
EXERCISES II

Exercise 2.6. Let M = R. Find a canonical transformation of T ∗M -equipped
with its canonical symplectic structure- which is not induced by a diffeomorphism
of M .

Let (M,σ) be a symplectic manifold. We say that a submanifold N ↪→ M is
isotropic (resp. coisotropic, lagrangian, symplectic), if for every m ∈ N its
tangent space TmN is an isotropic (resp. coisotropic, lagrangian, symplectic)
subspace of the symplectic vector space (TmM,σm).

Exercise 2.7. Let (M,σ) be a symplectic manifold and consider its cotangent bun-
dle with the canonical symplectic structure.

i. Prove that the fibers of T ∗M are lagrangian submanifolds.
ii. Let N ↪→ T ∗M be a submanifold which can be parametrized as the graph of

a section α : M → T ∗M . The section α is then a 1-form. Show that N is
lagrangian if and only if α is closed (i.e. dα = 0).

Exercise 2.8.
i. Let (D2\{0}, σ0) be the punctured open unit disk in R2 equipped with the

restriction the canonical symplectic structure. Find a diffeomorphism

φ : D2\{0} → D2\{0}
such that
(a) φ sends circles with center the origin to circles with center the origin.
(b) φ sends circles approaching the outer boundary component to circles

approaching the puncture.
(c) φ∗σ0 = σ0.

Hint: Use polar coordinates, and then recall that a symplectic form in R2

is an area form, and hence induces an orientation.
ii. Let B2n\{0} be the punctured unit ball in R2n. Let φ be any self-diffeomorphism

of B2n\{0} which sends points approaching the outer boundary component
to points approaching the puncture. Then the manifold

B2n
∐

B2n/ ∼ φ,
where the equivalence relation amounts to identifying x ∈ B2n\{0} in the
first ball with φ(x) in the second, is known to be homeomorphic to the sphere
Sn.

Let σ0 be the restriction to B2n\{0} of the canonical symplectic form in
R2n. Show that for n > 1 one cannot find φ as above so that φ∗σ0 = σ0 .

Exercise 2.9. Consider the map

f : Cn\{0} −→ C\{0}
(z1, . . . , zn) 7−→ z2

1 + · · ·+ z2
n

We endow Cn\{0} with the restriction of the canonical symplectic structure σ0.
Show that

i. p is a surjective submersion.
ii. Each fiber of p is a symplectic submanifold of (Cn\{0}, σ0).
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Exercise 2.10. Let (M,σ) be a symplectic manifold and p : M → Σ a surjective
submersion with the following properties:

• The fibers are compact and σ restricts to each of them to a symplectic
structure (fibers are symplectic submanifolds).

At each m ∈ M , the tangent space to the corresponding fiber TVmM -also called
vertical tangent subspace- is symplectic. Therefore, its symplectic annihilator
Hm is a plane transversal to the fiber. This distribution of planes defines an Ehres-
mann connection: given any path γ : [0, 1] → Σ and a point m in the fiber over
γ(0), there exists a unique path γ̃ : [0, 1]→M such that

• γ̃(0) = m.
• γ̃′(t) ∈ Hγ̃(t).
• p ◦ γ̃ = γ.

The path γ̃ is called the horizontal lift (with respect to H) of γ at m.
Now if we let m vary over p−1(γ(0)) we obtain a diffeomorphism

Hγ : p−1(γ(0))→ p−1(γ(1)),

the so called parallel transport over γ.
Show that the parallel transport preserves the induced symplectic structures on

the fibers.
Hint: Recall from construction on the last paragraph of page 13 of the notes, that

the flow of a vector field in the kernel of a closed 2-form (in general of any closed
p-form), preserves the 2-form.

We have seen that any symplectic manifold (M,σ) admits compatible almost
complex structures. Let J (M,σ) denote the space of almost complex structures
compatible with σ. They are a subset of the topological vector space of sections of
the bundle End(TM) → M of endomorphisms of the tangent bundle (we use the
compact open topology). Therefore they inherit a topology.

One can prove that J (M,σ) is contractible. The first step is looking again at
the linear case.

Exercise 2.11. Let (E, σ) be a symplectic vector space. We fix any L ∈ L(E, σ)
and consider the following smooth map:

J (E, σ) −→ LL,0
J 7−→ JL

Show that this map is well defined and surjective. Identify the fiber over L′ ∈ LL,0
with the set of positive definite symmetric n×n matrices (here 2n is the dimension
of E).

The map in exercise 2.11 is actually a smooth surjective submersion. The fibers
are diffeomorphicm to vector spaces, and so is LL,0. This implies that J (E, σ)
itself is diffeomorphic to a vector space, and hence contractible.

The linear construction of exercise 2.11 can be performed fiberwise (i.e. on each
tangent space (TmM,σm). This is seen to imply that J (M,σ) is contractible.
One consequence of the contractibility of J (M,σ) is that the tangent bundle of a
symplectic manifold has well defined Chern classes; even more, any vector bundle
each of whose fibers carries a linear symplectic structure which varies smoothly, has
well defined Chern classes (notice that in the above arguments closedness of the
symplectic form was not used at all).

Exercise 2.12. Let (M,σ) be a compact symplectic manifold. The second De
Rham cohomology group H2

dR(M) is a finite dimensional vector space. Its rank is
by definition the second Betti number of M , and it is denoted by β2.
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i. Show that the subset of cohomology classes in H2
dR(M) ' Rβ2 which admit

a symplectic representative is an open subset.
A cohomology class [α] ∈ H2

dR(M) is called integral, if for any closed 2-cycle
[C] ∈ H2(M ;Z) we have ∫

C

α ∈ Z
It is known that one can always find a basis of H2

dR(M) all whose vectors are
integral cohomology classes.

ii. Show that M admits symplectic structures whose associated cohomology
class is integral.


