EXERCISES III

Exercise 8 (Example 3.1 in the notes revisited). Let X be an n-dimensional manifold and let $v \in \mathfrak{X}(X)$. The momentum function of the vector field v is given by

$$
\begin{align*}
\mu_{v}: T^{*} X & \longrightarrow \mathbb{R} \\
(x, \xi) & \longmapsto \xi(v(x)) \tag{1}
\end{align*}
$$

Let $H_{\mu_{v}} \in \mathfrak{X}\left(T^{*} X\right)$ denote the Hamiltonian vector field of μ_{v} with respect to the canonical symplectic structure $d \tau \in \Omega^{2}\left(T^{*} X\right)$. We want to show that its flow $e^{t H_{\mu_{v}}}$, which is known to preserve the symplectic form $d \tau$, obeys the following formula:

$$
\begin{equation*}
e^{t H_{\mu_{v}}}(x, \xi)=\left(e^{t v}(x),\left(\left(T_{x} e^{t v}\right)^{*}\right)^{-1}(\xi)\right) \tag{2}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\pi \circ e^{t H_{\mu_{v}}}=e^{t v} \circ \pi \tag{3}
\end{equation*}
$$

where $\pi: T^{*} X \rightarrow X$ is the projection.
We proceed to prove it in the following way:
For each $t \in \mathbb{R}$, we have a diffeomorphism $e^{t v}: X \rightarrow X$ (defined on an open subset of X). According to exercise 2.1, we have an induced diffeomorphism

$$
\begin{aligned}
\Phi^{t}: T^{*} X & \longrightarrow T^{*} X \\
(x, \xi) & \longmapsto\left(e^{t v}(x),\left(\left(T_{x} e^{t v}\right)^{*}\right)^{-1}(\xi)\right),
\end{aligned}
$$

i.e. it is given by the formula in equation 2 (notice also that this formula makes sense for all $(t, x, \xi) \in \mathbb{R} \times T^{*} M$ for which $e^{t v}(x)$ is defined), and such that

$$
\Phi^{t *} \tau=\tau
$$

Out of Φ^{t} one can define the following vector field in $T^{*} X$:

$$
\begin{equation*}
w(x, \xi):=\frac{d}{d t} \Phi^{t}(x, \xi)_{\mid t=0} \tag{4}
\end{equation*}
$$

i. Show that Φ^{t} coincides with the flow of the vector field $w \in \mathfrak{X}\left(T^{*} X\right)$ in equation 4. In other words, you must show that for all $(x, \xi) \in T^{*} X$, $s \mapsto \Phi^{s}(x, \xi)$ is an integral curve for w, which is equivalent to showing

$$
\frac{d}{d s} \Phi^{s}(x, \xi)=w\left(\Phi^{s}(x, \xi)\right)
$$

and by equation 4

$$
\begin{equation*}
\frac{d}{d s} \Phi^{s}(x, \xi)=\frac{d}{d t} \Phi^{t}\left(\Phi^{s}(x, \xi)\right)_{\mid t=0} \tag{5}
\end{equation*}
$$

This last equation is equivalent to

$$
\Phi^{t} \circ \Phi^{s}=\Phi^{t+s}
$$

So we conclude that $e^{t w}$ preserves τ (and hence also $d \tau$, the symplectic form). Equivalently,

$$
\begin{equation*}
\mathcal{L}_{w} \tau=0 \tag{6}
\end{equation*}
$$

ii. Show that w is a Hamiltonian vector field.

Hint: Rewrite equation 6 using Cartan's homotopy formula.
iii. Show that the Hamiltonian function of w coming from Cartan's formula is the momentum function $\mu_{v}: T^{*} X \rightarrow \mathbb{R}$.

