [26, 2.1.5 and Prop. 2.2.6]) Let (Q, C∞(Q)) be a differential space
and S a stratification of Q as in Definition 3.11, with the smooth manifold M replaced by
the differential space Q. A stratified vector field on (Q, S) is a mapping w which assigns to
each S ∈ S a smooth vector field wS ∈ X∞(S) on S.

If f ∈ C∞(Q) and S ∈ S, then f |S ∈ C∞(S), hence ∂wS
(f |S) ∈ C∞(S). The functions

∂wS
(f |S), S ∈ S, piece together to a function ∂wf : Q→ R. The stratified vector field w is

called smooth if ∂wf ∈ C∞(Q) for every f ∈ C∞(Q). The set of all smooth stratified vector
fields on (Q, S) will be denoted by X∞(Q, S). �

Lemma 6.6 Let (Q, C∞(Q), S) be a stratified differential space. Then the mapping ∂ :
w 7→ ∂w is an injective homomorphism of Lie algebras from X∞(Q,S) to Der(C∞(Q)). If
the differential space (Q, C∞(Q)) is locally compact and subcartesian, then

∂(X∞(Q, S)) ⊂ X (Q, C∞(Q)). (6.1)

Proof We prove the injectivity of ∂. Let w ∈ X∞(Q, S), ∂w = 0, S ∈ S, f ∈ C∞(S) and
q ∈ S. Then there exists an open neighborhood U of q in Q and a function g ∈ C∞(Q) such
that f |S∩U = g|S∩U . Because ∂wg = 0, we have ∂wS

(f |S∩U) = 0, and because this holds for
every q ∈ S, we have ∂wS

f = 0. Because this holds for every f ∈ C∞(S) and because we
have for the smooth manifold S that ∂ : X∞(S) → Der(C∞(S)) is an isomorphism, it follows
that wS = 0. Because this holds for every S ∈ S, the conclusion is that w = 0.

Let w ∈ X∞(Q, S) and q ∈ Q. Then there exists an S ∈ S such that q ∈ S. For the
smooth vector field wS on S, we have a smooth solution γ : I → S of (1.1) with v replaced
by wS, where I is an open interval around 0 in R and γ(0) = q. For any f ∈ C∞(Q), we
have that f |S is a smooth function on the smooth manifold S, hence

df(γ(t))

dt
= 〈γ′(t), d(f |S)(γ(t))〉 = 〈wS(γ(t)), d(f |S)(γ(t))〉 (6.2)

= (∂wS
(f |S))(γ(t)) = (∂wf)(γ(t)).

Therefore γ is an integral curve of ∂w such that γ(0) = q. Because this holds for every q ∈ Q,
this shows that ∂w ∈ X (Q, C∞(Q)) according to Definition 6.4. �
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Corollary 6.7 Let (Q, C∞(Q), S) be a stratified differential space, with Q locally compact
and subcartesian. Let w ∈ X∞(Q, S), S ∈ S, and let γ : I → S be a maximal solution curve
in S of (1.1) with v = wS. If γ runs out of every compact subset of S in a finite time, then
γ runs out of every compact subset of Q in the same time.

Proof γ is an integral curve of D := ∂w. Let γ̃ : Ĩ → Q be the maximal integral curve of D
which agrees with γ on I, cf. Proposition 6.3. Suppose that s := sup I ∈ Ĩ. Then γ(t) = γ̃(t)

converges to q̃ := γ̃(s) ∈ Q as t ↑ s, and the maximality of γ implies that q̃ /∈ S. Let S̃ ∈ S
be the stratum which contains q̃, we have S̃ ∩ S = ∅ because S̃ 6= S. Let β : J → S̃ be the
maximal solution of (1.1) with v = weS such that β(s) = q̃. Because β is an integral curve of

D and β(s) = q̃ = γ̃(s), we have that J ⊂ Ĩ and β = γ̃ on J . In combination with γ̃ = γ
on I this yields that β = γ on the non-empty interval I ∩ J . Because for every t ∈ I ∩ J
we have γ(t) ∈ S and β(t) ∈ S̃, this leads to a contradiction with S ∩ S̃ = ∅. It therefore

follows that s = sup Ĩ and the last statement in Proposition 6.3 now implies that γ(t) runs
out of every compact subset of Q as t ↑ s. �

6.2 In the Orbit Space

We now turn to the case that Q is equal to the orbit space G\M for a proper action of a Lie
group G on a smooth manifold M , with the differential structure C∞(G\M) as defined in
Definition 4.1 and Proposition 4.7. In this subsection, S denotes the orbit type stratification
of G\M , as introduced in Proposition 4.13.

Let v ∈ X∞(M)G. In Subsection 5.3 we found, for each orbit type G\M[H] in G\M ,
a smooth vector field w[H] on G\M[H] such that π∗(v[H]) = w[H]. Here v[H] denotes the
restriction of v to the orbit type M[H] in M . The w[H] together define a stratified vector field
w = π∗(v) on (G\M, S).

Lemma 6.8 We have
π∗(X∞(M)G) ⊂ X∞(G\M, S), (6.3)

and the mapping π∗ is a homomorphism of Lie algebras from X∞(M)G to X∞(G\M, S).

Proof Let v ∈ X∞(M)G and f ∈ C∞(G\M). Then π∗(f) ∈ C∞(M)G, and it follows that

π∗(∂π∗(v)f) = ∂v(π
∗(f)) ∈ C∞(M)G.

But this implies that ∂π∗(v)f ∈ C∞(G\M). Because this holds for every f ∈ C∞(G\M), this
proves that the stratified vector field π∗(v) on (G\M, S) is smooth. �

Corollary 6.9 Let v be a smooth G-invariant vector field on M and let γ : I → M be a
maximal solution of (1.1). If γ runs out of every compact subset of M in a finite time, then
π ◦ γ runs out of every compact subset of G\M in the same time.
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Proof It follows from Corollary 5.8 that π ◦ γ runs out of every compact subset of its orbit
type in the same time, where π ◦ γ is a maximal solution of (1.1) with v replaced by π∗v. It
now follows from Corollary 6.7 that π ◦ γ runs out of every compact subset of G\M in the
same time. �

Theorem 6.10 Let G\M be the orbit space for a proper action of a Lie group G on a
smooth manifold M , provided with the differential structure C∞(G\M) of Definition 4.1
and Proposition 4.7, and with the orbit type stratification S of Proposition 4.13. Then the
inclusion in (6.3) is an equality:

π∗(X∞(M)G) = X∞(G\M, S), (6.4)

and the inclusion in (6.1) is an equality:

∂(X∞(G\M, S)) = X (G\M, C∞(G\M)). (6.5)

The flow derivations of C∞(G\M) form a Lie subalgebra of Der(C∞(G\M)) and
∂ : X∞(G\M, S) → X (G\M, C∞(G\M)) is an isomorphism of Lie algebras.

Proof The identity (6.4) is due to Schwarz [30], with a deep proof. There the result is
formulated for compact Lie groups G. The result for general proper actions follows from the
result for the action in any slice of the isotropy subgroup, which is a compact group. When
all orbits have the same dimension, the result had been obtained before by Bierstone [1].

For the proof of (6.5), we begin with the observation that G\M is locally compact,
because M is locally compact and the canonical projection π : M → G\M is a continuous,
open and surjective mapping. Furthermore Corollary 4.11 implies that the differential space
G\M is subcartesian.

Let D ∈ X (G\M, C∞(G\M)) be a flow derivation in G\M . For any given point in
G\M , we use an identification ϕ = p̃ ◦ φ−1 of an open neighborhood of of the point in G\M
with the subset p(B) in Rn as in Lemma 4.9. We also use the Cartesian product structure
Rn = Rl × Rm introduced in Subsection 4.3, such that the orbit types in p(E) are of the
form Rl × R, where R is an orbit type for the action of H in F . We may assume that the
given point in G\M corresponds to the origin in Rl×Rl and that its orbit type corresponds
locally to Rl × {0}.

Let δ = (ẋ, q̇) be the smooth vector field in an open neighborhood of the origin in Rn

which is defined by D as in the proof of Proposition 6.3, and let γ(t) = (x(t), q(t)) be an
integral curve of D, defined on an open interval around 0 in R, such that q(0) = 0. Because
γ(t) ∈ p(E) for all t, it follows from Lemma 4.14 that q′(0) = 0. Because the integral curves
of D are solutions of (1.1) with v = δ, it follows that q̇ = 0 when q = 0, which means that the
smooth vector field δ is tangent to S := Rl × {0}, which in turn implies that the restriction
of δ to S near the origin is equal to a smooth vector field w in S. Therefore the integral
curves of D, which are solutions of (1.1) with v = δ, remain in S when they start in S.
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Let f be any smooth function on an open neighborhood of the origin in Rn. For any
integral curve γ of D in S we have (D(f))(γ(t)) = df(γ(t))/dt = (∂wf)(γ(t)), cf. (6.3),
which implies that D(f)|S = ∂w(f |S). Going back to G\M , we have proved that for every
S ∈ S and every s ∈ S, there is an open neighborhood U of s in G\M and a smooth vector
field wT in T := S ∩ U , such that D(f)|T = ∂wT

(f |T ) for every f ∈ C∞(U). Because these
equations determine the wT = wS∩U uniquely in terms of D, the wS∩U patch together to
a smooth vector field wS on S, and we have D(f)|S = ∂wS

(f |S) for every f ∈ C∞(G\M).
Because this holds for every S ∈ S we obtain w : S 7→ wS ∈ X∞(G\M, S) such that D = ∂w.
�

Theorem 6.10 motivates to call the elements of

i) π∗(X∞(M)G), the stratified vector fields in G\M induced by the G-invariant smooth
vector fields in M , or

ii) X∞(G\M, S), the smooth stratified vector fields in G\M , or

iii) X (G\M, C∞(G\M)), the flow derivations of C∞(G\M),

the smooth vector fields on G\M . Here we used in i) and ii) the orbit type stratification of
Proposition 4.13.

Note that iii) is defined in terms of the differential structure G\M only, whereas for ii)
we also need the orbit type stratification S of G\M , and for i) we need the smooth manifold
M on which the Lie group G acts properly. The Lie algebra of all smooth vector fields on
G\M could be denoted shortly by X∞(G\M).

The following corollary of Lemma 5.12, (6.3) and (6.5) yields a characterization of the
orbit type stratification of G\M in terms of the differential structure C∞(G\M) only.

Corollary 6.11 For each q ∈ G\M , the smallest subset of G\M which contains q and
which is invariant under the flows of all D ∈ X (G\M, C∞(G\M)), is equal to the connected
component of the orbit type in G\M to which q belongs.

Example 6.12 Let M = R and G = {±1}. Then p : x 7→ y := x2 generates C∞(M)G

freely, hence p∗ is an isomorphism from C∞([0, ∞[) onto C∞(M)G, which means that p is
a diffeomorphism from G\M onto Q := [0, ∞[ ⊂ R. The derivations of C∞(Q) are the ∂w,
acting on C∞(Q), for arbitrary smooth vector fields w on R. Clearly ∂w is a flow deriviation
on (Q, C∞(Q)) if and only if et w(0) ∈ Q for all t in an open neighborhood of 0 in R, which
is the case if and only if w(0) = 0. This shows that not every derivation of C∞(G\M) is
a smooth vector field on G\M , actually X (G\M, C∞(G\M)) is a codimension one linear
subspace of Der(C∞(G\M)) in this example.

Similarly, if M = C and G is equal to the unit circle {z ∈ C | |z| = 1} acting on C by
multiplications, then the real polynomial p : z 7→ z z generates C∞(M)G freely and defines
a diffeomorphism from G\M onto the same differential space Q = [0, ∞[ ⊂ R as above. So
again not every derivation of C∞(G\M) is a smooth vector field on G\M . In contrast with
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the previous example, in this example the Lie group G is connected. The embedding of R
into C induces the diffeomorphism between the two orbit spaces. �

Remark 6.13 Let (Q, C∞(Q)) be a differential space and let S be a locally closed subset
of Q be such that (S, C∞(S)) is a smooth manifold, cf. the definitions in the beginning of
Subsection 4.1. We say that the derivation D ∈ Der(C∞(Q)) is tangent to S, if for every
s ∈ S there exists a v ∈ Ts S such that (D(f))(s) = 〈v, d(f |S)(s) for every f ∈ C∞(Q).

Suppose now that we have a proper action of a Lie group G on a smooth manifold M
and G \M is connected. Let S be the orbit type stratification of G\M of Proposition 4.13.
Recall from Remark 4.17 that if S ∈ S, then dimS ≤ dim(G\M), with equality if and only
if S is equal to the principal stratum G\M princ of G\M .

It has been proved by Schwarz [30, Prop. 3.5] that a derivation D ∈ Der(C∞(G\M))
belongs to ∂(X∞(G\M, S)), already if it is tangent to the codimension one strata in the
orbit type stratification S of G\M , i.e. the S ∈ S such that dimS = dim(G\M)− 1. This
implies that all derivations of C∞(G\M) are smooth vector fields on G\M if the orbit type
stratification of G\M has no codimension one strata.

In the notation of the proof of Proposition 6.3, this means that a smooth vector field
δ in U defines s smooth vector field on the local model Q := ψ(V ) ⊂ U of G\M , if and
only if δ is tangent to the principal stratum P in Q and to the codimension one strata in
Q (if they exist). The condition that δ is tangent to P implies that ∂δ leaves the ideal I in
C∞(U) of all functions which vanish on Q invariant, and therefore defines a derivation of
C∞(Q) ' C∞(U)/I. �

Remark 6.14 In this subsection we have introduced smooth vector fields on G\M without
defining a tangent bundle of G\M of which these smooth vector fields are supposed to be
the smooth sections.

Let S be the orbit type stratification of G\M , which in the local models for G\M is
a Whitney stratification, cf. Remark 4.16. Let TS(G\M) denote the disjoint union of the
tangent bundles TS, of the strata S ∈ S, this is called the stratified tangent bundle of
G\M . It can be provided with the structure of a differential space, such the TS, S ∈ S,
form a stratification of TS(G\M) and the projection π : TS(G\M) → G\M is a smooth
mapping of stratified differential spaces, cf. Pflaum [26, Th. 2.1.2]. Furthermore, the space
X∞(G\M, S) of smooth stratified vector fields is equal to the space of smooth sections of
π : TS(G\M) → G\M , that is, smooth mappings w : G\M → TS(G\M), such that π ◦w is
equal to the identity in G\M . This follows from Pflaum [26, Prop. 2.2.6 and Prop. 2.2.8].

�

Remark 6.15 Let (Q, C∞(Q)) be a differential space. For any q ∈ Q,

Mq = {f ∈ C∞(Q) | f(q) = 0}
is a maximal ideal in the algebra C∞(Q). Mimicking definitions from algebraic geometry,
Mq/M2

q is called the Zariski cotangent space of Q at q, and its topological dual

TZ
q Q :=

(
Mq/M2

q

)∗
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is called the Zariski tangent space of Q at the point q.
If S is a smooth submanifold of Q as in Remark 6.13 then for each w ∈ Ts S the mappnig

f 7→ 〈w, d(f |S)(q)〉 defines an injective linear mapping ∂w : Tq S → TZQ, which is used to
identify the “ordinary” tangent space Tq S of S at q with a linear subspace of the Zariski
tangent space of Q at q. In this way the stratified tangent bundle TS Q is contained in the
Zariski tangent bundle TZQ if S is a stratification of Q.

In a similar way the Zariski tangent space is identified with a linear subspace of Tq R, if
Q is contained in a smooth manifold R.

When Q = G\M , and we use the local model of Lemma 4.9, then a lemma of Mather
[23, §3] states that

TZ
0 (p(E)) ' TZ

0 (Rn) ' Rn.

This implies that, at each G ·m ∈ G\M , the dimension of the Zariski tangent space is equal
to the number of elements in a Hilbert basis of the algebra of Gm-invariant polynomials on
E := TmM/Tm(G ·m).

Mimicking the definition of Whitney [36] for complex analytic varietes, the tangent cone of

p(E) at the origin in Rn ' TZ
0 p(E) can be defined as the set of all limits of sequences τj p(ej),

where the τj are positive real numbers and the p(ej) converge to zero. The conic structure
of the tangent cone consists of multiplication of elements of Rn by positive real numbers.
Because in general the quasi-homogeneous mapping p : E → Rn is not homogeneous, this
conic structure is different from the conic structure on p(E) ' H\E which is induced by the
H-invariant conic structure on E defined by multiplication with positive real numbers in E.

