EXERCISES II

Exercise 2.6. Let $M = \mathbb{R}$. Find a canonical transformation of T^*M -equipped with its canonical symplectic structure- which is not induced by a diffeomorphism of M.

Let (M, σ) be a symplectic manifold. We say that a submanifold $N \hookrightarrow M$ is isotropic (resp. coisotropic, lagrangian, symplectic), if for every $m \in N$ its tangent space $T_m N$ is an isotropic (resp. coisotropic, lagrangian, symplectic) subspace of the symplectic vector space $(T_m M, \sigma_m)$.

Exercise 2.7. Let (M, σ) be a symplectic manifold and consider its cotangent bundle with the canonical symplectic structure.

- i. Prove that the fibers of T^*M are lagrangian submanifolds.
- ii. Let $N \hookrightarrow T^*M$ be a submanifold which can be parametrized as the graph of a section $\alpha \colon M \to T^*M$. The section α is then a 1-form. Show that N is lagrangian if and only if α is closed (i.e. $d\alpha = 0$).

Exercise 2.8.

i. Let $(D^2 \setminus \{0\}, \sigma_0)$ be the punctured open unit disk in \mathbb{R}^2 equipped with the restriction the canonical symplectic structure. Find a diffeomorphism

$$\phi \colon D^2 \setminus \{0\} \to D^2 \setminus \{0\}$$

such that

- (a) ϕ sends circles with center the origin to circles with center the origin.
- (b) ϕ sends circles approaching the outer boundary component to circles approaching the puncture.

(c) $\phi^* \sigma_0 = \sigma_0$.

Hint: Use polar coordinates, and then recall that a symplectic form in \mathbb{R}^2 is an area form, and hence induces an orientation.

ii. Let $B^{2n}\setminus\{0\}$ be the punctured unit ball in \mathbb{R}^{2n} . Let ϕ be any self-diffeomorphism of $B^{2n}\setminus\{0\}$ which sends points approaching the outer boundary component to points approaching the puncture. Then the manifold

$$B^{2n} \prod B^{2n} / \sim \phi,$$

where the equivalence relation amounts to identifying $x \in B^{2n} \setminus \{0\}$ in the first ball with $\phi(x)$ in the second, is known to be homeomorphic to the sphere S^n .

Let σ_0 be the restriction to $B^{2n} \setminus \{0\}$ of the canonical symplectic form in \mathbb{R}^{2n} . Show that for n > 1 one cannot find ϕ as above so that $\phi^* \sigma_0 = \sigma_0$.

Exercise 2.9. Consider the map

$$\begin{array}{rcl} f \colon \mathbb{C}^n \setminus \{0\} & \longrightarrow & \mathbb{C} \setminus \{0\} \\ (z_1, \dots, z_n) & \longmapsto & z_1^2 + \dots + z_n^2 \end{array}$$

We endow $\mathbb{C}^n \setminus \{0\}$ with the restriction of the canonical symplectic structure σ_0 . Show that

i. p is a surjective submersion.

ii. Each fiber of p is a symplectic submanifold of $(\mathbb{C}^n \setminus \{0\}, \sigma_0)$.

Exercise 2.10. Let (M, σ) be a symplectic manifold and $p: M \to \Sigma$ a surjective submersion with the following properties:

• The fibers are compact and σ restricts to each of them to a symplectic structure (fibers are symplectic submanifolds).

At each $m \in M$, the tangent space to the corresponding fiber $T_m^V M$ -also called vertical tangent subspace- is symplectic. Therefore, its symplectic annihilator H_m is a plane transversal to the fiber. This distribution of planes defines an Ehresmann connection: given any path $\gamma: [0,1] \to \Sigma$ and a point m in the fiber over $\gamma(0)$, there exists a unique path $\tilde{\gamma}: [0,1] \to M$ such that

• $\tilde{\gamma}(0) = m$.

•
$$\tilde{\gamma}'(t) \in H_{\tilde{\gamma}(t)}$$
.

• $p \circ \tilde{\gamma} = \gamma$.

The path $\tilde{\gamma}$ is called the **horizontal lift** (with respect to H) of γ at m.

Now if we let m vary over $p^{-1}(\gamma(0))$ we obtain a diffeomorphism

$$H_{\gamma}: p^{-1}(\gamma(0)) \to p^{-1}(\gamma(1)),$$

the so called parallel transport over γ .

Show that the parallel transport preserves the induced symplectic structures on the fibers.

Hint: Recall from construction on the last paragraph of page 13 of the notes, that the flow of a vector field in the kernel of a closed 2-form (in general of any closed p-form), preserves the 2-form.

We have seen that any symplectic manifold (M, σ) admits compatible almost complex structures. Let $\mathcal{J}(M, \sigma)$ denote the space of almost complex structures compatible with σ . They are a subset of the topological vector space of sections of the bundle $End(TM) \to M$ of endomorphisms of the tangent bundle (we use the compact open topology). Therefore they inherit a topology.

One can prove that $\mathcal{J}(M,\sigma)$ is contractible. The first step is looking again at the linear case.

Exercise 2.11. Let (E, σ) be a symplectic vector space. We fix any $L \in \mathcal{L}(E, \sigma)$ and consider the following smooth map:

$$\begin{array}{cccc} \mathcal{J}(E,\sigma) & \longrightarrow & \mathcal{L}_{L,0} \\ J & \longmapsto & JL \end{array}$$

Show that this map is well defined and surjective. Identify the fiber over $L' \in \mathcal{L}_{L,0}$ with the set of positive definite symmetric $n \times n$ matrices (here 2n is the dimension of E).

The map in exercise 2.11 is actually a smooth surjective submersion. The fibers are diffeomorphicm to vector spaces, and so is $\mathcal{L}_{L,0}$. This implies that $\mathcal{J}(E,\sigma)$ itself is diffeomorphic to a vector space, and hence contractible.

The linear construction of exercise 2.11 can be performed fiberwise (i.e. on each tangent space $(T_m M, \sigma_m)$). This is seen to imply that $\mathcal{J}(M, \sigma)$ is contractible. One consequence of the contractibility of $\mathcal{J}(M, \sigma)$ is that the tangent bundle of a symplectic manifold has well defined Chern classes; even more, any vector bundle each of whose fibers carries a linear symplectic structure which varies smoothly, has well defined Chern classes (notice that in the above arguments closedness of the symplectic form was not used at all).

Exercise 2.12. Let (M, σ) be a compact symplectic manifold. The second De Rham cohomology group $H^2_{dR}(M)$ is a finite dimensional vector space. Its rank is by definition the second Betti number of M, and it is denoted by β_2 .

EXERCISES II

i. Show that the subset of cohomology classes in $H^2_{dR}(M) \simeq \mathbb{R}^{\beta_2}$ which admit a symplectic representative is an open subset.

A cohomology class $[\alpha] \in H^2_{dR}(M)$ is called integral, if for any closed 2-cycle $[C] \in H_2(M;\mathbb{Z})$ we have

$$\int_C \alpha \in \mathbb{Z}$$

It is known that one can always find a basis of $H^2_{dR}(M)$ all whose vectors are integral cohomology classes.

ii. Show that M admits symplectic structures whose associated cohomology class is integral.