We will study conditions under which the Legendre transform is a global diffeomorphism from $T X$ to $T^{*} X$.
Exercise 9. Let E be a vector space and $F: E \rightarrow \mathbb{R}$ a smooth function. The Legendre transform is by definition

$$
\begin{aligned}
L_{F}: E & \longrightarrow E^{*} \\
p & \longmapsto d F_{p}
\end{aligned}
$$

The function F is said to be strictly convex if for every $p, v \in E$ the real function

$$
t \mapsto F(p+t v)
$$

is strictly convex (i.e. its second derivative is strictly positive everywhere).
The Hessian of F is the quadratic form

$$
d^{2} F_{p}: v \mapsto \frac{d^{2}}{d t^{2}} F(p+t v)
$$

Recall that F is strictly convex if and only if its Hessian is positive definite for all points p in E (i.e. if and only if the Legendre condition holds).
i. Show that if F is strictly convex then the Legendre transform is a local diffeomorphism.
ii. Show that the following four conditions are equivalent:
(a) $d F_{p_{0}}=0$ for some $p_{0} \in E$.
(b) F has a local minimum at some point p_{0}.
(c) F has a unique (global) minimum at some p_{0}.
(d) $\lim _{|p| \rightarrow \infty} F(p)=+\infty$.

A strictly convex function is called stable if either of the previous conditions holds.
iii. Find an example of an strictly convex function $F: \mathbb{R} \rightarrow \mathbb{R}$ which is not stable.
Given F strictly convex we denote by S_{F} the set $l \in E^{*}$ for which the function

$$
\begin{aligned}
F_{l}: E & \longrightarrow \mathbb{R} \\
p & \longmapsto F(p)-l(p)
\end{aligned}
$$

is stable.
iv. Show that the subset $S_{F} \subset E^{*}$ is open and convex.
v. Show that L_{F} maps diffeomorphically onto S_{F}.

Let F be strictly convex. It is said to have quadratic growth at infinity if there exists a positive definite quadratic form Q and a constant K such that

$$
F(p) \geq Q(p)-K
$$

vi. Show that if F has quadratic growth at infinity then $S_{F}=E^{*}$, and hence the Legendre transform is an isomorphism onto E^{*}.
When we have $L: T X \rightarrow \mathbb{R}$ such that L restricted to each fiber has quadratic growth, then exercise 9 implies that the Legendre transform

$$
\begin{array}{rll}
T X & \longrightarrow & T^{*} X \\
(x, v) & \longmapsto & \left(x, \frac{\partial L}{\partial v}\right)
\end{array}
$$

is a diffeomorphism onto its image.
Exercise 10. In \mathbb{R}^{2} with coordinates x, y consider
(1) the canonical symplectic structure $\sigma_{0}=d x \wedge d y$, and
(2) σ another symplectic form.
i. Show that there exists a diffeomorphism $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ onto its image such that $\phi^{*} \sigma_{0}=\sigma$.

Hint: Define ϕ by rescaling the vertical lines, say.
ii. Find a sufficient condition on σ (or rather in h if $\sigma=h \sigma_{0}$) such that $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is onto. In other words, that we have a global Darboux theorem.

Exercise 11.

i. Let $\left(D^{2} \backslash\{0\}, \sigma_{0}\right)$ be the punctured open unit disk in \mathbb{R}^{2} equipped with the restriction the canonical symplectic structure. Find a diffeomorphism

$$
\phi: D^{2} \backslash\{0\} \rightarrow D^{2} \backslash\{0\}
$$

such that
(a) ϕ sends circles with center the origin to circles with center the origin.
(b) ϕ sends circles approaching the outer boundary component to circles approaching the puncture.
(c) $\phi^{*} \sigma_{0}=\sigma_{0}$.

Hint: Use polar coordinates and the previous exercise.
ii. Let $B^{2 n} \backslash\{0\}$ be the punctured unit ball in $\mathbb{R}^{2 n}$. Let ϕ be any self-diffeomorphism of $B^{2 n} \backslash\{0\}$ which sends points approaching the outer boundary component to points approaching the puncture. Then the manifold

$$
B^{2 n} \coprod B^{2 n} / \sim \phi,
$$

where the equivalence relation amounts to identifying $x \in B^{2 n} \backslash\{0\}$ in the first ball with $\phi(x)$ in the second, is known to be homeomorphic to the sphere S^{n}.