�

Remark 6.16 Over each G-orbit O in M , the vector spaces TmM/Tm(G ·m), m ∈ O ⇔
G ·m = O, form a smooth vector bundle NO over O, called the normal bundle of O in M .
On the normal bundle of O we have the induced tangent action of G. The corresponding
orbit space G\NO is called the tangent wedge at O ∈ G\M in Cushman and Śniatycki [6,
Sec. 5].

The injection of the fiber E = TmM/Tm(G ·m) into NO leads to an identification of the
tangent wedge with H\E, in which H = Gm. The discussion in the beginning of Subsection
4.3 showed that H\E ' EH × (H\F ), in which the linear subspace EH of E corresponds
to the tangent space at O of the orbit type in G\M , and F ' E/EH . The tangent wedge
is called a wedge over the cone H\F in [6, Sec. 5], where presumably the conic structure in
H\F is induced by the H-invariant conic structure in F .

It follows from Lemma 4.8 that an open neighborhood of the origin in the tangent wedge
at O is diffeomorphic, as a differential space, to an open neighborhood of O in the orbit space
G\M . In general the tangent wedge does not coincide with the tangent cone in Remark 6.15.

�

Remark 6.17 Several of the statements in this subsection have been proved in Śniatycki
[33], [34] for more general differential spaces than our orbit space of a proper action of a Lie
group on a smooth manifold. �
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7 Relative Equilibria

Recall that Im is the interval of definition of the maximal solution of (1.1) which starts at
m.

Lemma 7.1 Assume that G has countably many connected components and let m ∈ M .
Then the following conditions are equivalent.

i) The vector v(m) is tangent at m to the G-orbit through m, i.e. there exists an X ∈ g

such that
v(m) = XM(m). (7.1)

ii) The solution of (1.1) which starts at m is equal to the action on m of a one-parameter
subgroup of G, i.e. Im = R and there exists an X ∈ g such that

et v(m) =
(
et X
)

M
(m) for every t ∈ R. (7.2)

iii) The solution of (1.1) which starts at m is contained in the G-orbit through m, i.e.
et v(m) ∈ G ·m for every t ∈ Im.

iv) G·m is an equilibrium point of the reduced system in G\M , in the sense that Φt(G·m) =
G ·m for every t ∈ Im.

The element X ∈ g satisfies (7.2) if and only if it satisfies (7.1).

Proof Assume that (7.1) holds. If we substitute g = es X in (5.2) and differentiate the
resulting equation with respect to s at s = 0, then we obtain that

XM

(
et v(m)

)
=
(
Tm et v

)
XM(m) =

(
Tm et v

)
v(m) = v

(
et v(m)

)
,

in which the third identity follows by differentiating (1.2) with respect to s at s = 0. It
follows that

d

dt
et v(m) = v

(
et v(m)

)
= XM

(
et v(m)

)
,

where e0 v(m) = m, which implies that

et v(m) = et XM (m) =
(
et X
)

M
(m)

for every t ∈ Im. Because the right hand side does not run out every compact subset of M in
a finite time, we conclude also that Im = R. This proves ii) with X as in (7.1). Conversely
(7.1) follows from differentiating (7.2) with respect to t at t = 0.

The implication ii) =⇒ iii) is obvious, as well as the equivalence between iii) and iv).
The implication iii) =⇒ i) is obvious if the orbit G · x is an embedded submanifold of

M , i.e. the mapping Am : g Gm 7→ A(g, m) is an embedding from G/Gm into M . In
order to prove iii) =⇒ i), we will use the assumption that G has countably many connected
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components, which is equivalent to the assumption that G is equal to the union of a countable
family of compact subsets Kn of G, cf. [10, Thm. 1.9.1].

Choose a linear complement q of gm = T1Gm in g. Let Q be a smooth submanifold
of G such that 1 ∈ Q and T1Q = q. Similarly, choose a linear complement E in TmM
of Tm(G · m) = {XM(m) | X ∈ g}. Let E be a smooth submanifold of M such that
m ∈ E and Tm E = E. Then the tangent mapping at (1, m) of the smooth mapping
(q, e) 7→ q · e : Q × E → M is a bijective linear mapping from q × E onto TmM , and
it follows from the inverse function theorem that, after shrinking Q and E if necessary,
(q, e) 7→ q · e defines a diffeomorphism from Q×E onto an open neighborhood R of m in M .

Suppose that ej is an infinite sequence in E ∩ (G · m), which converges to an element
e ∈ E ∩ (G ·m), both in the topology of E and in the orbit topogy of G ·m. The latter means
that ej = gj ·m for a sequence gj in G which converges in G to an element g ∈ G, which
implies that e = g ·m.

Because the tangent mapping at 1 of the mapping q 7→ q · e : Q → M is injective, we
have that q ∩ ge = {0}. Because e = g · m implies that ge = (Ad g)(gm), cf. (2.4), and
therefore dim ge = dim gm = dim g − dim q, we obtain that the mapping (q, h) 7→ p h is a
diffeomorphism from an open neighborhood of (1, 1) in Q×Ge onto an open neighborhood
of 1 in G. Because gj g

−1 → 1 in G as j → ∞, we can write, for sufficiently large j,
gj g

−1 = qj hj, in which qj ∈ Q and hj ∈ Ge both converge to 1. It follows that

1 · ej = ej = gj ·m = (gj g
−1) · e = (qj hj) · e = qj · e.

In view of the injectivity of the mapping (q, e) 7→ q · e : Q×E →M , this implies that ej = e
if j is sufficiently large.

Now suppose that E0 is a compact neighborhood of m in E . Let K be a compact subset
of G. If E ∩ (K · m) is infinite, then there is an infinite sequence gj ∈ K such that the
ej := gj ·m are distinct elements of E . Passing to a subsequence if necessary, we may assume
that the gj converge in G to some element g ∈ G. Then the ej converge in M to an element
e, and e ∈ E0 ⊂ E because E0 is compact. This leads to a contradiction with the previous
conclusion that ej = e for sufficiently large j.

It follows that for each n the set E0∩(Kn·m) is finite, which in turn implies that E0∩(G·m)
is countable. On the other hand there is an open interval I ⊂ Im around 0 in R and there
are smooth curves t 7→ q(t) : I → Q and t 7→ e(t) : I → E0, such that et v(m) = q(t) · e(t) for
every t ∈ I. Under the assumption iii) this implies that, for every t ∈ R, e(t) ∈ E0 ∩G ·m.
Because E0∩G ·m is countable, this implies that the continuous function t 7→ e(t) is constant
and therefore e(t) = e(0) = m, hence et v(m) = q(t) ·m for every t ∈ I. Differentiating this
identity with respect to t at t = 0, we obtain (7.1) with X = q′(0) ∈ q ⊂ g. �

Remark 7.2 The element X ∈ g in (7.1) and in (7.2) is uniquely determined if and only if
the linear mapping αm : X 7→ XM(m) : g → TmM is injective, i.e. if and only if the action
is locally free at the point m ∈M . Because kerαm is equal to the Lie algebra gm of Gm, the
action is locally free at m if and only if Gm is a discrete subgroup of G, which is certainly
the case if Gm = {1}, i.e. the action is free at the point m. �
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Definition 7.3 The point m ∈M , and also the solution of (1.1) which starts at m, is called
a relative equilibrium if one (each) of the conditions i) — iv) in Lemma 7.1 is satisfied. �

Many discussions of dynamical systems with symmetry start with descriptions of special
solutions which turn out to be relative equilibria. An early example is Huygens [16, Th.
VIII], in which the relative equilibria are described for the motion of a particle under the
influence of gravity in a bowl which is symmetric with respect to the rotations about a
vertical axis.

Remark 7.4 Every equilibrium point of v is a relative equilibrium, where one can take
X = 0 in (7.1). Conversely, if m is a relative equilibrium, then m is an equilibrium point of
v if and only if the element X in (7.1) belongs to the Lie algebra gm = kerαm of the isotropy
subgroup Gm of the point m. �

Remark 7.5 If the one-parameter subgroup of G generated by the element X in (7.2) is
periodic, i.e. there exists a τ 6= 0 such that eτ X = 1, then it follows from (7.2) that

eτ v(m) =
(
eτ X

)
M

(m) = 1M(m) = m,

which implies that the relative equilibrium is a periodic solution of (1.1), with τ as a period.
In general the set P of periods of the relative equilibrium, the set of all τ ∈ R such that

eτ v(m) = m, is a closed subgroup of R. We have P = R, or P = Z τ for a unique positive
real number τ , or P = {0}, cf. [10, Lemma 1.12.2]. In the first case the solution is constant
and m is an equilibrium point of v as in Remark 7.4. In the second case the solution of
(1.1) which starts at m is a non-constant periodic function and τ is called the period of this
periodic solution. In the third case the solution of (1.1) which starts at m is not periodic.

�

7.1 Quasi-periodic Relative Equilibria

Definition 7.6 A curve γ : R → M is called quasi-periodic with at most k frequencies
in the continuous (smooth, analytic) category, if there is a continuous (smooth, analytic)
mapping Γ : (R/Z)k → M from the standard torus (R/Z)k ' Rk/Zk to M , and there are
constants ν1, ν2, . . . , νk ∈ R, the frequencies, such that γ(t) = Γ (ν1 t+ Z, . . . , νk t+ Z) for
every t ∈ R. �

The phrase “there is a continuous (smooth, analytic) mapping Γ : (R/Z)k → M and
there are constants ν1, ν2, . . . , νk ∈ R” in Definition 7.6 makes the definition of quasi-
-periodicity not very specific. In our applications, both the mapping Γ and the frequencies
will be described explicitly in terms of the solution of (1.1) which starts at m, and the action
of G on the point m. This explicit description will lead to some more specific conclusions
about the solution.

Definition 7.7 A torus group is a compact, connected and commutative Lie group. �
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Let t be the Lie algebra of the abstract torus group T . Then the exponential mapping
X 7→ eX is a surjective homomorphism of Lie groups, from the additive group (t, +) onto
T . Its kernel Λ := ker exp is a discrete additive subgroup of the vector space t. According to
[10, Th.1.12.3], there exist elements λj ∈ Λ, 1 ≤ j ≤ k, which, as elements of t are linearly
independent over R, such that each λ ∈ Λ is of the form

λ =
n∑

j=1

nj λj (7.3)

for suitable integers nj. Because of the linear independence of the λj over R, the integers
nj are uniquely determined, i.e. the mapping which assigns to (n1, . . . , nk) the right hand
side of (7.3) is an isomorphism from Zk onto Λ. In this case one says that the λj, 1 ≤ j ≤ k,
form a Z-basis of the additive group Λ. Because Zk is called the integral lattice in Rn, the
subgroup Λ = ker exp, which is isomorphic to Zk, is called the integral lattice in t.

If l denotes the dimension of t over R, then k ≤ l, and we can extend the λj to an R-basis
λj, 1 ≤ j ≤ l of t. Now the mapping

(θ1, . . . , θk, θk+1, . . . , θl) 7→ exp

(
l∑

j=1

θj λj

)
: Rl → T

induces a bijective homomorphism of Lie groups ψ from
(
Rk/Zk

)
×Rl−k onto T . It follows

from [10, Cor. 1.10.10] that ψ−1 is continuous, hence
(
Rk/Zk

)
×Rl−k is compact, which in

turn implies that k = l and ψ is an isomorphism from the standard torus Rk/Zk ' (R/Z)k

onto T .
Note that we have also proved that every Z-basis of Λ is an R-basis of t. It follows that

a sequence of vectors λ′i, 1 ≤ i ≤ k′, is a Z-basis of Λ if and only if k′ = dim t = k, and

λ′i =
∑
j=1

Aji λj, 1 ≤ i ≤ k,

in which the coefficients of the k × k-matrix Aji are integers, the matrix A is invertible and
A−1 also has integral coefficients. In other words, A ∈ GL(k, Z), the group of invertible
matrices A with integral coefficients and detA = ±1.

Therefore the isomorphism ψ from the standard torus Rk/Zk ' (R/Z)k onto the abstract
torus T is by no means unique: the freedom is precisely the choice of the Z-bases of Λ (or
of Zk), which is parametrized by the discrete group GL(k, Z). If k > 1, then this group is
infinite and noncommutative.

Lemma 7.8 Let G be a Lie group with Lie algebra g and let X ∈ g. Then either t 7→ et X is a
dense one-parameter subgroup of a torus subgroup T of G, or the mapping t 7→ et X : R → G
is proper.

Proof Let A denote the closure in G of the set E of all et X such that t ∈ R. Because E is
a commutative and connected subsgroup of G, A is a commutative and connected subgroup
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of G. Because A is a closed subgroup of G, it is a Lie subgroup of G, cf. [10, Cor. 1.10.7].
Because A is a connected and commutative Lie group, there are k, l ∈ Z≥0 such that A is
isomorphic, as a Lie group, to (R/Z)k ×Rl, cf. [10, Cor. 1.12.4].

Because et X ∈ A for every t ∈ R, a differentiation with respect to t at t = 0 shows that
X belongs to the Lie algebra of A. If (Y, Z) ∈ Rk ×Rl denotes the corresponding element
of the Lie algebra of (R/Z)k × Rl, then et X corresponds to the element (t Y + Zk, t Z) of
(R/Z)k ×Rl. The density of E in A implies that the set L of all (t Y + Zk, t Z) such that
t ∈ R is dense in (R/Z)k ×Rl.

If Z 6= 0, then the mapping t 7→ (t Y + Zk, t Z) : R → (R/Z)k ×Rl is proper, because
already its projection t 7→ t Z : R → Rl to the second component is proper. Hence the
mapping t 7→ et X : R → A is proper, and because A is a closed subset of G, it follows that
the mapping t 7→ et X : R → G is proper.

If Z = 0, then L is contained in the torus subgroup (R/Z)k × {0} of (R/Z)k ×Rl. The
density of L implies that l = 0 and therefore A is a torus subgroup of G. �

Definition 7.9 Let G be a Lie group with Lie algebra g and let X ∈ g. Then X is called
an elliptic element of g if t 7→ et X is a dense one-parameter subgroup of a torus subgroup of
G. According to Lemma 7.8, this condition is equivalent to the condition that there exists a
compact subset K of G and an unbounded sequence of real numbers ti, such that eti X ∈ K
for every i. �

Lemma 7.10 Let X be an elliptic element in the Lie algebra g of a Lie group G. Then we
have the following conclusions.

i) The closure T in G of the set S of all et X such that t ∈ R is a torus subgroup of G.
We have X ∈ t := the Lie algebra of T .

ii) For every Z-basis λj, 1 ≤ j ≤ k, of the integral lattice of t, the mapping

(θ1, . . . , θk) 7→ exp

(
k∑

j=1

θj λj

)
: Rk → T (7.4)

induces an isomorphism of Lie groups ψ from the standard torus Rk/Zk ' (R/Z)k

onto T .

iii) (Kronecker [19]) If ν ∈ Rk, then the set L of all t ν + Zk such that t ∈ R is dense in
the standard torus Rk/Zk ' (R/Z)k, if and only if the coordinates νj, 1 ≤ j ≤ k are
linearly independent over Q.

iv) If the Xj ∈ R are the coefficients of X with respect to the R-basis λj, 1 ≤ j ≤ k,
of t, then the real numbers Xj are linearly independent over Q, and the set L of all
(X1 t, . . . , Xk t) + Zk, where t ranges over all real numbers, is dense in the standard
torus Rk/Zk.
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Proof i) is just the definition of the ellipticity of X.
ii) follows from the discussion preceding Definition 7.9.
Suppose that there is a linear relation

k∑
j=1

qj νj = 0 (7.5)

with qj ∈ Q and not all qj equal to zero. If we multiply the relation with the smallest
common multiple of the denominators of the qj, we arrive at (7.5) with qj ∈ Z, and not all
qj = 0. The non-zero linear mapping

Q : θ 7→
k∑

j=1

qj θj : Rk → R

maps Zk to Z and therefore induces a surjective homomorphism of Lie groups from Rk/Zk

onto R/Z, which we also denote by Q. We have that L ⊂ kerQ, where kerQ is a closed Lie
subgroup of dimension k − 1 in Rk/Zk, and therefore L is not dense in Rk/Zk.

