
EXERCISES I

Let (E, σ) be a symplectic vector space. We have seen that unlike the case
for positive non-degenerate symmetric forms, it is not true that for any linear
subspace V of E, (V, σ|V ) is a symplectic vector space. Interesting subsets of
the grassmannians of linear subspaces are singled out according to the incidence
relations between V and its symplectic anhililator V σ.

• V is said to be isotropic if V ⊂ V σ. Lagrangian subspaces are defined
to be the isotropic subspaces of maximal dimension.

• V is said to be coisotropic if V σ ⊂ V .
• V is said to be symplectic if (V, σ|V ) is a symplectic vector space.

Exercise 1.6.
i. Show that symplectic linear subspaces only exist in even dimensions.
ii. Characterize symplectic linear subspaces in terms of the incidence relations

between the subspace and its symplectic anihilator.
For any i ∈ {1, . . . , n}, where 2n is the dimension of E, the symplectic grass-

mannian of 2i dimensional linear subspaces -denoted by S2i(E, σ)- is the subset of
Gr2i(E) of symplectic linear subspaces.

iii. Show that S2i(E, σ) is an open subset of Gr2i(E). This is in contrast with
the Lagrangian Grassmannian L(E, σ).

iv. Show that if V ∈ S2i(E, σ) then V σ ∈ S2n−2i(E, σ).

Recall that all lines in a symplectic vector space are isotropic.

Exercise 1.7.
i. Prove that all hyperplanes H ⊂ E are coisotropic.

Now let W be a hyperplane of H. It is a real codimension 2 subspace of E, and
hence a candidate to be symplectic.

ii. Describe all hyperplanes W of H such that W ∈ S2n−2(E, σ).

Exercise 1.8. Show that the following statements are equivalent:
(1) L is Lagrangian.
(2) L is both isotropic and coisotropic.
(3) L is coisotropic of minimal dimension.

The search for symplectic linear subspaces (motivated for the search of symplectic
submanifolds) is an important problem in symplectic geometry. Elucidating the
right compatibility relations between symplectic an complex geometry turns out to
be a key aspect.

Let J be a complex structure in (E, σ), i.e. J : E → E is an endomorphism such
that J2 = −Id. The complex structure J is said to tame the linear symplectic
form σ if

σ(u, Ju) > 0 ∀u ∈ E\{0}
If in addition J belongs to the symplectic linear group Symp(E, σ) then it is

said to be compatible with σ.

Exercise 1.9. The complex structure J gives rise to the complex grassmannians
GrC

i (E, J) ⊂ Gr2i(E), i = 1, . . . , n. Prove that if J tames σ then GrC
i (E, J) ⊂

S2i(E, σ).
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Recall that if (E, J) is a complex vector space and h a complex Hermitian metric
on it, then σ := Imh defines a symplectic structure.

Exercise 1.10. Let (E, σ) be a symplectic vector space and J a complex structure
on E.

i. Show that σ is the imaginary part of a J-Hermitian metric h if and only J
is compatible with σ. Notice that in such a case we can find an isomorphism
from (E, J, h) onto (R2n = Cn, J0, h0), where J0 is multiplication times i in
Cn and h0 is the Hermitian basis whose matrix in the fixed complex basis
e1, . . . , en is the identity.

Recall that when J is compatible with σ, the real part of the complex Hermitian
metric defined out of σ and J defines an inner product g.

ii. Show that with respect to this inner product, for any linear subspace V ⊂ E
we have

JV ⊥ V σ (1)
iii. Show that if (E, σ) has dimension 2, then a complex structure taming σ is

always compatible with it.
iv. Let (E, σ) be a symplectic vector space. Describe the manifold of complex

structures on E as a homogeneous space of Gl(E) and deduce its dimension.
Describe also the manifold of complex structures compatible with σ as a
homogeneous space (of a subgroup of Gl(E)). Deduce that for symplectic
vector spaces of dimension greater that 2, there exists complex structures
which tame the symplectic form but are not compatible with it.

Assume that J is compatible with (E, σ). By exercise 1.9, GrC
i (E, J) ⊂ S2i(E, σ).

As we will see complex linear subspaces are in a suitable sense the “most” symplec-
tic ones.

Indeed, if V is a complex subspace then V = JV and therefore by equation 1
we have V ⊥ V σ (we use g the canonical inner product associated to σ and J) ,
so the symplectic orthogonal is “as transversal as possible” to the linear subspace
V . There is a beautiful way of detecting when V in Gr(2i, E) is symplectic and
measuring the “defect” of V ∈ S2j(E, σ) from being complex.

We will do it just for four dimensional symplectic spaces (E, σ). We consider
Gror

2 (E) the grassmannian of oriented planes in E. Notice that since we have a
canonical metric g, the choice of orientation of V ∈ Gror

2 (E) implies that V inherits
an area form ΩV (which is a symplectic form on V !). If V is a symplectic plane,
then σ|V is another symplectic form on V .

For each V ∈ Gror
2 (E) the Kahler angle is defined

θ(V ) := cos−1(σ|V /ΩV ) ∈ [0, π] (2)
By definition,

Sor
2 (E, σ) = {V ∈ Gror

2 (E))|θ(V ) 6= π},
and if Lor(E, σ) denotes the subset of Gror

2 (E) of Lagrangian planes then we see
that

Lor(E, σ) = {V ∈ Gror
2 (E))|θ(V ) = π}

Recall that a compatible complex structure defines a canonical Hermitian metric
and hence a group of unitary transformations U(E, h).

Exercise 1.11.
i. Show that the Kahler angle is well defined, i.e. σ|V /ΩV ∈ [−1, 1].

Recall that Gror
2 (E) is the disjoint union of Sor

2 (E, σ) and Lor(E, σ). The group
U(E, h) is contained in Symp(E, σ). Hence it acts on Gror

2 (E) preserving each of
the two aforementioned subsets.
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ii. Show that V, V ′ ∈ Gror
2 (E) are in the same U(E, h)-orbit iff θ(V ) = θ(V ′).

iii. Classify the orbits of the U(E, h)-action on Gror
2 (E) according to its di-

mension.
Given V, V ′ subspaces of a vector space with inner product (E, g), the maximal

angle between V, V is defined

∠max(V, V ′) = maxv∈V \{0}angle(v, V ′)
iv. Show that

|θ(V )| = ∠max(V, JV )

The notion of Kahler (multi)angle extends to higher dimensions. Notice that
in higher dimensions the situation is more complicated in the following sense: in
dimension 4 a dimension count shows that if V ∈ Gr2(E) is not complex, then
V ∩ JV = {0}. In dimension eight four example, for a four dimensional linear
subspace V we may have either of the following situations

• V = JV ,
• dimV ∩ JV = 2,
• V ∩ JV = {0},

and the dimension V ∩ JV is clearly preserved in the U(E, h)-orbits.
If A ∈ Symp(E, σ) then we can deduce information about the eigenvalues of A.

In particular, if λ ∈ spec(A) (λ is an eigenvalue) then so 1/λ is. Therefore, one
concludes that the determinant of A is ±1.

Exercise 1.12. Prove that if A ∈ Symp(E, σ) then its is actually equal to 1, (and
hence if −1 ∈ spec(A) then it has even multiplicity).

Exercise 1.13. Let E be an even dimensional vector space. The set of all sym-
plectic forms is an open subset of

∧2
E∗, the vector space of all antisymmetric

bilinear forms on E. Describe it as an homogeneous space of Gl(E) and compute
its dimension.