Let σ_{0} be the restriction to $B^{2 n} \backslash\{0\}$ of the canonical symplectic form in $\mathbb{R}^{2 n}$. Show that for $n>1$ one cannot find ϕ as above so that $\phi^{*} \sigma_{0}=\sigma_{0}$.

Exercise 12. Let $(M, \sigma),\left(N, \sigma^{\prime}\right)$ be two symplectic manifolds, and $\phi: M \rightarrow N a$ diffeomorphism. Show that the following three statements are equivalent
(1) $\phi^{*} \sigma^{\prime}=\sigma$ (i.e. ϕ is a canonical transformation).
(2) For all $f \in C^{\infty}(N)$,

$$
T \phi H_{\phi^{*} f}=H_{f}
$$

where $H_{\phi^{*} f}$ is the Hamiltonian vector field of $\phi^{*} f$ w.r.t. σ, and H_{f} is the Hamiltonian vector field of f w.r.t. σ^{\prime}.
(3) For all $f, g \in C^{\infty}(N)$,

$$
\phi^{*}\{f, g\}_{\sigma^{\prime}}=\left\{\phi^{*} f, \phi^{*} g\right\}_{\sigma},
$$

where $\{\cdot, \cdot\}_{\sigma}$ (resp. $\left.\{\cdot, \cdot\}_{\sigma^{\prime}}\right)$ denote the Poisson bracket on functions induced by σ (resp. σ^{\prime}). In other words, ϕ is a Poisson map.

Exercise 13. Let (M, σ) be a symplectic manifold. Suppose that we have an action of a Lie group G on M with the following properties:

- For all $g \in M$, the corresponding diffeomorphism $g: M \rightarrow M$ is such that $g^{*} \sigma=\sigma$ (i.e. the action is symplectic).
- The action is free, meaning that for every $m \in M$ and $g \in G$ not the identity, $g m \neq m$.
- The action is proper meaning that the map

$$
\begin{array}{rll}
G \times M & \rightarrow & M \times M \\
(g, m) & \longmapsto & (m, g m)
\end{array}
$$

is proper.

The second and third condition condition imply that M is a principal fiber bundle with group G. Let B denote its base, i.e. the space of orbits -which is a manifoldand let $p: M \rightarrow B$ be the projection.

At each point $m \in M$ we have $T_{m}^{v} M$ the vertical tangent bundle. It is by definition the kernel of $T_{m} p$. It is easy to see that this is also the subspace of $T_{p} M$ generated by the symplectic vector fields $X_{M}, X \in \mathfrak{g}$.
i. Show that the symplectic annihilator of the subbundle $T^{v} M$ defines a foliation \mathcal{F}^{\prime} on M.
Let us assume that the orbits of the action of G are coisotropic.
ii. Show that the foliation \mathcal{F}^{\prime} descends to a foliation \mathcal{F} in B (i.e. the pullback of \mathcal{F} by the submersion $p: M \rightarrow B$ is \mathcal{F}^{\prime}).
iii. Show that there is a (unique) Poisson structure Λ on B for which the submersion $p: M \rightarrow B$ is a Poisson map (Hint: there is a unique possibility if p is to be a Poisson map).
iv. Show that the symplectic leaves of Λ are the leaves of \mathcal{F}.

Let us assume that we have a free symplectic action of the Lie group $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ on (M, σ).
v. Find $\alpha^{\prime} \in \Omega^{2}(M), \alpha \in \Omega^{2}(B)$ such that

- ker $^{\prime}=\mathcal{F}^{\prime}, \operatorname{ker} \alpha=\mathcal{F}$.
- $d \alpha^{\prime}=0, d \alpha=0$. Hint: Use X_{M}.
vi. Suppose further that the symplectic form σ is integral. Then show that both \mathcal{F}^{\prime} and \mathcal{F} are the fibers of surjective submersions $B \xrightarrow{[\mathcal{P}]} S^{1}, M \xrightarrow{p} B \xrightarrow{[\mathcal{P}]} S^{1}$. To do that consider the period map defined as follows: fix $b_{0} \in B$ and consider the manifold $\mathcal{P}\left(B, b_{0}\right)$ of homotopy classes of paths starting at b_{0}. Then

$$
\begin{aligned}
t: \mathcal{P}\left(B, b_{0}\right) & \longrightarrow B \\
\gamma / \sim & \longmapsto \gamma(1)
\end{aligned}
$$

Then we have the following map

$$
\begin{aligned}
\mathcal{P}: \mathcal{P}\left(B, b_{0}\right) & \longrightarrow \mathbb{R} \\
\gamma / \sim & \longmapsto \int_{\gamma} \alpha
\end{aligned}
$$

One has to show that it is a well defined map (and it is a surjective submersion).