If conversely L is not dense in Rk/Zk, then i) implies that the closure of L in Rk/Zk is a
subtorus S of Rk/Zk of dimension l < k. It follows that (Rk/Zk)/S is a torus of dimension
k − l > 0. Using an isomorphism of Lie groups from (Rk/Zk)/S onto (R/Z)k−l followed by
the projection onto the first factor, we obtain a surjective homomorphism of Lie groups from
(Rk/Zk)/S onto R/Z, which after precomposing it with the projection Rk/Zk → (Rk/Zk)/S
yields a surjective homomorphism of Lie groups Q : Rk/Zk → R/Z such that S ⊂ kerQ.
The tangent mapping of Q, which we also denote by Q, is a linear mapping from Rk onto R,
which maps Zk into Z, which means that the coefficients qj of Q are integers, not all equal
to zero. Because ν ∈ s ⊂ kerQ, we have a linear relation of the form (7.5), with qj ∈ Z and
not all qj equal to zero. This completes the proof of iii).

iv) follows from iii) and the fact that L = ψ−1(S), S is dense in T and ψ−1 is continuous.
�

After these preparations, we are ready for the following proposition about quasi-periodic
relative equilibria.

Proposition 7.11 Assume that m is a relative equilibrium and suppose that the element X
in (7.1), (7.2) is an elliptic element of g. Then the solution of (1.1) which starts at m is
quasi-periodic.

More precisely, the closure of the one-parameter subgroup of G generated by X is a torus
subgroup T of G. If λj, 1 ≤ j ≤ k = dimT , is a Z-basis of the integral lattice Λ = ker exp
of the Lie algebra t of T , then the mapping Γ in Definition 7.6 can be defined by

Γ : (θ1, . . . , θk) → exp

(
k∑

j=1

θj λj

)
·m,
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and the frequencies νj, 1 ≤ j ≤ k, as the coordinates of X with respect to the R-basis λj,
1 ≤ j ≤ k of t. These frequencies are linearly independent over Q.

The closure of v-orbit through m is equal to Γ(Rk/Zk). The pre-image Γ−1({m}) of
m is a closed sugroup of Rk/Zk and Γ induces a smooth embedding Γ0 of the torus T0 :=
(Rk/Zk)/Γ−1({m}) into M , with image equal to the closure of v-orbit through m, making
the latter diffeomorphic to T0. The minimal number of frquencies is equal to the dimension
of T0 = the dimension of the closure of the v-orbit through m.

If the action of G is free at m, then T0 = Rk/Zk, Γ0 = Γ, and the minimal number of
frequencies of the quasi-periodic solution is equal to k.

Proof It only remains to prove the statements about the closure of the v-orbit through m
and the minimal number of frequencies, as the other statements follow from Lemma 7.10 or
are obvious.

It follows from iv) in Lemma 7.10 that the set of all t ν + Zk, t ∈ R is dense in Rk/Zk,
and because

et v(m) = et X ·m = Γ(t ν + Zk),

cf. (7.2), it follows that the v-orbit through m is dense in Γ(Rk/Zk). Because Γ(Rk/Zk) is
a compact and therefore closed subset of M , it follows that Γ(Rk/Zk) is equal to the closure
of the v-orbit through m.

Γ−1({m}) is equal to the pre-image of the closed subgroup T ∩Gm of T under the isomor-
phism of Lie groups (7.4) from Rk/Zk onto T . This isomorphism induces an isomorphism
of Lie groups from T0 onto T/(T ∩ Gm). Because T/(T ∩ Gm) is a compact, connected
and commutative Lie group, it is a torus group. Γ0 is equal to the isomorphism from T0 to
T/(T ∩ Gm), followed by the injective immersion from T/(T ∩ Gm) into M defined by the
action g 7→ g · m. Because T0 is compact, it follows that the injective immersion from T0

into M is a smooth embedding.
Let l be the minimal number of frequencies, attained with a smooth mapping ∆ from

Rl/Zl to M , ω ∈ Rl and et v(m) = ∆(t ω + Zl), t ∈ R. Applying Lemma 7.10 to the closure
of the set of all t ω + Zl, t ∈ R, in Rl/Zl, we see that the minimality of l implies that the
set of all t ω + Zl, t ∈ R, is dense in Rl/Zl. With the same argument as for Γ, we obtain
that ∆(Rl/Zl) is equal to the closure of the v-orbit through m, hence ∆(Rl/Zl) = Γ0(T0).
According to Sard’s theorem, cf. [28], the set of regular values of the smooth mapping
∆ : Rl/Zl → Γ(T0) has full measure, which implies that there exists a point where the
tangent mapping is surjective, which in turn implies that l ≥ dimT0. This completes the
proof that dimT0 is equal to the minimal number of frequencies. �

Remark 7.12 If the identity component G◦ of G is compact, then every relative equilibrium
is quasi-periodic. If M is compact and the mapping g 7→ g · m : G → M is proper, then
G is compact. If the G-action is proper, then the mapping g 7→ g ·m : G → M is proper.
Therefore every relative equilibrium is quasi-periodic if M is compact and the G-action is
proper. �
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Remark 7.13 WhenG is compact, then Proposition 7.11 follows from applying Proposition
B1 of Field [11] to the G-orbit G ·m ' G/Gm through the point m. �

7.2 Runaway Relative Equilibria

Let I be an open interval in R and γ : I → M a continuous curve in M . The mapping
γ : I →M is proper, if and only if for every compact subset K of M the pre-image γ−1(K)
is a compact subset of I. Because the continuity of γ implies that the pre-image of every
closed subset is closed, and because the compact subsets of I are the closed subsets of I
which are contained in a subset of the form [a, b] for some a, b ∈ I, we see that γ is proper if
and only if for every compact subset K there exist a, b ∈ I such that γ(t) ∈ K =⇒ t ∈ [a, b],
or equivalently t ∈ I \ [a, b] =⇒ γ(t) /∈ K. That is, γ(t) runs out of every compact subset of
M if t runs runs to either end of I.

Definition 7.14 A runaway curve in M is a continuous curve γ : I → M such that I is
an open interval in R and the mapping γ : I →M is proper. �

Proposition 7.15 Let m be a relative equilibrium and X as in (7.1), (7.2). Assume that
the mapping g 7→ g ·m : G→M is proper, which is certainly the case if the G-action on M
is proper. Then the following conditions are equivalent.

i) The element X of g is not elliptic.

ii) The solution of (1.1) starting at m is a runaway curve in M .

iii) The solution of (1.1) starting at m is not quasi-periodic.

Proof Suppose that i) holds. Then it follows from Lemma 7.8 that the mapping t 7→ et X :
R → G is proper. Because the mapping g 7→ g ·m : G → M is proper by assumption, and
the composition of two proper mappings is proper, the mapping

t 7→ et X ·m = et v(m) : R →M

is proper. Here we have used the identity (7.2). This concludes the proof of i) =⇒ ii).
If the solution of (1.1) starting at m is quasi-periodic, then its image is contained in

Γ(Rk/Zk), which is compact, because the standard torus Rk/Zk is compact and the mapping
Γ is continuous. This is in contradiction with ii) and we have proved ii) =⇒ iii).

The implication iii) =⇒ i) follows from Proposition 7.11. �

Remark 7.16 Without any additional assumption on the action, like the assumption of
properness of the mapping g 7→ g ·m : G → M , not much in the spirit of Proposition 7.15
can be concluded.
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For instance, if the vector field v is complete, then (t, m) 7→ et v(m) : R × M → M
defines an action of the Lie group G = (R, +) on M , and it follows from the commutativity
of (R, +) that (7.2) holds. Clearly every solution of (1.1) is a relative equilibrium, but it is
certainly not true that for every dynamical system every solution is either quasi-periodic or
running out of every compact subset. �

Example 7.17 Let G = R×C, with the multiplication

(ξ, ζ) (ξ′, ζ ′) =
(
ξ + ξ′, ei ξ ζ ′ + ζ

)
.

G can be identified with the universal covering of the group E(2) of motions in the plane,
cf. Example 9.5. The only elliptic element in the Lie algebra of G is the zero element.

Let M = R×R×C, on which we have the proper and free G-action defined by

((ξ, ζ) , (a, x, z)) 7→
(
a, ξ + x, ei ξ z + ζ

)
.

TheG-orbit spaceG\M can be identified with R and the canonical projection π : M → G\M
can be identified with the projection (a, x, z) 7→ a.

On M we take the vector field v defined by

v(a, x, z) =
(
0, a, eix

)
, a ∈ R, x ∈ R, z ∈ C.

It is readily verified that v is G-invariant, i.e. it satisfies (5.1). The solutions of (1.1) are
given by

a(t) = a(0),

x(t) = x(0) + t a(0),

z(t) =

{
z(0) + eix(0)

(
ei t a(0)−1

)
/ i a(0) when a(0) 6= 0,

z(0) + t eix(0) when a(0) = 0.

All solutions are relative equilibria, and for each m ∈ M the mapping t 7→ et v(m) is
proper. Nevertheless the action of R on M defined by the v-flow is not proper. Indeed, if
a(0) 6= 0, and t = 2π/a(0), then a(t) = a(0), x(t) = x(0) + 2π and z(t) = z(0). If we now
let a(0) converge to 0 and keep x(0) and z(0) bounded, which implies that (a(0), x(0), z(0))
remains in a compact subset of M , then also (a(t), x(t), z(t)) remains in a compact subset
of M , whereas t does not remain in any compact subset of R. �

7.3 When the Action is Not Free

Remark 7.5 and Proposition 7.11 are not quite optimal if the action is not free at m. In
order to obtain stronger statements, we begin with the following observation.
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Lemma 7.18 If m ∈M , t ∈ Im, g ∈ G, and et v(m) = g ·m, then g ∈ N(Gm).

Proof Write H = Gm, i.e. m ∈ MH . Lemma 5.5 implies that g ·m = et v(m) ∈ MH . It
now follows from iii) =⇒ (i) in Lemma 3.3 that g ∈ N(H). �

Write H = Gm and h = gm. It follows from (7.2) and Lemma 7.18 with g = et X that
et X ∈ N(H) for every t ∈ R, and therefore X + h belongs to the Lie algebra of the Lie

group N(H)/H. Because the Lie group N(H)/H acts freely on the isotropy type MH of m,
cf. Lemma 3.3, the following proposition is obtained from Proposition 7.11, by replacing the
Lie group G by the Lie group N(H)/H.

Proposition 7.19 Assume that m is a relative equilibrium, with X as in (7.1), (7.2). Write
H = Gm and h = gm. Assume that X + h is an elliptic element of the Lie algebra of the Lie
group N(H)/H, which implies that the closure of the one-parameter subgroup of N(H)/H
generated by X+h is a torus subgroup T of N(H)/H. Then the solution of (1.1) which starts
at m is quasi-periodic.

More precisely, the same conclusions hold as in Proposition 7.11, with G and X replaced
by N(H)/H and X + h, respectively. Moreover, Γ is a smooth embedding of Rk/Zk into M ,
the closure of the v-orbit through m is equal to Γ(Rk/Zk), which is a smooth submanifold
of M , diffeomorphic to a k-dimensional torus, and k is equal to the minimal number of
frequencies of the quasi-periodic solution.

The solution of (1.1) starting at m is an equilibrium or a periodic solution if and only if
dimT = 0 or dimT = 1, respectively.

Remark 7.20 X is an elliptic element of g ⇐⇒ the set of all et X , t ∈ R, is contained in
a compact subset of G, hence of the closed subgroup N(H) of H =⇒ the set of all et (X+h),
t ∈ R, is contained in a compact subset of N(H)/H ⇐⇒ X + h is an elliptic element of the
Lie algebra of N(H)/H. Here the middle implication follows from the observation that the
mapping g 7→ g H : N(H) → N(H)/H is continuous.

If the mapping g 7→ g ·m : G→M is proper, which is certainly the case if the G-action
is proper, then H = Gm is a compact subgroup of G and then the middle implication is an
equivalence, i.e. X + h is an elliptic element of the Lie algebra of N(H)/H if and only if X
is an elliptic element of g. However, if H is not compact, then the condition that X + h is
an elliptic element of the Lie algebra of N(H)/H is weaker than the condition that X is an
elliptic element of g, which makes Proposition 7.19 more general than Proposition 7.11.

In the case of non-free actions, Proposition 7.19 is somewhat simpler than Proposition
7.11, because the torus subgroup is defined in the group N(H)/H which acts freely on m. �

Remark 7.21 If the identity component of N(H)/H is compact, then every relative
equilibrium in the orbit type M[H] is quasi-periodic. �

Remark 7.22 When G is compact, Proposition 7.19 follows from applying Proposition
B1 of Field [11] to the G-orbit G ·m ' G/Gm through the point m. �
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7.4 Other Relative Equilibria in the G-orbit

If m is a relative equilibrium, X is as in (7.1), (7.2), and g ∈ G, then it follows from (5.2)
that

et v(g ·m) = g · et v(m) = g · et X ·m =
(
g et X g−1

)
· g ·m = et (Ad g)(X) ·(g ·m). (7.6)

Here we have used the notation Ad g for the adjoint transformation or the infinitesimal
conjugation in the Lie algebra g, which is defined by the element g of the Lie group, cf. [10,
1.1.9 and Th. 1.5.2,(b)].

This shows that g ·m is also a relative equilibrium, and that (7.2) holds with m and X
replaced by g ·m and (Ad g)(X), respectively,

The solution of (1.1) starting at g ·m is constant, periodic, quasi-periodic and runaway if
and only if the solution of (1.1) starting at m has these properties. Moreover, these solutions
define a smooth fibration of the orbit G ·m through m.

For instance, if we are in the situation of Proposition 7.11 and the action is free at m,
then the mapping (2.5) induces a diffeomorphism Am from G onto G · m, where in G · m
we use the orbit topology. The action (h, g) 7→ g h : T × G → G of T on G by means of
right multiplications is proper and free, making G into a principal T -bundle over G/T . This
fibration is invariant under the action of G on itself defined by multiplications from the left.
On G we also have the vector field XL which is invariant under multiplications from the left
by elements of G and which is equal to X at the identity element. The flow of XL is given
by (t, g) 7→ g et X , cf. [10, Lemma 1.3.1], and the closures of its orbits are the fibers of the
T -bundle which we just have introduced. The diffeomorphism Am intertwines XL with v,
and Am maps the fibers of the principal T -bundle onto the closures of the v-orbits in G ·m.

If the action is not free, we write H = Gm and first apply the above to the N(H)-orbit
through m, which according to Lemma 3.3 is equal to the intersection of G · m with the
isotropy type MH of m. If T is as in Proposition 7.19, then we obtain that the closures of
the v-orbits through the points of N(H) ·m define a smooth N(H)/H-invariant principal T -
fibration of N(H)·m, with base space diffeomorphic to the homogeneous space (N(H)/H)/T .

If g, g′ ∈ G and h, h′ ∈ N(H)/H, then g · h ·m = g′ · h′ ·m if and only if there exists
a k ∈ N(H) such that h′ = (k H)h and g′ = g k−1. In other words, if we let k ∈ N(H) act
on G× (N(H)/H) by sending (g, h) to (g k−1, (k H)h), then the mapping (g, h) 7→ g · h ·m
induces a diffeomorphism Φ from G×N(H) (N(H)/H) onto G ·m.

The action of N(H) on G× (N(H)/H) commutes with the G-action and the T -action on
G× (N(H)/H) defined by multiplication from the left on the first factor and multiplication
from the right on the second factor, respectively. In order to conclude that the T -action on
G × (N(H)/H) induces a proper, free and G-invariant T -action on G ×N(H) (N(H)/H), we
formulate the following lemma.

Lemma 7.23 Let G be a Lie group with closed Lie subgroup H, and let K be another Lie
group. Let V be a smooth manifold on which we have commuting smooth actions of H and
K. Let h ∈ H act on G × V by sending (g, v) to (g h−1, h · v), as usual we denote the
corresponding H-orbit space by G×H V .
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Then the canonical projection from G × V onto the orbit space G ×H V intertwines the
G-action on G× V by left multiplications on the first factor and the K-action on G× V on
the second factor with a uniquely defined smooth G-action and K-action on G×H V .

The K-action on G×H V commutes with the G-action on G×H V , and the K-action on
G×H V is proper and free if the K-action on V is proper and free, respectively.

Proof For h ∈ H, k ∈ K, (g, v) ∈ G× V , we have

h ·k(g, v) = h · (g, k · v) = (g h−1, h ·k · v) = (g h−1, k ·h · v) = k · (g h−1, h · v) = k ·h · (g, v).

This shows that the H-action on G×V commutes with the K-action on G×V , and therefore
the canonical projection from G× V onto G×H V intertwines the K-action on G× V with
a uniquely defined smooth K-action on G×H V .

Now suppose that the K-action on V is free. If k ∈ K, (g, v) ∈ G× V and there exists
h ∈ H such that k · (g, v) = (g h−1, h · v), then h = 1 and k · v = v, which in turn implies
that k = 1. This shows that the K-axtion on G×H V is free.

Now assume that the K-action on V is proper. Let [gj, vj] be an infinite sequence in
G×H V which converges to [g, v], this sequence can be represented by a sequence (gj, vj) in
G × V which converges to (g, v). Suppose that kj is a sequence in K such that kj · [gj, vj]
converges to [g′, v′]. This means that there exists a sequence hj ∈ H such that kj ·hj ·(gj, vj)
converges to (g′, v′), i.e. gj h

−1
j → g′ and kj · hj · vj → v′. Because gj → g it follows from

gj h
−1
j → g′ that hj → h := (g′)−1 g, where h ∈ H because H is a closed subset of G. The

continuity of the H-action on V then implies that hj · v → h · v in V , and it now follows
from kj · hj · vj → v′ and the properness of the K-action on V that a subsequence of the kj

converges to some element of K. This proves that the K-action on G×H V is proper.
Finally the K-action on G×V obviously commutes with the G-action on G×V defined by

left multiplications on the first factor, which implies that the K-action on G×H V commutes
with the G-action on G×H V . �

We apply Lemma 7.23 with V , H and K replaced by N(H)/H, N(H) and T , respectively.
It follows that the canonical projection from G × (N(H)/H) onto its N(H)-orbit space
G ×N(H) (N(H)/H) intertwines the G-action and the T -action on G × (N(H)/H) with a
uniquely defined Gaction and T -action on G ×N(H) (N(H)/H). Moreover, the T -action is
proper and free, and commutes with the G-action.

The mapping Φ intertwines the G-action on G ×N(Gm) (N(Gm)/Gm) with the G-action
on G ·m, and Φ intertwines the T -action on G×N(Gm) (N(Gm)/Gm), with a proper and free
action of T on G ·m, of which the orbits are the closures of the v-orbits in G ·m. In this
way we arrive at the following conclusion.

Proposition 7.24 Under the assumptions of Proposition 7.19, the closures of the v-orbits
in G ·m define a smooth G-invariant principal T -fibration of G ·m. The vector field v on
G ·m is equal to the infinitesimal T -action on G ·m of the element X+ gm in the Lie algebra
t of T .

Similar observations can be made in the other cases that the relative equilibrium is an
equilibrium, a periodic solution, or a runaway solution.
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8 Relative Periodic Solutions

Recall that Im is the interval of definition of the maximal solution of (1.1) which starts at
m.

Lemma 8.1 Let τ ∈ Im, τ 6= 0. Then the following conditions are equivalent.

i) There exists an element s ∈ G such that

eτ v(m) = s ·m. (8.1)

ii) Im = R and there exists an element s ∈ G such that

et v(m) = sp · e(t−p τ) v(m) = e(t−p τ) v(sp ·m), t ∈ [p τ, (p+ 1) τ ] (8.2)

for every p ∈ Z. Here we have assumed that τ > 0. If τ < 0 then we have the same
statement with τ and s replaced by −τ and s−1, respectively.

iii) G ·m is a periodic point of period τ of the induced flow in G\M , i.e. Φτ (G ·m) = G ·m.

The element s in ii) can be chosen as the one in i), and is unique up to muliplication to the
right by an element of Gm.

Proof We only need to prove i) =⇒ ii).
Assume that i) holds and that τ > 0. Note that t ∈ [p τ, (p + 1) τ ] if and only if

t − p τ ∈ [0, τ ]. Therefore the right hand side of (8.2) defines is a solution γ of (1.1) on
[p τ, (p + 1) τ ], with γ(p τ) = sp ·m and γ((p + 1) τ) = sp · eτ v(m) = sp · s ·m = sp+1 ·m.
These curves, when p ranges over Z, piece together to a solution of (1.1) on R such that
γ(0) = m. This proves ii). Note that (8.1) implies that m = s−1 · eτ v(m) = eτ v(s−1 · m),
hence e−τ v(m) = s−1 ·m. Therefore, if τ < 0, we have (8.2) with τ and s replaced by −τ
and s−1, respectively. �

Definition 8.2 The solution of (1.1) starting at m is called a relative periodic solution with
relative period τ , if one (each) of the conditions i) – iii) in Lemma 8.1 holds. The element
s ∈ G is called the corresponding shift element in the symmetry group G. The element
m ∈M is called a relative periodic point and τ a relative period. �

8.1 Quasi-periodic Relative Periodic Solutions

Let G be a Lie group and s ∈ G. Let 〈s〉 denote the set of all integral powers sp, p ∈ Z,
which is the smallest subgroup of G which contains s. The closure S of 〈s〉 in G is the
smallest closed subgroup of G which contains s, and is called the closed subgroup of G which
is generated by s.
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Lemma 8.3 Then either the mapping p 7→ sp : Z → G is proper, or the closed subgroup S
of G which is generated by s is a compact subgroup of G.

In the first case, S = 〈s〉 ' Z. In the second case, we have:

i) If T := S◦ denotes the identity component of S, then T is a torus subgroup of G.

ii) There is a unique smallest positive integer p0 such that sp0 ∈ T , and the mapping
ϕ : p 7→ sp T induces an isomorphism from Z/p0 Z onto S/T . The dimension of T
(which is equal to the dimension of S) is equal to zero, if and only if sp0 = 1, in which
case S = 〈s〉 ' Z/p0 Z.

iii) If t denotes the Lie algebra of T , then sp0 = eX for an element X ∈ g which is uniquely
determined module the integral lattice Λ = ker exp in t. If λj, 1 ≤ j ≤ k denotes

a Z-basis of Λ, and X =
∑k

j=1 Xj λj, then the real numbers X1, . . . , Xk and 1 are
linearly independent over Q.

Proof The closure S in G of the commutative subgroup 〈s〉 of G is a commutative subgroup
of G. As a closed subgroup of the Lie group G, S is a Lie subgroup of G, cf. [10, Cor. 1.10.7].

Let T = S◦ denote the identity component of S, which is an open and closed subgroup
of S, cf. [10, Th. 1.9.1], and therefore is a connected and commutative Lie subgroup of G.
T is closed in G because S is closed in G.

Suppose that the homomorphism ϕ : p 7→ sp T : Z → S/T is injective, and that we
have an unbounded sequence of integers pi such that the spi converge to some element g of
G. Because S is closed in G, we have g ∈ S and spi → g in S. Because g T is an open
neighborhood of g in S, we have spi ∈ g T for all sufficiently large i, which implies that
ϕ(pi) = ϕ(pj) for all sufficiently large i, j, in contradiction with the injectivity of ϕ. This
shows that the mapping p 7→ sp : Z → G is proper if ϕ is injective.

If ϕ is not injective, then there is a unique positive integer p0 such that kerϕ = p0 Z,
which means that there is a unique smallest positive integer p0 such that t := sp0 ∈ T .
Because 〈s〉 is dense in S, each connected component of S contains an sp for some p ∈ Z.
Therefore the homomorphism ϕ : Z → S/T is surjective, and induces an isomorphism from
Z/p0 Z onto S/T .

We have sp ∈ T if and only if p ∈ p0 Z. Because 〈s〉 is dense in S, 〈t〉 is dense in T .
Because T is a connected and commutative Lie group, there exist k, l ∈ Z≥0, such that T is
isomorphic to (R/Z)k× Rl, cf. [10, Cor. 1.12.4]. If (a+Zk, b) ∈ (Rk/Zk)×Rl corresponds
to the element t ∈ T , then for each integer q the element (q a+ Zk, q b) corresponds to tq. If
b 6= 0, then the density of 〈t〉 in T leads to a contradiction. Therefore b = 0, and the density
of 〈t〉 in T implies that l = 0, which proves that T is a torus subgroup of G.

Because the exponential mapping from t to T is a surjective homomorphism, there exists
an X ∈ t, uniquely determined modulo adding an element of Λ, such that t = sp0 = eX . In
view of the isomorphism from t/Λ onto T induced by the exponential mapping exp : t → T ,
it follows that the q X +Λ, q ∈ Z, are dense in t/Λ. In view of the isomorphism from Rk/Zk
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onto t/Λ induced by the mapping θ 7→
∑k

j=1 θj λj, this leads to the linear independence of
X1, . . . , Xk, 1 over Q, cf. [10, p. 61]. �

Definition 8.4 Let G be a Lie group and s ∈ G. Then s is called an elliptic element of G
if the closed subgroup of G which is generated by s is a compact subgroup of G. In view of
Lemma 8.3, this condition is equivalent to the condition that there exists a compact subset
K of G and an unbounded sequence of integers pi, such that spi ∈ K for every i. �

Proposition 8.5 Assume that the solution of (1.1) which starts at m is a relative periodic
solution, and suppose that the shift element s in (8.1), (8.2) is an elliptic element of G. Then
the solution of (1.1) which starts at m is quasi-periodic.

More precisely, in the notation of Lemma 8.3, the mapping Γ in Definition 7.6, with k
replaced by k + 1, can be defined by

Γ : (θ1, . . . , θk, θk+1) → exp

(
k∑

j=1

θj λj − θk+1X

)
· eθk+1 p0 τ v(m), (8.3)

with frequencies νj = Xj/p0 τ , 1 ≤ j ≤ k, and νk+1 = 1/p0 τ .
The closure of v-orbit through m is equal to Γ(Rk+1/Zk+1). The pre-image Γ−1({m})

of m is a closed sugroup of Rk+1/Zk+1 and Γ induces a smooth embedding of the torus
T0 := (Rk+1/Zk+1)/Γ−1({m}) into M , with image equal to the closure of v-orbit through m,
making the latter diffeomorphic to T0. The minimal number of frequencies is equal to the
dimension of T0 = the dimension of the closure of the v-orbit through m.

If τ is the smallest positive real number t such that et v(m) ∈ G ·m, and the G-action is
free at m, then the mapping Γ itself is a smooth embedding of Rk+1/Zk+1 into M , and the
minimal number of frequencies is equal to k + 1.

Proof If θ′j = θj + nj with nj ∈ Z, then

Γ(θ′) = exp

(
k∑

j=1

θj λj − θk+1X

)
e−nk+1 X · eθk+1 p0 τ v ◦ enk+1 p0 τ v(m)

= exp

(
k∑

j=1

θj λj − θk+1X

)
· eθk+1 p0 τ v

(
s−nk+1 p0 · enk+1 p0 τ v(m)

)
= exp

(
k∑

j=1

θj λj − θk+1X

)
· eθk+1 p0 τ v(m) = Γ(θ).

Here we have used, in the second identity, (5.2) and sp0 = eX , cf. iii) in Lemma 8.3. In
the third identity we have used (8.2) with t = p, τ and p = nk+1 p0. It follows that Γ is a
well-defined smooth mapping from Rk+1/Zk+1 to M .
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If θj = tXj/p0 τ , 1 ≤ j ≤ k, and θk+1 = t/p0 τ , then

k∑
j=1

θj λj − θk+1X = (t/p0 τ)

(
k∑

j=1

Xj λj −X

)
= 0

and θk+1 p0 τ = t. In view of the definition of Γ this implies that the solution curve γ of (1.1)
which starts at m is given by γ(t) = Γ(t ν + Zk+1), t ∈ R, if νj = Xj/p0 τ , 1 ≤ j ≤ k and
νk+1 = 1/p0 τ .

Because the numbers X1, . . . , Xk and 1 are linearly independent over Q, the numbers
νj, 1 ≤ j ≤ k + 1 are linearly independent over Q, and it follows in view of iii) in Lemma
7.10 that the set of all t ν + Zk+1, t ∈ R is dense in Rk+1/Zk+1. Applying the continuous
mapping Γ, we obtain that the v-orbit through m is dense in Γ(Rk+1/Zk+1).

It follows from (5.2) and γ(m) = m that

((g, t), m) 7→ g · et v(m) = et v(g ·m)

is a local smooth action of T × R in M , and it follows that (g, t) 7→ g · et v(m) defines a
smooth immersion from (T ×R)/(T ×R)m into M . This proves that Γ induces a smooth
embedding of T0 into M and that the minimal number of frequencies is equal to dimT0, in
the same way as for the corresponding statements in Proposition 7.11.

Now suppose that τ is the smallest positive number t such that et v(m) ∈ G · m, and
that the T -action is free at m, which certainly is the case if the G-action is free at m.
Then Γ(θ) = m implies that eθk+1 p0 τ v(m) ∈ T · m ⊂ G · m, hence there exists a p ∈ Z
such that θk+1 p0 τ = p τ , which in view of the freeness of the T -action at m implies that
eθk+1 p0 τ v(m) = sp · m ∈ T · m. Again using the freeness of the T -action at m, it follows

that there exists a q ∈ Z such that p = q p0, and we conclude that θk+1 = q ∈ Z. However,
eX = sp0 , and therefore e−θk+1 X = s−q p0 , and because eθk+1 p0 τ v(m) = sp · m = sq p0 , it

follows from (8.3) that

exp

(
k∑

j=1

θj λj

)
·m = m,

which in view of the freeness of the T -action at m implies that θj ∈ Z for every 1 ≤ j ≤ k.
This proves that Γ−1({m}) = {1}, and therefore T0 = Rk+1/Zk+1. �

Remark 8.6 If X is an elliptic element of g, then et X is an elliptic element of G for every
t ∈ R. This shows that Proposition 8.5 is a generalization of Proposition 7.11. �

Remark 8.7 Suppose that m is not a relative equilibrium. If the G-orbit G ·m through
m is a closed subset of M then there is a minimal positive τ such that eτ v(m) ∈ G ·m. Note
that G ·m is closed in M if and only if the one point set {G ·m} is a closed subset of the
orbit space G\M , and that this certainly is the case if the G action on M is proper.

If there exists such a minimal positive relative period τ , then et v(m) ∈ G ·m if and only
if t = p τ for some integer p. Assuming also that the action is free at m, let s be the unique
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element of G such that eτ v(m) = s ·m. Then ep τ v(m) = sp ·m for every p ∈ Z. Let q ∈ Z,
q 6= 0 and assume that sq is an elliptic element of G. Then also s−q is an elliptic element of
G and we may assume that q > 0. The closure A in G of the set of all integral powers of sq

is compact. Because the closure B of the set of all integral powers of s is equal to the union
of the finitely many sj A, 0 ≤ j ≤ q−1, it follows that B is compact as well, i.e. s is elliptic,
and we have the conclusion of Proposition 8.5 that Γ is a smooth embedding and that the
minimal number of frequencies is equal to k + 1.

The following two examples illustrate what can happen if we drop the condition that the
G-orbit through m is closed.

a) Let M = R/Z, G = Q/Z acting freely on M by translations and v equal to the
constant vector field equal to 1. Take m = 0. Then et v(m) ∈ G ·m if and only if t ∈ Q,
in which case et v(m) = s ·m, in which s = t+ Z. If t ∈ Q, then the set of all p t+ Z,
p ∈ Z, is a finite subgroup of G = Q/Z, and therefore s is elliptic. However, there is
no minimal positive τ such that eτ v(m) ∈ G ·m.

b) In the example a) the group G is discrete and countably infinite, and therefore it has
a countably infinite set of connected components. Now let M = R2/Z2 and consider
the connected Lie subgroup

G := {a (1, y) + Z2 | a ∈ R}

of R2/Z2, acting freely on M by translations. Let v be equal to the constant vector
field equal to (1, 0). We take y ∈ R \Q, which implies that a 7→ a (1, y) + Z2 defines
an isomorphism from R onto G. a (1, y) + Z2 is an elliptic element of G, if and only
if a ∈ Q.

We have t v + Z2 ∈ G, if and only if there exists an a ∈ R such that t ∈ a + Z and
a y ∈ Z. This means that there exist p, q ∈ Z such that a = p/y and t = q + p/y. The
set of these t does not have a smallest positive element.

On the other hand, a (1, y)+Z2, with a as above, is an elliptic element of G if and only
if p = 0, in which case t = q. Therefore the conditions in Proposition 8.5 are satified
with τ = 1 and s = (0, 0) + Z2. Also, Γ is an embedding.

�

Remark 8.8 If G is compact, then every relative periodic solution is quasi-periodic. �

Remark 8.9 For actions of compact Lie groups, Proposition 8.5 follows from applying
Proposition B2 of Field [11] to the pre-image in M of the periodic orbit in G\M under the
canonical projection π : M → G\M . �

Remark 8.10 One may wonder whether a result analogous to Proposition 8.5 holds for
quasi-periodic motions in G\M .