One cannot make it descend to a map defined on B, but since if γ, γ^{\prime} are paths from b_{0} to b in different homotopy classes, we have

$$
\mathcal{P}(\gamma)-\mathcal{P}\left(\gamma^{\prime}\right) \in \frac{1}{2 \pi} \mathbb{Z}
$$

then it induces a surjective submersion

$$
[\mathcal{P}]: B \longrightarrow \mathbb{R} /(\mathbb{Z} / 2 \pi),
$$

whose fibers are the leaves of \mathcal{F} (actually, when B is compact, B with its Poisson structure is what is called a symplectic mapping torus).

Exercise 14.

i. Let (M, σ) be a symplectic manifold, and let G be a Lie group acting on M in a Hamiltonian fashion on M

$$
G \times M \rightarrow M
$$

Let $\mu: M \rightarrow \mathfrak{g}^{*}$ be the momentum map. For each H a closed subgroup of G (with the inclusion denoted by $i: H \hookrightarrow G$), consider the restriction of the action to H, i.e.

$$
H \times M \xrightarrow{i \times I d} G \times M \rightarrow M
$$

Show that this is also a Hamiltonian action (observe that there is a natural candidate for the momentum map, which is the composition of μ with the obvious map from \mathfrak{g}^{*} to \mathfrak{h}^{*}, where \mathfrak{h} is the Lie algebra of H).
ii. Let $G_{j}, j=1, \ldots, s$ be Lie groups acting in a Hamiltonian fashion on $\left(M_{j}, \sigma_{j}\right), j=1, \ldots$, s, with momentum maps $\mu_{j}: M_{j} \rightarrow \mathfrak{g}_{j}$. Show that the product action of $G_{1} \times \cdots \times G_{s}$ on $\left(M_{1} \times \cdots \times M_{s}, p r_{1}^{*} \sigma_{1}+\cdots+p r_{s}^{*} \sigma_{s}\right)\left(p r_{j}\right.$ the projection onto the j-th factor) is Hamiltonian, with momentum map

$$
\mu_{1} \times \cdots \times \mu_{s}: M_{1} \times \cdots \times M_{s} \rightarrow \mathfrak{g}_{1}^{*} \times \cdots \times \mathfrak{g}_{s}^{*}
$$

iii. Let G be a Lie group acting in a Hamiltonian fashion on manifolds $\left(M_{j}, \sigma_{j}\right)$, $j=1, \ldots, s$, with momentum maps $\mu_{j}: M_{j} \rightarrow \mathfrak{g}$. Show that the diagonal action of G on $M_{1} \times \cdots \times M_{s}$ is hamiltonian with moment map $\mu_{1}+\cdots+\mu_{s}$.

Exercise 15. Let $T^{n}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{C}^{n}| | t_{j} \mid=1\right\}$ be the n-torus acting on \mathbb{C}^{n} via the formula

$$
\left(t_{1}, \ldots, t_{n}\right) \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(t_{1}^{k_{1}} z_{1}, \ldots, t_{n}^{k_{n}} z_{n}\right)
$$

whre k_{1}, \ldots, k_{n} are fixed integers. Show that the action is Hamiltonian w.r.t. the standard symplectic form (the imaginary part of the standard hermitian inner prod$u c t$), with momentum map

$$
\mu\left(z_{1}, \ldots, z_{n}\right)=-\frac{1}{2}\left(k_{1}\left|z_{1}\right|^{2}, \ldots, k_{n}\left|z_{n}\right|^{2}\right)+\text { constant }
$$