54



Assume thatM = (R/Z)k×(R/Z)l, on which we have a vector field v : (a, b) 7→ (ȧ, ḃ(a)),
in which ȧ ∈ Rk is constant and ḃ(a) ∈ Rl only depends on a ∈ (R/Z)k, in a smooth way.
The differential equation (1.1) then is equivalent to the system

da

dt
= ȧ,

db

dt
= ḃ(a). (8.4)

In this situation v is invariant under the action of the torus group G = (R/Z)l by
multiplication on the second factor, the orbit space G\M can be identified with (R/Z)k on
which the flow is given by a(0) 7→ a(0) + t ȧ + Zk, which is quasi-periodic. The minimal
number of frequencies of this flow is equal to k if and only if the coordinates ȧj, 1 ≤ j ≤ k
are linearly independent over Q, cf. Lemma 7.10, iii).

If we substitute the solution t ȧ modulo Zk in the second equation in (8.4), we see that
b(t) is obtained by integration of the function t 7→ ḃ(t · a). For the function a 7→ ḃ(a) we
have the Fourier series

ḃ(a) =
∑
n∈Zk

e2π i 〈n, a〉 ḃn, (8.5)

in which the inner product

〈n, a〉 =
k∑

j=1

nj aj ∈ R/Z

defines a homomorphism a 7→ 〈n, a〉 from (R/Z)k to R/Z. If in the right hand side of (8.5)
we substitute a = t ȧ and perform a formal termwise integration, then we arrive at

b(t) = b(0) + t
∑

n∈Zk, 〈n, ȧ〉=0

ḃn +
∑

n∈Zk, 〈n, ȧ〉6=0

e2π i t 〈n,, ȧ〉 (2π i 〈n, ȧ〉)−1 ḃn (8.6)

modulo Zl.
The assumption that the function a 7→ ḃ(a) is smooth is equivalent to the condition that

for every N > 0 there is a constant CN such that ‖ḃn‖ ≤ CN (1 + ‖n‖)−N for every n ∈ Zk.
This shows that the coefficient of t in (8.6) is given by a nicely convergent Fourier series.
Note that this coefficient is equal to ḃ0, if and only if the minimal number of frequencies of
the quasi-periodic function a(t) is equal to k.

However, the factors 〈n, , ȧ〉−1 in the last sum in (8.6) might become so small for a
suitable infinite sequence of n ∈ Zk, that the series does not converge and we cannot use the
series in order to conclude that the function t 7→ b(t) is quasi-periodic.

Also, if we vary ȧ continuously in Rk, then the coefficient of t in (8.6) may vary wildly.
These problems caused by the denominators 〈n, , ȧ〉 becoming small or equal to zero show
that, already in this simple looking example, the reconstruction of quasi-periodic solutions
in G\M can have subtle aspects. �
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8.2 Runaway Relative Periodic Solutions

Proposition 8.11 Let m be a relative periodic point with shift element s as in (8.1), (8.2).
Assume that the mapping g 7→ g ·m : G → M is proper, which is certainly the case if the
G-action on M is proper. Then the following conditions are equivalent.

i) The element s of G is not elliptic.

ii) The solution of (1.1) starting at m is a runaway curve in M .

iii) The solution of (1.1) starting at m is not quasi-periodic.

Proof If i) holds, then it follows from Lemma 8.3 that the mapping p 7→ sp ·m : Z → M
is proper. Let K be a compact subset of M , and assume that τ > 0. Then

K ′ := {e−s v(x) | x ∈ K, s ∈ [0, τ ]}

is equal to the image of the compact set [0, τ ]×K under the continuous mapping (s, x) 7→
e−s v(x), and therefore K ′ is a compact subset of M . Because the mapping p 7→ sp ·m : Z →
M is proper, there exists an N ∈ Z>0 such that |p| ≤ N whenever sp ·m ∈ K ′. Therefore, if
t ∈ [p τ, (p+ 1) τ ] and et v(m) ∈ K, then it follows from (8.2) that

sp ·m = e−(t−p τ) v ◦ et v(m) ∈ K ′,

hence |p| ≤ N and therefore |t| = |(t− p τ) + p τ | ≤ τ +N τ . This proves that the mapping
t 7→ et v(m) : R →M is proper, i.e. we have proved ii). For τ < 0 we replace τ and s by −τ
and s−1, respectively.

If the solution of (1.1) starting at m is quasi-periodic, then its image is contained in the
image in M of a torus under a continuous map, which is a compact subset of M . This is in
contradiction with ii) and we have proved ii) =⇒ iii).

The implication iii) =⇒ i) follows from Proposition 8.5. �

Remark 8.12 Without any additional assumption on the action, like the assumption of
properness of the mapping g 7→ g ·m : G → M , not much in the spirit of Proposition 8.11
can be concluded.

For instance, suppose that the vector field v is complete, and let τ be any nonzero real
number. Then (p, m) 7→ ep τ v(m) : Z×M → M defines an action of the discrete Lie group
G = (Z, +) on M for which (7.2) holds. Clearly every solution of (1.1) is a relative periodic
solution with relative period τ , but it is certainly not true that for every dynamical system
every solution is either quasi-periodic or running away out of every compact subset.

�
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8.3 When the Action is Not Free

Proposition 8.5 is not quite optimal if the action is not free at m.
It follows from (8.1) and Lemma 7.18 with t = τ and g = s that s ∈ N(H), where

H := Gm. Because the Lie group N(H)/H acts freely on the isotropy type MH of m, cf.
Lemma 3.3, the following proposition is obtained from Proposition 8.5, by replacing the Lie
group G by the Lie group N(H)/H.

Proposition 8.13 Assume that m is a relative periodic point with shift element s ∈ G as
in (8.1), (8.2). Write H := Gm and sssume that sH is an elliptic element of the Lie group
N(H)/H. Then the solution of (1.1) which starts at m is quasi-periodic.

More precisely, we have the same conclusions as in Proposition 8.5, with G and s replaced
by N(H)/H and sH, respectively.

If τ is the smallest positive real number t such that et v(m) ∈ G ·m, then Γ is a smooth
embedding of Rk+1/Zk+1 into M , and the minimal number of frequencies is equal to k + 1.

Remark 8.14 s is an elliptic element of G ⇐⇒ the closed subgroup of G generated by s
is a compact subset of G, hence of the closed subgroup N(H) of G =⇒ the closed subgroup
of N(H)/H generated by sH is a compact subset of N(H)/H ⇐⇒ sH is an elliptic element
of N(H)/H. Here the middle implication follows from the observation that the mapping
g 7→ g H : N(H) → N(H)/H is continuous.

If the mapping g 7→ g ·m : G→M is proper, which is certainly the case if the G-action
is proper, then H = Gm is a compact subgroup of G and then the middle implication is an
equivalence, i.e. sH is an elliptic element of N(H)/H if and only if s is an elliptic element
of G. However, if H is not compact, then the condition that sH is an elliptic element
of N(H)/H is weaker than the condition that s is an elliptic element of G, which makes
Proposition 8.13 more general than Proposition 8.5.

In the case of non-free actions, Proposition 8.13 is somewhat simpler than Proposition
8.5, because the torus T is a subgroup of N(H)/H, which group acts freely on m. �

Remark 8.15 If N(H)/H is compact, then every relative periodic solution in the orbit
type M[H] is quasi-periodic. �

Remark 8.16 For actions of compact Lie groups, Proposition 8.13 follows from applying
Proposition B2 of Field [11] to the pre-image in M of the periodic orbit in G\M under the
canonical projection π : M → G\M . �

8.4 Other Relative Periodic Solutions in the (G×R)-orbit

If m is a relative periodic point, s is as in (8.1), (8.2), and g ∈ G, then it follows from (5.2)
that

eτ v(g ·m) = g · eτ v(m) = g · s ·m =
(
g s g−1

)
· g ·m. (8.7)
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This shows that g · m is also a relative periodic point, with the same relative period, and
with the conjugate g s g−1 of s by means of g as the shift element.

The solution of (1.1) starting at g ·m is periodic, quasi-periodic and runaway if and only
if the solution of (1.1) starting at m has these properties. Moreover, the closures of the
v-orbits through the points of G ·m define a smooth fibration of the v-flowout of G ·m.

Let us explain this in more detail in the case that we are in the situation of Proposition
8.5, that τ is the smallest positive real number t such that et v(m) ∈ G ·m, and that the G-
action is free at m. The situation is a bit more complicated than in Subsection 7.4, because
the closures of the v-orbits are not generated by a torus subgroup of G, because the v-orbits
are not contained in the G-orbits.

For g, g′ ∈ G and t, t′ ∈ R we have g · et v(m) = g′ · et′ v(m) if and only if e(t′−t) v(m) =
(g′)−1 ·g ·m ∈ G ·m if and only if there exists a p ∈ Z such that t′− t = p τ and (g′)−1 g = sp.
If we let p ∈ Z act on G ×R by sending (g, t) to (g s−p, t + p τ), then we obtain that the
mapping

(g, t) 7→ g · et v(m) (8.8)

from G × R to M induces a smooth embedding Φ from (G × R)/Z onto the v-flowout
(G × R) · m of the G-orbit G · m through the point m. The canonical projection π from
G×R onto (G×R)/Z intertwines the G-action on G×R, by multiplications from the left
on the first factor, with a smooth G-action on (G×R)/Z. It also intertwines the R-action
on G×R, by translations on the second factor, with a smooth R-action on (G×R)/Z. Φ
intertwines the G-action and the R-action on (G×R)/Z with the G-action and the v-flow
on (G×R) ·m, respectively.

Note that the projection from G×R onto the second factor R exhibits (G×R)/Z as a
principal G-bundle over the circle R/Z τ . This bundle is identified by means of Φ with the
preimage under π : M → G\M of the periodic orbit through G ·m in the orbit space G\M .

Let θ ∈ Rk+1 act on G×R by sending (g, t) ∈ G×R to(
g exp

(
k∑

j=1

θj λj − θk+1X

)
, t+ θk+1 p0 τ

)
. (8.9)

If θ ∈ Zk+1, then it follows from eX = sp0 that (8.9) is equal to
(
g s−θk+1 p0 , t+ θk+1 p0 τ

)
,

which is equal to the action of the integer p = θk+1 p0 on (g, t). We therefore have an
induced action of (R/Z)k+1 = Rk+1/Zk+1 on (G × R)/Z. Moreover, the (R/Z)k+1-action
on (G ×R)/Z commutes with the G-action on (G ×R)/Z defined by multiplications from
the left on the first factor.

If (8.9) is equal to (g s−p, t+ p τ) for some p ∈ Z, then

sp = exp

(
−

k∑
j=1

θj λj + θk+1X

)
∈ T, (8.10)

which implies that p = q p0 for some q ∈ Z. But then p τ = θk+1 p0 τ implies that θk+1 = q
and now (8.10) in combination with eX = sp0 implies that

∑k
j=1 θj λj belongs to the integral
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lattice in t, which in turn implies that θj ∈ Z for every 1 ≤ j ≤ k. This shows that the
action of (R/Z)k+1 on (G×R)/Z is free, and it is automatically proper because the group
(R/Z)k+1 is compact.

The diffeomorphism Φ intertwines the action of (R/Z)k+1 on (G×R)/Z with a uniquely
defined proper and free smooth action of (R/Z)k+1 on the v-flowout (G × R) · m of the
G-orbit G ·m through m. This action commutes with the G-action on (G×R) ·m.

Let Xj, 1 ≤ j ≤ k, denote the coordinates of X ∈ t with respect to the Z-basis λj,
1 ≤ j ≤ k, of the integral lattice of t. Then

k∑
j=1

θj λj − θk+1X =
k∑

j=1

(θj − θk+1Xj) λj,

and it follows that on (G ×R) ·m the vector field v is equal to the inifinitesimal action of
the element θ̇ of the Lie algebra Rk+1 of Rk+1/Zk+1, which is defined by

θ̇j = θ̇k+1Xj, 1 ≤ j ≤ k, and θ̇k+1 = 1/p0 τ. (8.11)

Because the k + 1 real numbers (X1, . . . , Xk, 1) are linearly independent over Q, it follows
from Kronecker’s lemma 7.10, iii) that the (8.11)-orbits are dense in (R/Z)k+1, which implies
that the fibers of the (R/Z)k+1-orbits in (G×R) ·m are equal to the closures of the v-orbits
in (G×R) ·m.

Now assume that τ is the minimal positive relative period, the G-action is not free at
m, i.e. H := Gm 6= {1}, and sH is an elliptic element of N(H)/H. Then we can write the
v-flowout of G ·m as a fiber bundle over G/N(H) using Lemma 3.7, a) and Lemma 5.5, and
typical fiber equal to the v-flowout of N(H) ·m. Because the action of N(H)/H is free at m,
we can apply the above construction in order to obtain that the closures of the v-orbits define
a N(H)/H-invariant smooth principal (R/Z)k+1-torus fibration of the v-flowout of N(H) ·m.
Using Lemma 7.23 with H = N(H), K = (R/Z)k+1 and V = ((N(H)/H)×R)/Z, where V
is diffeomorphic to the v-flowout of N(H) ·m, we arrive at the following conclusion.

Proposition 8.17 Under the assumptions of Proposition 8.13, the closures of the v-orbits
in the v-flowout (G×R)·m of G·m define a smooth G-invariant principal (R/Z)k+1-fibration
of (G × R) · m. The vector field v on (G × R) · m is equal to the infinitesimal action on
(G×R) ·m of the element θ̇ in the Lie algebra Rk+1 of (R/Z)k+1 which is defined by (8.11).

9 Smooth Dependence on Parameters

In this section we consider the situation that we have a smooth family of equibrium points
or periodic solutions in the orbit space G\M , and we will investigate whether we have a
corresponding smooth family of quasi-periodic solutions of (1.1) in M .

Let T be a torus with Lie algebra t. For every X ∈ t, let T (X) be the closure in T of
the set of all et X , t ∈ R. Note that T (X) is the smallest closed Lie subgroup of T such that
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X belongs to the Lie algebra of T (X). Assume that dimT > 1. For every 1 ≤ k ≤ dimT ,
the set of X ∈ t such that dimT (X) = k is dense in t. This shows that the dependence
of T (X) on X is highly discontinuous, even its dimension is an everywhere discontinuous
function on t. As a consequence, if the group G contains tori of dimension > 1, then one
needs very detailed information on the dependence on the parameters of the element X ∈ t

in (7.1), (7.2), if one wants that the closures of the v-orbits in Proposition 7.11 depend
smoothly on the parameters. However, when we drop the condition that we always have
the minimal number of frequencies, then under reasonably general conditions we can obtain
smooth families of tori on which the motion is quasi-periodic.

Similar observations can be made for relative periodic orbits. For any h ∈ T , let T (h)
denote the closure of the set of all hp, p ∈ Z. Note that T (h) is the closed subgroup of T
generated by h. For every 0 ≤ k ≤ dimT , the set of h ∈ T such that dimT (h) = k is dense
in T . Therefore, if the group G contains tori of positive dimension, then one needs very
detailed information on the dependence on the parameters of the shift element s in (8.1),
(8.2), if one wants that the closures of the v-orbits in Proposition 8.5 depend smoothly on the
parameters. And again, if we drop the condition that we always have the minimal number
of frequencies, then under reasonably general conditions we can obtain smooth families of
tori on which the motion is quasi-periodic.

9.1 Families of Quasi-periodic Relative Equilibria

Definition 9.1 Let G be a Lie group with Lie algebra g. For any X ∈ g, the centralizer
gX of X in g is defined as the set of all Y ∈ g such that [X, Y ] = 0. It is equal to the Lie
algebra of the centralizer GX of X in G, the set of all g ∈ G such that (Ad g)(X) = X.

X is called a regular element of g if there is a neighborhood U of X in g such that
dim gX ≤ dim gY for every Y ∈ U . Because always dim gY ≤ dim gX for all Y near X, X is

regular if and only if dim gY is constant for all Y near X.
X is called a stably elliptic element of g if there is a neighborhood U of X in g such that

every Y ∈ U is an elliptic element of g. �

Lemma 9.2 Let G be a Lie group with Lie algebra g and X ∈ g. Then the following
conditions are equivalent.

i) X is a regular and stably elliptic element of g.

ii) The centralizer gX of X in g is equal to the Lie algebra of a torus subgroup T of G.

The set gse of stably elliptic elements of g is an open subset of g and the set grse of regular
and stably elliptic elements of g is a dense open subset of gse. For every X ∈ grse there exists
an open neighborhood U of X in g and an analytic mapping θ : U → G with θ(X) = 1, such
that if X ′ ∈ U , X ′′ = (Ad θ(X ′))(X ′), then gX′′ = gX .

It follows that if C is a connected component of grse, then for any X, X ′ ∈ C there exists
g ∈ G◦ such that gX′ = (Ad g)(gX). In particular dim gX is constant for X ∈ C, say equal to
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k. The mapping X 7→ gX is analytic from C to the Grassmann manifold of all k-dimensional
linear subspaces of g.

Proof If adX denote the linear mapping from g to g defined by (adX)(Y ) = [X, Y ], Y ∈ g,
then

et adX = Ad
(
et X
)
, t ∈ R,

cf. [10, Th. 1.5.2,a)]. IfX is an elliptic element of the Lie algebra of G, then the closure of the
et X , t ∈ R is a torus subgroup of G, and because the adjoint representation Ad : G→ GL(g)

is a continuous homomorphism, it follows that the et adX belong to a compact subgroup K
of GL(g). Averaging an arbitrary inner product on g over K, we obtain a K-invariant
inner product β on g, cf. [10, Cor. 4.2.2]. Then t 7→ et adX is a one-parameter group
of β-orthogonal transformations, and therefore adX is β-anti-symmetric. It follows that
that the range (adX)(g) of adX is equal to the β-orthogonal complement of the kernel
ker(adX) = gX of adX. This implies that

g = (adX)(g)⊕ gX , (9.1)

and adX is a bijective linear mapping from (adX)(g) onto itself.
The tangent mapping at (1, X) of the mapping

G× gX 3 (g, Z) 7→ (Ad g)(Z) ∈ g (9.2)

is equal to (A, B) 7→ [A, X] +B, which is surjective in view of (9.1). It follows that there is
an open neighborhood U of X in g and there are analytic mappings ϕ : U → G, ζ : U → gX ,
such that ϕ(X) = 1, ζ(X) = X and X ′ = (Adϕ(X ′))(ζ(X ′)) for every X ′ ∈ U . This implies
that all elements near X are conjugate to elements of gX .

Now let X ′′ ∈ gX . Then the linear mappings adX and adX ′′ commute, cf. [10, (1.1.22)].
It follows that adX ′′ leaves both gX = ker(adX) and (adX)(g) invariant. If X ′′ is sufficiently
close to X in gX , then the restriction of adX ′′ to (adX)(g) will still be bijective, and we
have that gX′′ = ker(adX ′′) ⊂ gX .

If X is regular, then we conclude that gX′′ = gX for all X ′′ ∈ gX near X. This implies
that if A ∈ gX is sufficiently close to zero, then [A, B] = [X + A, B] = 0 for every B ∈ gX ,
and because A 7→ [A, B] is linear, it follows that gX is commutative.

Because exp(gX) is equal to the identity component of the closed subgroup GX of G,
T := exp(gX) is a closed subgroup of G. Therefore, if for a given X ′′ ∈ gX the closure of the
et X′′

, t ∈ R is a torus subgroup of G, then it is a torus subgroup of T . It follows that if X
is a regular and stably elliptic element in the Lie algebra of G then it is stably elliptic as an
element of the Lie algebra of T .

Because T is a connected and commutative Lie group, it is isomorphic to (R/Z)k ×Rl,
cf. [10, Cor. 1.12.4], of which the Lie algebra contains stably elliptic elements if and only if
l = 0. This concludes the proof of i) =⇒ ii).

By definition gse and the set of regular elements are open subsets of g. If X ∈ gse is
not regular, then we can find X ′ arbitrarily close to X with dim gX′ < gX . Because of
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the finiteness of the dimensions we can repeat this only finitely times with X replaced by
X ′. It follows that arbitrarily close to X we can find X ′ for which gX′ has locally minimal
dimension, i.e. X ′ is regular. This shows that grse is a dense open subset of gse.

Now assume that ii) holds. For every X ′′ ∈ gX , we have et X′′ ∈ T , t ∈ R, hence the
closure of these elements is a connected commutative closed subgroup of the torus group T ,
hence a torus subgroup of T , hence of G, which means that X ′′ is an elliptic element of g.

Because X ∈ gX , we have in particular that X is an elliptic element of g. As we have
seen after (9.2), this implies that all elements in g near X are conjugate to elements in gX ,
and therefore are elliptic, and we conclude that X is stably elliptic.

Furthermore, because T is commutative, gX is commutative, which implies that gX ⊂ gX′′

for every X ′′ ∈ gX , and we conclude that X is regular. This concludes the proof of ii) =⇒
i).

If we write θ(X ′) = ϕ(X ′)−1, then it follows from X ′ = (Adϕ(X ′))(ζ(X ′)) that X ′′ :=
(Ad θ(X ′))(X ′) = ζ(X ′) ∈ gX . Furthermore, if X ′′ is sufficently close to X in gX , then
gX = gX′′ = (Ad θ(X ′))(gX′).

The condition forX, X ′ ∈ g that gX′ is conjugate to gX by elements ofG◦ is an equivalence
relation. Because nearby elements of C are equivalent and C is connected, it follows that
gX′ is conjugate to gX for all X, X ′ ∈ C, which implies that the dimension of gX is constant
for all X ∈ C. Because for X ′ near X we have that gX′ is conjugate to gX by means of an
element of G◦ which depends analytically on X ′, the mapping X ′ 7→ gX′ is analytic on a
neighborhood of X in C, and because this holds for any X ∈ C, the mapping X 7→ gX is
analytic on C. �

Remark 9.3 In general, the torus T in Lemma 9.2 is different from the torus T in Lemma
7.10. Because X ∈ gX , hence tX ∈ gX , the one-parameter subgroup et X , t ∈ R, is contained
in the torus exp(gX). Therefore the closure of the et X , t ∈ R, is also contained in et X , t ∈ R.

Note that any torus has a dense one-parameter subgroup, which implies that if T is a
torus as in Lemma 9.2 with Lie algebra t, then for any subtorus T0 of T there exists a Y ∈ t

such that the closure of the et Y , t ∈ R, is equal to T0. In this sense the tori in Lemma 7.10
can be arbitrary subtori of the tori in Lemma 9.2. �

Example 9.4 If the identity component G◦ of G is compact, then every X ∈ g is stably
elliptic, and the regular and stably elliptic elements of g are just the regular elements of g as
in [10, (g) on p. 141]. Furthermore, for regular X ∈ g, gX is a maximal Abelian subspace of
g, and exp(gX) is a maximal torus in G◦. All maximal tori in G◦ are conjugate to each other
by means of elements of G◦, and in particular have the same dimension, which is called the
rank of G◦. See [10, Th. 3.7.1 and p. 153].

If conversely every element of g is elliptic, then the identity componentG◦ ofG is compact.
This follows from Hochschild [14, Ch. XV, Th. 3.1], which result in this generality has been
obtained before by Malcev [21]. �

Example 9.5 Let G be equal to the group E(2) of the Euclidean motions in the plane R2,
the group of transfomations (A, a) : x 7→ Ax + a, in which A ∈ SO(2) and a ∈ R2. Its Lie
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algebra e(2) consists of the infinitesimal transformations X = (B, b) such that B ∈ so(2) is
an antisymmetric 2× 2 -matrix and b ∈ R2.

If B ∈ so(2) is nonzero, then B is bijective, and X = (B, b) is equal to an infinitesimal
rotation about the unique fixed point p := −B−1 b. Therefore any element of the isotropy
subgroup E(2)X of X in E(2) leaves p fixed, which shows that E(2)X is equal to group of
rotations about the point p, which is a circle subgroup of E(2). In view of Lemma 9.2 we
conclude that (B, b) is a regular and stably elliptic element of e(2) if B 6= 0.

On the other hand, (0, b) is an elliptic element of e(2) if and only if b = 0. The conclusion
is that (B, b) is a regular and stably elliptic element of e(2) if and only if B 6= 0, which shows
that e(2)rse is a dense open subset of e(2).

Note that E(2) is a noncompact Lie group which is (two step) nilpotent. �

Example 9.6 The Lie algebra of G = SL(2, R) is equal to the set of all 2× 2-matrices

X =

(
α β
γ −α

)
such that α, β, γ ∈ R. The regular and stably elliptic elements of the Lie algebra are the
matrices X such that α2 + β γ < 0. These form two disjoint open convex cones in the Lie
algebra.

The matrices X such that α2 + β γ > 0 are non-elliptic, these also form a nonvoid open
subset of the Lie algebra of SL(2, R).

If α2 + β γ = 0, then X is elliptic if and only if X = 0. �

Suppose that the G-action on M is free and proper, and let F be a smooth submanifold of
G\M consisting of fixed points of the flow Φt in G\M defined by (5.3). It follows that π−1(F )
is a locally closed smooth submanifold of M which is G-invariant, hence π : π−1(F ) → F
is a principal G-bundle. Because F consists of relative equilibria, it follows from Lemma
7.1 that π−1(F ) is invariant under the v-flow and that the restriction of v to π−1(F ) is a
complete vector field on π−1(F ).

Lemma 9.7 For m ∈ π−1(F ), the unique element X = X(m) ∈ g in (7.1), (7.2) depends
smoothly on m.

Proof Write N = π−1(F ). The gm = αm(g), m ∈ N , form a smooth vector subbundle
gN of the tangent bundle TN of N . The restriction to N of the vector field v is a smooth
mapping from N to TN which takes its values in gN , and therefore defines a smooth mapping
v : N → gN On the other hand, the mapping

α : (m, X) 7→ XM(m) : N × g → gN

is smooth, bijective and has bijective tangent mapping at each point, and therefore is a
diffeomorphism from N × g onto gN . The mapping m 7→ X(m) is equal to v : N → gN ,
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followed by α−1 : gN → N × g, and concluded by the projection N × g → g onto the second
factor. Therefore m 7→ X(m) is smooth as the composition of three smooth mappings. �

Let F rse denote the set of all f ∈ F , such that for some (every) m ∈ π−1({f}) the
element X(m) is a regular and stably elliptic element of g. F rse is an open subset of F .

Lemma 9.8 Let m0 ∈ M and f0 := π(m0) ∈ F rse. Write t = gX(m0) and T = exp t for the
torus subgroup of G of which t is the Lie algebra. Then there exists an open neighborhood
F0 of f0 in F rse and a smooth section µ : F0 → π−1(F0) of π : π−1(F0) → F0, such that
X(µ(f)) ∈ t for every f ∈ F0.

Proof Because π : π−1(F ) → F is a smooth fibration, there exists an open neighborhood
F1 of f0 in in F rse and a smooth section ν : F1 → π−1(F1) of π : π−1(F1) → F1, i.e. ν
is smooth and π ◦ ν is equal to the identity in F1. It follows from Lemma 9.2 that there
exists an open neighborhood U of X(m0) in g and an analytic mapping θ : U → G, such
that (Ad θ(X ′))(X ′) ∈ t for every X ′ ∈ U . It follows from (7.6) with X = X(m) that
X(g ·m) = (Ad g)(X(m)). If we write m = ν(f), X ′ = X(ν(f)), g = θ(X ′), and µ(f) :=
θ(X(ν(f))) · ν(f), then we obtain that X(µ(f)) ∈ t for every f ∈ F1 such that X(ν(f)) ∈ U .
These f form an open neighborhood F0 of f0 in F rse, and because π(g · m) = π(m) = f ,
µ : F0 → π−1(F0) is a smooth section of π : π−1(F0) → F0. �

The mapping Φ : (f, g) 7→ g · µ(f) is a diffeomorphism from F0 × G onto π−1(F0). On
F0 ×G we have the free and proper action of T by multiplication on the second factor from
the right. Φ intertwines this action with a free and proper T -action on π−1(F0), which defines
a principal T -fibration of π−1(F0). The right T -action on F0 ×G commutes with the action
of G on F0 ×G by multiplication on the second factor from the left. Because Φ intertwines
this left G-action on F0 × G with the G-action on π−1(F0), it follows that the T -action on
π−1(F0) commutes with the G-action on π−1(F0). In other words, the principal T -fibration
on π−1(F0) is invariant under the G-action.

On F0×G we finally have the action of R defined by (t, (f, g)) 7→ (f, g et X(µ(f))), which
is a quasi-periodic motion on the T -orbits, “depending smoothly on the parameter f”. Φ
intertwines the R-action on F0 ×G with the v-flow in π−1(F0). In other words, the formula
ξ(f) := X(µ(f)) defines a smooth mapping ξ : F0 → t with the property that, for each
m ∈ π−1(F0), v(m) is equal to the infinitesimal action of ξ(π(m)) ∈ t for the proper and free
action of T on π−1(F0).

If the G-action on M is proper but not free, then the above constructions can be applied
with the manifold M and the Lie group G replaced by an isotropy type MH and the Lie
group N(H)/H, respectively, where N(H)/H acts freely on MH , cf. Lemma 3.3, and MH is
invariant under the v-flow, cf. Lemma 5.5. The N(H)/H-invariant principal T -fibration in
π−1(F0)∩MH has a unique extension to a G-invariant principal T -fibration in π−1(F0). For
the proof one can use a version with parameters of the constructions at the end of Subsection
7.4. This leads to the following conclusions.
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Proposition 9.9 Suppose that the G-action on M is proper, and let F be a smooth sub-
manifold of the orbit type G\M[H] in the orbit space G\M , consisting of fixed points of the
flow Φt in G \M defined by (5.3).

Write, for each m ∈ π−1(F ), X(m) = X + gm, with X ∈ g as in (7.1), (7.2). Let F rse

denote the set of all f ∈ F such that for some (every) m ∈ π−1({f}) we have that X(m)+gm

is a regular and stably elliptic element of the Lie algebra of N(Gm)/Gm. Write t(m) for the
centralizer of X(m) + gm in the Lie algebra of N(Gm)/Gm, and T (m) for the torus subgroup
of N(Gm)/Gm with Lie algebra equal to t(m).

Then F rse is an open subset of F ; let C be a connected component of F rse. If through
each m ∈ π−1(C) we draw the T (m)-orbit T (m) ·m, then these subsets of π−1(C) define a
G-invariant smooth fibration of π−1(C) with fibers diffeomorphic to the tori T (m).

Let m0 ∈M be such that f0 := π(m0) ∈ C. Write t = t(m0) and T = T (m0). Then there
is an open neighborhood F0 of f0 in C, a smooth mapping ξ : F0 → t, and a proper and free
action of Ton π−1(F0), called the right T -action, with the following properties.

i) The right T -action commutes with the G-action and, for each m ∈ π−1(F0), the right
T -orbit through m is equal to the fiber T (m) ·m of the toral fibration of π−1(C).

ii) For each m ∈ π−1(F0), v(m) is equal to the infinitesimal right action at m of ξ(π(m)) ∈
t, and the solution of (1.1) starting at m is equal to the right action of the one-parameter
subgroup of T generated by ξ(π(m)).

Because one-parameter subgroups of tori are quasi-periodic, this expresses in a quite strong
sense that the v-flow in π−1(C) is quasi-periodic on tori, where the tori form a smooth
fibration and the velocity vector at m is an element of the Lie algebra of the torus which
depends smoothly on π(m). Note that the fiber through m of the toral fibration is contained
in the G-orbit G ·m = π(m) through m, which implies that the element in the Lie algebra
of the torus does not depend on choice of the point on the fiber of the torus fibration.

Remark 9.10 In general, the torus T in Proposition 9.9 is different from the tori T in
Proposition 7.19 and Proposition 7.24. The tori in Proposition 7.19 and Proposition 7.24
can be arbitrary subtori of the torus T in Proposition 9.9, cf. Remark 9.3. �

A smooth torus bundle need not be a principal bundle, in the sense that the fibers of the
torus bundle need not be equal to the orbits of a proper and free action of a fixed torus. For
instance, Klein’s bottle is a circle bundle over a circle, but is not a principal bundle.

In order to investigate whether the whole toral fibration of π−1(C), introduced in Propo-
sition 9.9, is a principal fibration, we resume the discussion after Example 9.6, of the case of
a proper and free action of G on M .

As observed there, we have a covering of C with open subsets Cµ, which are the domains of
definitions of smooth sections µ : Cµ → π−1(Cµ) of π : π−1(Cµ) → Cµ, such that X(µ(f)) ∈ t

for every f ∈ F0. If f ∈ Cµ ∩Cν , we have a unique g = gν µ(f) ∈ G, depending smoothly on
f , such that ν(f) = g · µ(f). It follows from (7.6) that X(ν(f)) = (Ad g)(X(µ(f))), which
implies that

t = gX(ν(f)) = (Ad g)
(
gX(µ(f))

)
= (Ad g)(t),
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where the first and the last identity follow from the fact thatX(ν(f)) andX(µ(f)) are regular
elements of t. Because t is equal to the Lie algebra of T , it follows from g eX g−1 = e(Ad g) (X)

that (Ad g)(t) = t if and only if g T g−1 = T , i.e. if and only if g belongs to the normalizer
N(T ) of T in G.

If we write Φµ : (f, g) 7→ g · µ(f), then

Φν(f, g) = g · ν(f) = g · gν µ(f) · µ(f) = Φµ(f, g · gν µ(f)), f ∈ Cµ ∩ Cν

shows that the principal G-bundle π−1(C) can be obtained by glueing Cµ × G to Cν × G
along (Cµ ∩ Cν)×G by means of the glueing map

Φν µ : (f, g) 7→ (f, g · gν µ(f)), (9.3)

in which gν µ is a smooth mapping from Cµ ∩ Cν to N(T ).
The sets (f, g T ) = {(f, g h) | h ∈ T} form a fibration of Cµ × G into tori, which

fibration is invariant under the glueing map (9.3), because gµ ν(f) ∈ N(T ) implies that
T gν µ(f) = gν µ(f)T . It follows that the fibrations glue together to a torus fibration of the
bundle π−1(C), which is equal to the one in Proposition 9.9.

However, the glueing map (9.3) only commutes with the T -action (h, (f, g)) 7→ (f, g h)
on (Cµ ∩ Cν) × G if g = gν µ(f) satisfies h g = g h for every h ∈ T . That is, if g belongs to
the centralizer Z(T ) of T in G, the set of all g ∈ G such that g h g−1 = h for every h ∈ T .

The Lie algebra of N(T ) consists of the Y ∈ g such that [Y, X] ∈ t for every X ∈ t. If
X is a regular element of t, then it follows from (9.1) that g = (adX)(g) ⊕ t and adX :
(adX)(g) → (adX)(g) is bijective, hence [Y, X] = −(adX)(Y ) ∈ t if and only if Y ∈ t.
Therefore the identity component of N(T ) is equal to T , and the group N(T )/T is discrete.
The centralizer Z(T ) of T in G is a closed, hence Lie subgroup of G, and it is a normal
subgroup of N(T ) such that T ⊂ Z(T ) ⊂ N(T ). The discrete group W(T ) := N(T )/Z(T )
is called the Weyl group of T . N(T ) acts by conjugation on T and on t, this action factors
to an effective action of W(T ) on T and on t. In this way W(T ) is viewed as a group of
automorphisms of the torus Lie group T .

Let N be the set of m ∈ π−1C) such that X(m) ∈ t. According to the above, π : N → C

exhibits N as a principal N(T )-bundle over C, and C̃ := Z(T )\N is a principal W(T )-bundle
over C. (A principal Γ-bundle with a discrete group Γ is also called a Galois covering with
group Γ.) Because W(T ) is discrete, we have unique liftings of curves in C, in the sense
that for every continuous curve γ : [a, b] → C and every s ∈ π−1({γ(a)}), there is a unique

continuous curve γ̃s : [a, b] → C̃ such that γ = π◦ γ̃s and γ̃s(a) = s. Clearly w · γ̃s(t) = γ̃w·s(t)
for every t ∈ [a, b] and w ∈ W(T ).

If γ is a closed curve in C starting and ending at f , then γ̃(b) = w · s for a unique
w = wγ, s ∈ W(T ). If δ : [b, c] → C is another closed curve in C starting and ending at f ,

then wγ, s · δ̃s(b) = wγ, s · s = γ̃s(b), hence γ̃s followed by wγ, s · δ̃s is a lift of γ followed by δ,
and this lift starts at s and ends at wγ, s · wδ,s.

Let π1(C, f) denote the fundamental group of the manifold C, based at the point f .
Then the previous paragraph showed that the mapping γ 7→ wγ, s induces a homomorphism
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from π1(C, f) to W(T ), which is called the monodromy of the Galois covering. In general
this homomorphism depends on the choice of the base points f ∈ C and s ∈ π−1({f}.

The point is now that the torus fibration in π−1(C) is a G-invariant principal T -bundle

⇐⇒ C̃ admits a global section ⇐⇒ the bundle C̃ over C is trivial ⇐⇒ the monodromy is
trivial. That is, the monodromy homomorphism : π1(C, f) → W(T ) is the obstruction to
the torus fibration being a G-invariant principal T -bundle.

Example 9.11 If G is a compact, connected Lie group, then the tori T with Lie algebra
gX are the maximal tori, which all are conjugate to each other, cf. [10, Th.. 3.7.1]. The
Weyl group W(T ) is a finite group, generated by the orthogonal reflections in the root
hyperplanes, cf. [10, Cor. 3.10.3]. Therefore the Weyl group is nontrivial if and only if G is
noncommutative. �

Example 9.12 If G = E(2) is equal to the motion group of the plane, cf. Example 9.5,
then the tori T are circle subgroups, all conjugate to each other and have a trivial Weyl
group. Therefore in this case the torus fibration in π−1(C) is a principal fibration. �

9.2 Families of Quasi-periodic Relative Periodic Solutions

Definition 9.13 Let G be a Lie group with Lie algebra g. For any s ∈ G, the centralizer
gs of s in g is defined as the set of all Y ∈ g such that (Ad s)(Y ) = Y . The centralizer Gs of
s in G is defined as the set of all g ∈ G such that g s = s g, or equivalently g = s g s−1. Gs

is a closed, hence Lie subgroup of G, with Lie algebra equal to gs, cf. [10, (3.1.3)].
s is called a regular element of G if there is a neighborhood U of s in G such that

dim gs ≤ dim gs′ for every s′ ∈ U . Because always dim gs′ ≤ dim gs for all s′ near s, s is
regular if and only if dim gs′ is constant for all s′ near s.

s is called a stably elliptic element of G if there is a neighborhood U of s in G such that
every s′ ∈ U is an elliptic element of G. �

Lemma 9.14 Let G be a Lie group with Lie algebra g and s ∈ G. Then the following
conditions are equivalent.

i) s is a regular and stably elliptic element of g.

ii) The centralizer gs of s in g is equal to the Lie algebra of a torus subgroup T of G, and
sp ∈ T for some nonzero integer p.

The set Gse of stably elliptic elements of G is an open subset of G and the set Grse of
regular and stably elliptic elements of G is a dense open subset of Gse. For every s ∈ Grse

there exists an open neighborhood V of s in G and an analytic mapping θ : V → G, such
that if s′ ∈ V , s′′ = θ(s′) s′ θ(s′)−1, then G◦

s′′ = G◦
s and s′′G◦

s′′ = sG◦
s.

It follows that if C is a connected component of Grse then for any s, s′ ∈ C there exists
g ∈ G◦ such that gs′ = (Ad g)(gs). The dimension of dim gs is constant for s ∈ C, say equal
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to k. The mapping s 7→ gs is analytic from C to the Grassmann manifold of all k-dimensional
linear subspaces of g. The smallest positive integer p1 such that sp1 ∈ G◦

s = exp(gs) is the
same for all s ∈ C.

Proof As Lemma 9.14 is analogous to Lemma 9.2, its proof is analogous to the proof of
Lemma 9.2.

If s is an elliptic element of G, then the closure S of the set of integral powers of s
is a compact subgroup S of G. Because the adjoint representation Ad : G → GL(g) is a
continuous homomorphism, it follows that the K := AdS is a compact subgroup of GL(g).
Averaging an arbitrary inner product on g over K, we obtain a K-invariant inner product β
on g, which implies that Ad s is a β-orthogonal linear transformation of g. This implies that
the range (1−Ad s)(g) of 1−Ad s is equal to the β-orthogonal complement of the centralizer
gs = ker(1−Ad s) of s in g. It follows that

g = (1−Ad s)(g)⊕ gs, (9.4)

and 1−Ad s is a bijective linear mapping from (1−Ad s)(g) onto itself.
The tangent mapping at (1, 0) of the mapping

G× gs 3 (g, Z) 7→ g (eZ s) g−1 s−1 (9.5)

is equal to (A, B) 7→ (1−Ad s)(A) +B, which is surjective in view of (9.4). It follows that
there is an open neighborhood U of 1 in U and that there are analytic mappings ϕ : U → G,
ζ : U → gs, such that ϕ(1) = 1, ζ(1) = 0 and u = ϕ(u) (eζ(u) s)ϕ(u)−1 s−1 for every u ∈ U .
Writing s′ = u s, this implies that all elements s′ near s are conjugate to elements of G◦

s s,
by means of elements of G which depend analytically on s′. Note that G◦

s s ⊂ Gs, actually
G◦

s s = sG◦
s is equal to the connected component of Gs to which s belongs.

Now let s′ ∈ Gs. Because g 7→ Ad g is a homomorphism from G to GL(g), cf. [10,
(1.1.10)], it follows that the linear mappings Ad s′ and Ad s commute. It follows that Ad s′

leaves both gs = ker(1 − Ad s) and (1 − Ad s)(g) invariant. If s′ is sufficiently close to s,
then the restriction of 1 − Ad s′ to (1 − Ad s)(g) will still be bijective, and we have that
gs′ = ker(1−Ad s′) ⊂ gs.

If s is regular, then we conclude that if s′ ∈ Gs is sufficently close to s, then gs′ = gs,
which implies that Ad(s′ s−1) = (Ad s′) ◦ (Ad s)−1 = 1 on gs, or Ad(s′ s−1)(Y ) = Y for
every Y ∈ gs. Differentiating s′ s−1 in the direction of X ∈ gs, this leads to [X, Y ] = 0 for
every X, Y ∈ gs, i.e. gs is commutative, which in turn implies that G◦

s is commutative and
G◦

s = exp(gs), cf. [10, Th. 1.12.1].
Because the identity component G◦

s of Gs is an open and closed subgroup of the closed
subgroup Gs of G, T := exp(gs) = G◦

s is a closed subgroup of G. Becuase T ⊂ Gs, the union
H of all sp T , p ∈ Z, is a commutative subgroup of G, it is the smallest subgroup of G which
contains s and T . Furthermore, the mapping ϕ : p → sp T is a surjective homomorphism
from Z onto H/T . Let S denote the closed subgroup of G which is generated by s. Because
s is an elliptic element of G, there exists a smallest positive integer p0 such that sp0 ∈ S◦, cf.
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Lemma 8.3. Because S◦ ⊂ Gs and S◦ is connected, we have S◦ ⊂ G◦
s = T , and we conclude

that p0 ∈ kerϕ. It follows that kerϕ is a nontrivial subgroup of Z, which implies that there
is a unique positive integer p1 such that kerϕ = p1 Z, which implies that H/T ' Z/p1 Z.
Note that p1 is the smallest positive integer p such that sp ∈ T , and that p0 is an integral
multiple of p1. Because H is equal to the union of the sp T such that 0 ≤ p < p1, and T is
closed in G, H is a closed, hence Lie subgroup of G. The sp T , 0 ≤ p < p1 are the connected
components of H.

Because H is closed in G, an element h ∈ H is elliptic as an element in G if and only if it
is elliptic as an element in H. Let h = s k with k ∈ T . For any p ∈ Z, we have p = q p1 + r
with q ∈ Z, 0 ≤ r < p1. Because s commutes with k, it follows that

hp = sp kp = (s k)r (sp1 kp1)q ,

where sp1 ∈ T , and it follows that h is elliptic as an element of H if and only if hp1 = sp1 kp1

is elliptic as an element of T . Because k 7→ kp1 is an open mapping from T onto T , the hp1

for all h near s form a neighborhood of sp1 in T . Therefore, if s is a stably elliptic element of
G, hence a stably elliptic element of H, then sp1 is a stably elliptic element of T . Because T
is a connected commutative Lie group, it is isomorphic to (R/Z)k ×Rl for some k, l ∈ Z≥0,
cf. [10, Cor. 1.12.4]. (R/Z)k ×Rl only contains stably elliptic elements if l = 0, i.e. T is a
torus. This concludes the proof of i) =⇒ ii).

By definition Gse and the set of regular elements of G are open subsets of G. If s ∈ Gse

is not regular, then we can find s′ arbitrarily close to s with dim gs′ < dim gs. Because of the
finiteness of the dimensions we can repeat this only finitely times with s replaced by s′. It
follows that arbitrarily close to s we can find s′ for which gs′ has locally minimal dimension,
i.e. s′ is regular. This shows that Grse is a dense open subset of Gse.

Now assume that ii) holds. Because t = gs, we have for every X ∈ t that

s eX s−1 = e(Ad s)(X) = eX ,

which shows that s commutes with every element of T = exp(t). It follows that the union H
of the sp T , p ∈ Z is a commutative subgroup, which moreover is compact because there is
a minimal positive p1 such that sp1 ∈ T , which implies that H/T ' Z/p1 Z. It follows that
every element of H, and in particular s, is elliptic. As we have seen after (9.5), all elements
in G near s are conjugate to elements s′′ ∈ s T ⊂ H near s, and therefore are elliptic, and
we conclude that s is stably elliptic.

Because any element s′′ ∈ H near s commutes with s, Ad s′′ commutes with Ad s, which
implies that 1 − Ad s′′ maps q := (1 − Ad s)(g) into iself. Because 1 − Ad s is bijective
on q, 1 − Ad s′′ is bijective on q and hence dim gs′′ ≤ dim gs, if s′′ ∈ H is sufficiently
close to s. Because every s′ in G near s is conjugate to an element s′′ ∈ H near s, we have
dim gs′ = dim gs′′ ≤ dim gs, and we conclude that s is a regular element of G. This concludes

the proof of ii) =⇒ i).
If we write s′ = u s, θ(s′) = ϕ(u)−1, s′′ = θ(s′) s′ θ(s′)−1, then the equation u =

ϕ(u) (eζ(u) s)ϕ(u)−1 s−1 is equivalent to s′′ = eζ(u) s = s eζ(u) ∈ sG◦
s. Furthermore, if s′′
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is sufficently close to s in Gs, then gs = gs′′ = (Ad θ(s′))(gs′), G
◦
s = G◦

s′′ and sG◦
s = s′′G◦

s =
s′′G◦

s′′ , the latter because s′′ belongs to the connected component sG◦
s of s in Gs.

The condition for s, s′ ∈ C that gs′ is conjugate to gs by means of an element of G◦ is
an equivalence relation. Because nearby elements of C are equivalent and C is connected,
it follows that gs′ is conjugate to gs for all s, s′ ∈ C, which implies that the dimension of gs

is constant for all s ∈ C. Because for s′ near s we have that gs′ is conjugate to gs by means
of an element of G◦ which depends analytically on s′, the mapping s′ 7→ gs′ is analytic on
a neighborhood of s in C, and because this holds for any s ∈ C, the mapping s 7→ gs is
analytic on C. The constancy of p1 on C is proved in the same way. �

Remark 9.15 In general, the torus T in Lemma 9.14 is different from the torus T in
Lemma 8.3. In the same way as in Remark 9.3, the tori in Lemma 8.3 can be equal to
arbitrary subtori of the tori in Lemma 9.14. And if dim gs > 0, the number p0 in Lemma 8.3
can be equal to any positive integral multiple of the number p1 in Lemma 9.14. �

Example 9.16 If G is compact, then every element of G is elliptic, and therefore every
element of G is stably elliptic. Therefore in this case Grse is equal to the set of regular
element in G as in [10, (g) on p. 137]. Conversely, Djoković [9] proved that a connected
locally compact group G is compact if and only if the elliptic elements of G fill up a whole
neighborhood of the identity element of G.

If G is connected and s is a regular element of G, then s ∈ G◦
s, cf. [10, Prop. 3.1.3],

which means that p1 = 1. Because every s ∈ G belongs to a maximal torus T , for which
T ⊂ Gs, hence T ⊂ G◦

s, and therefore T = G◦
s if s is regular. Therefore, if G is compact and

connected, then all tori in Lemma 9.14 are maximal tori, of dimension equal to the rank of
G, cf. Example 9.4. �

Example 9.17 The element s = (A, a) in the the group G = E(2) of the Euclidean motions
in the plane, cf. Example 9.5, is not elliptic if g is a nonzero translation, i.e. if A = 1 and
a 6= 0. If on the other hand A 6= 1, then 1− A is invertible and s has p = (1− A)−1 a as its
unique fixed point. In this case Gs is equal to the group SO(2)(p) of all rotations about the
point p, which is a circle subgroup of E(2). Therefore Grse is equal to the open dense subset
of all (A, a) ∈ E(2) such that A 6= 1. As in the case of a compact connected Lie group, we
have p1 = 1 for all elements of E(2)rse. �

Example 9.18 In G = SL(2, R), then the regular and stably elliptic elements are the
elements A ∈ SL(2, R) such that | traceA| < 2. The subgroup SO(2) meets each conjugacy
class in Grse exactly once, which means that in this case Grse is connected and all tori T in
Lemma 9.14 are conjugate to each other. Also, p1 ≡ 1 in this case.

The interior of the set of non-elliptic elements consists of all A ∈ SL(2, R) such that
| traceA| > 2.

See [10, Fig. 1.2.3] for a picture of SL(2, R) and its subsets of A ∈ SL(2, R) such that
| traceA| < 2 and | traceA| > 2, respectively. For the set grse and the interior of the set of
non-elliptic elements of g, see Example 9.6. �
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Suppose that the G-action on M is free and proper, and let Φt denote the flow in G\M
defined by (5.3). Suppose that P is a smooth submanifold of G\M with the following
properties.

i) For each p ∈ P the curve t 7→ Φt(p) is non-constant and periodic.

ii) The function τ : P → R, which assigns to each p ∈ P the minimal positive period τ(p)
of t 7→ Φt(p), is continuous.

iii) Φt(p) ∈ P for every p ∈ P and t ∈ R.

It follows that π−1(P ) is a locally closed smooth submanifold of M which is G-invariant,
hence π : π−1(P ) → P is a principal G-bundle. Because π−1(P ) consists of relative periodic
solutions and is G-invariant, it follows from Lemma 8.1 that π−1(P ) is invariant under the
v-flow, and that the restriction of v to π−1(P ) is a complete vector field on π−1(P ).

The projection π : M → G\M intertwines v with a unique smooth vector field w on
G\M , the one for which Φt = et w. It follows from iii) that w is tangent to P , and from i)
that w has no zeros in P .

Lemma 9.19 The orbits of the w-flow define a smooth principal R/Z-fibration ψ : P → Q
and there is a smooth function σ : Q→ R such that τ = σ ◦ ψ.

Proof Let p ∈ P . There exists a smooth codimension one submanifold S of P through
p such that Tp P = Tp S ⊕ Rw(p). Using the implicit function theorem, one can find an
open neighborhood S0 of p in S and an ε > 0, such that the mapping Φ : (s, t) 7→ et w(s)
defines a diffeomorphism from S0 × ]−ε, ε[ onto an open neighborhood U of p in M . Write
Φ−1(u) = (s(u), t(u)), in which the mappings s : U → S0 and t : U → ]−ε, ε[ are smooth.

Because eτ(p) w(p) = p ∈ U , the set S1 of all s ∈ S0 such that u := eτ(p) w(s) ∈ U is
an open neighborhood of p in S0, and we have that s(u) = e(τ(p)−t(u)) w(s) ∈ S0, in which
ρ(s) := τ(p) − t(u) depends smoothly on s ∈ S1, and ρ(p) = τ(p). Because eρ(s) w(s) ∈ S0

and eτ(s) w(s) = s, we have eρ(s)−τ(s)(s) ∈ S0, from which we conclude that ρ(s)− τ(s) = 0 if
|ρ(s)− τ(s)| < ε. Because ρ− τ is a continuous function on S1 which is equal to 0 at p, we
conclude that τ is equal to the smooth function ρ on some open neighborhood S2 of p in S1.

The mapping Ψ : (t, s) 7→ et τ(s) w(s) from (R/Z) × S2 to P is well-defined, smooth,
injective, and has a bijective tangent mapping at every point. In view of the inverse function
theorem, this shows that Ψ is a diffomorphism onto an open neighborhood V of p in P .
Moreover, Ψ maps the circles (R/Z) × {s}, s ∈ S2, onto w-orbits in P . Because also
τ(Ψ(t, s)) = τ(s) for all (t, s) ∈ (R/Z) × S2, this proves that τ is a smooth function on V
which is constant on the w-orbits in V . Because every p ∈ P has an open neighborhood V
which is invariant under the w-flow and on which τ is a smooth function which is constant
on the w-orbits in V , the conclusion is that τ : P → R is smooth and is constant on the
w-orbits in P . The mapping Ψ : (t, s) 7→ et τ(s) w(s) from (R/Z) × P to P defines a proper
and free R/Z-action on P , of which the orbits coincide with the w-orbits. The proof of the
lemma is complete. �
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Example 9.20 Let R be the rotation in the plane about the angle 2π a/b, in which
b ∈ Z≥2, a ∈ Z, 0 < a < b and a, b without common divisors. On R2 × R let p ∈ Z act
by (x, t) 7→ (Rp x, t + p). Let P = (R2 ×R)/Z and denote the canonical projection from
R2×R onto P by ψ. Then ψ intertwines the vector field ∂/∂t with a unique analytic vector
field w on P . The w-solution curves are the curves t 7→ ψ(x(0), t(0) + t). All these curves
are periodic, where the minimal positive period τ is equal to 1 when x(0) = 0 and equal to
b when x(0) 6= 0. Therefore the minimal period function is discontinuous in this case. The
assumption ii) has been made in order to avoid such subperiodic solution behaviour. �

Lemma 9.21 For m ∈ π−1(P ), the unique element s = s(m) ∈ G in (8.1), (8.2) depends
smoothly on m.

Proof Write N = π−1(P ). The mapping

A : (g, m) 7→ (m, g ·m) : G×N → N ×N

is a injective immersion, proper because the G-action is proper. Therefore its image O is a
closed smooth submanifold of N ×N , and we have a smooth inverse A−1 : O → G×N . The
mapping

m 7→ (m, eτ(m) v(m)) : N → N ×N

is smooth and satisfies ψ(N) ⊂ O, and therefore it defines a smooth mapping B : N → O.
The mapping m 7→ s(m) is equal to B : N → O, followed by A−1 : O → G × N , and
concluded by the projection N × G → G onto the first factor. Therefore m 7→ s(m) is
smooth as the composition of three smooth mappings. �

Let P rse denote the set of all p ∈ P , such that for some (every) m ∈ π−1({p}) the element
s(m) is a regular and stably elliptic element of G. Then P rse is an open subset of P , and
Qrse := ψ(P rse) is an open subset of Q. Because P rse is invariant under the w-flow, we have
P rse = ψ−1(Qrse) and s(m) ∈ Grse for every m ∈ (ψ ◦ π)−1(Qrse).

Lemma 9.22 Write χ := ψ ◦ π. Let m0 ∈ M and q0 := χ(m0) ∈ Qrse. Write s = s(m0)
and T = G◦

s. Then there exists an open neighborhood Q0 of q0 in Qrse and a smooth
section µ : Q0 → χ−1(Q0) of the fibration χ : χ−1(Q0) → Q0, such that G◦

s(µ((q)) = T

and s(µ(q))T = s T for every q ∈ Q0.

Proof Because π : χ−1(Q) → Q is a smooth fibration, there exists an open neighborhood
Q1 of q0 in in Qrse and a smooth section ν : Q1 → π−1(Q1) of χ : χ−1(Q1) → Q1, i.e. ν is
smooth and χ◦ν is equal to the identity in Q1. It follows from Lemma 9.14 that there exists
an open neighborhood V of s in G and an analytic mapping θ : V → G, such that if s′ ∈ V
and s′′ = θ(s′) s′ θ(s′)−1, then G◦

s′′ = G◦
s = T and s′′ T = s T .

It follows from (8.7) with s = s(m) that s(g · m) = g s(m) g−1. If we write m = ν(q),
u = s(ν(q)), g = θ(u), and µ(q) := θ(s(ν(q))) · ν(q), then we obtain that G◦

s(µ((q)) = T and
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s(µ(q))T = s T for every q ∈ Q such that s(ν(q)) ∈ V . These q form an open neighborhood
Q0 of q0 in Qrse, and µ is a smooth section of χ : χ−1(Q0) → Q0. �

The mapping (q, g, t) 7→ g ·et v(µ(q)) is a surjective local diffeomorphism from Q0×G×R
onto χ−1(Q0) = π−1(P0). If g · et v(µ(q)) = g′ · et′ v(µ(q′)), then an application of χ shows
that q = q′, and the equation is equivalent to (g′)−1 · g · µ(q) = e(t′−t) v(µ(q)), which in turn
is equivalent to the statement that there exists a p ∈ Z such that t′ − t = p τ(π(µ(q))) and
(g′)−1 g = s(µ(q))p. In view of Lemma 9.19 and the fact that µ is a section of χ, we have
τ ◦ π ◦ µ = σ ◦ψ ◦ π ◦ µ = σ ◦ χ ◦ µ = σ. It follows that the mapping (q, g, t) 7→ g · et v(µ(q))
induces a diffeomorphism from (Q0 ×G×R)/Z onto χ−1(Q0) = π−1(P0), where p ∈ Z acts
on Q0 ×G×R by sending (q, g, t) to (q, g s(µ(q))−p, t+ p σ(q)).

In the notation of Lemma 9.22, let λj, 1 ≤ j ≤ k, be a Z-basis of the integral lattice
ker exp in the Lie algebra t of the torus T . In view of Lemma 9.14, we have s(µ(q))p1 ∈ T

for every q ∈ Q0. Because the exponential mapping is a local diffeomorphism from t onto T ,
we can arrange, by shrinking Q0 if necessary, that there is a smooth mapping X : Q0 → t

such that s(µ(q))p1 = eX(q) for every q ∈ Q0.
We now reason as after (8.9), with the torus T = S◦ and the number p0 replaced by the

torus T = G◦
s and the number p1, respectively, and adding the parameters q. Let θ ∈ Rk+1

act on Q0 ×G×R by sending (q, g, t) ∈ G×R to(
q, g exp

(
k∑

j=1

θj λj − θk+1X(q)

)
, t+ θk+1 p1 σ(q)

)
. (9.6)

If θ ∈ Zk+1, then it follows from the fact that eX(q) = s(µ(q))p1 that (9.6) is equal to(
q, g s(µ(q))−θk+1 p1 , t+ θk+1 p1 σ(q)

)
,

which is equal to the action of the integer p = θk+1 p1 on (q, g, t). It follows that we have
an induced action of (R/Z)k+1 = Rk+1/Zk+1 on (Q0 ×G×R)/Z. Moreover, the (R/Z)k+1-
-action on (Q0 × G × R)/Z commutes with the G-action on (Q0 × G × R)/Z defined by
multiplications from the left on the second factor.

If (9.6) is equal to (q, g s(µ(q))−p, t+ p σ(q)) for some p ∈ Z, then

s(µ(q))p = exp

(
−

k∑
j=1

θj λj + θk+1X(q)

)
∈ T, (9.7)

which implies that p = q p1 for some q ∈ Z. But then p σ(q) = θk+1 p1 σ(q) implies that
θk+1 = q and now (9.7) in combination with eX(q) = s(µ(q))p1 implies that

∑k
j=1 θj λj

belongs to the integral lattice in t, which in turn implies that θj ∈ Z for every 1 ≤ j ≤ k.
This shows that the action of (R/Z)k+1 on (Q0 ×G×R)/Z is free, and it is automatically
proper because the group (R/Z)k+1 is compact.

The diffeomorphism Φ intertwines the action of (R/Z)k+1 on (Q0 × G × R)/Z with a
uniquely defined proper and free smooth action of (R/Z)k+1 on χ−1(Q0) = π−1(P0). This
action commutes with the G-action on π−1(P0).
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Let Xj(q), 1 ≤ j ≤ k, denote the coordinates of X(q) ∈ t with respect to the Z-basis λj,
1 ≤ j ≤ k, of the integral lattice of t. Then

k∑
j=1

θj λj − θk+1X(q) =
k∑

j=1

(θj − θk+1Xj(q)) λj,

and it follows that on χ−1({q}) the vector field v is equal to the inifinitesimal action of the
element θ̇(q) of the Lie algebra Rk+1 of Rk+1/Zk+1, which is defined by

θ̇j(q) = θ̇k+1Xj(q), 1 ≤ j ≤ k, and θ̇k+1 = 1/p1 σ(q). (9.8)

If the G-action on M is proper but not free, then the above constructions can be applied
with the manifold M and the Lie group G replaced by an isotropy type MH and the Lie
group N(H)/H, respectively, where N(H)/H acts freely on MH , cf. Lemma 3.3, and MH

is invariant under the v-flow, cf. Lemma 5.5. The N(H)/H-invariant principal (R/Z)k+1-
-fibration in π−1(P0) ∩ MH has a unique extension to a G-invariant principal (R/Z)k+1-
fibration in π−1(P0). For the proof one can use a version with parameters of the constructions
at the end of Subsection 7.4. This leads to the following conclusions.

Proposition 9.23 Suppose that the G-action on M is proper, and let P be a smooth sub-
manifold of the orbit type G\M[H] in the orbit space G\M , consisting of nonconstant periodic
solutions of the flow Φt in G \M defined by (5.3). Furthermore assume that the function
τ : P → R, which assigns to each p ∈ P the minimal positive period τ(p) of t 7→ Φt(p), is
continuous. It then follows from Lemma 9.19 that the orbits of the flow Φt in P define a
smooth principal R/Z-fibration ψ : P → Q and there is a smooth function σ : Q → R such
that τ = σ ◦ ψ. Write χ = ψ ◦ π : π−1(P ) → Q.

Write, for each m ∈ π−1(P ) = χ−1(Q), s(m) = sGm, with s ∈ G as in (8.1), (8.2).
Let Qrse denote the set of all q ∈ Q such that for some (every) m ∈ χ−1({q}) we have that
s(m) is a regular and stably elliptic element of N(Gm)/Gm. Write T (m) for the identity
component of the centralizer of s(m) in N(Gm)/Gm.

Then Qrse is an open subset of Q; let C be a connected component of Qrse. If through
each m ∈ χ−1(C) we draw the v-flowout of the T (m)-orbit through m, then these subsets of
χ−1(C) define a G-invariant smooth fibration of χ−1(C), of which the fibers are diffeomorphic
to tori of dimension equal to dimT (m) + 1.

Let m0 ∈ M be such that q0 := χ(m0) ∈ C. Write H = Gm0, T = T (m0) and t for the
Lie algebra of the torus subgroup T of N(H)/H. Then there exists an open neighborhood Q0

of q0 in C, a smooth section µ : Q0 → χ−1(Q0) of the fibration χ : χ−1(Q0) → Q0, and a
smooth mapping X : Q0 → t, such that such that G◦

s(µ((q)) = T and s(µ(q))p1 = eX(q) for

every q ∈ Q0. Here, for any m ∈ χ−1(C), p1 denotes the smallest positive integer p such
that s(m)p1 ∈ T (m), cf. the last statement in Lemma 9.14.

Let λj, 1 ≤ j ≤ k, be a Z-basis of the integral lattice of t, and let Xj(q), 1 ≤ j ≤ k,
denote the coordinates of X(q) with respect to this basis. Then (9.6) defines an action of
θ ∈ (R/Z)k+1 on Q0 × G ×R which is intertwined by the mapping (q, g, t) 7→ g · et v(µ(q))
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with a G-invariant free and proper action of (R/Z)k+1 on χ−1(Q0), the orbits of which are
equal to the fibers of the aforementioned toral fibration of π−1(C). Furthermore, for each
m ∈ χ−1(Q0), v(m) is equal to the infintesimal action of the element θ̇(χ(m)) in the Lie
algebra Rk+1 of (R/Z)k+1 which is defined by (9.8).

Because one-parameter subgroups of tori are quasi-periodic, this expresses in a quite strong
sense that the v-flow in χ−1(C) is quasi-periodic on tori, where the tori form a smooth
fibration and the velocity vector at m is an element of the Lie algebra of the torus which
depends smoothly on the parameters q = χ(m).

As in the text after Proposition 9.9, the global obstruction to the toral fibration of χ−1(C)
being a G-invariant principal (R/Z)k+1 appears to be the monodromy homomorphism from
π1(C, q0) to the Weyl group of the torus subgroup T of N(H)/H.

Remark 9.24 For free actions of compact and connected Lie groups, Proposition 9.23 has
been presented by Hermans [12], who applied it to a spherical ball rolling in a rotationally
symmetric bowl. �
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