
EXERCISES III

Exercise 8 (Example 3.1 in the notes revisited). Let X be an n-dimensional ma-
nifold and let v ∈ X(X). The momentum function of the vector field v is given
by

µv : T ∗X −→ R
(x, ξ) 7−→ ξ(v(x)) (1)

Let Hµv ∈ X(T ∗X) denote the Hamiltonian vector field of µv with respect to the
canonical symplectic structure dτ ∈ Ω2(T ∗X). We want to show that its flow etHµv ,
which is known to preserve the symplectic form dτ , obeys the following formula:

etHµv (x, ξ) = (etv(x), ((Txetv)∗)−1(ξ)) (2)
In particular, we have

π ◦ etHµv = etv ◦ π, (3)
where π : T ∗X → X is the projection.

We proceed to prove it in the following way:
For each t ∈ R, we have a diffeomorphism etv : X → X (defined on an open

subset of X). According to exercise 2.1, we have an induced diffeomorphism

Φt : T ∗X −→ T ∗X

(x, ξ) 7−→ (etv(x), ((Txetv)∗)−1(ξ)),

i.e. it is given by the formula in equation 2 (notice also that this formula makes
sense for all (t, x, ξ) ∈ R× T ∗M for which etv(x) is defined), and such that

Φt∗τ = τ

Out of Φt one can define the following vector field in T ∗X:

w(x, ξ) :=
d

dt
Φt(x, ξ)|t=0 (4)

i. Show that Φt coincides with the flow of the vector field w ∈ X(T ∗X) in
equation 4. In other words, you must show that for all (x, ξ) ∈ T ∗X,
s 7→ Φs(x, ξ) is an integral curve for w, which is equivalent to showing

d

ds
Φs(x, ξ) = w(Φs(x, ξ)),

and by equation 4
d

ds
Φs(x, ξ) =

d

dt
Φt(Φs(x, ξ))|t=0 (5)

This last equation is equivalent to

Φt ◦ Φs = Φt+s

So we conclude that etw preserves τ (and hence also dτ , the symplectic form).
Equivalently,

Lwτ = 0 (6)
ii. Show that w is a Hamiltonian vector field.

Hint: Rewrite equation 6 using Cartan’s homotopy formula.
iii. Show that the Hamiltonian function of w coming from Cartan’s formula is

the momentum function µv : T ∗X → R.
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We will study conditions under which the Legendre transform is a global
diffeomorphism from TX to T ∗X.

Exercise 9. Let E be a vector space and F : E → R a smooth function. The
Legendre transform is by definition

LF : E −→ E∗

p 7−→ dFp

The function F is said to be strictly convex if for every p, v ∈ E the real
function

t 7→ F (p + tv)
is strictly convex (i.e. its second derivative is strictly positive everywhere).

The Hessian of F is the quadratic form

d2Fp : v 7→ d2

dt2
F (p + tv)

Recall that F is strictly convex if and only if its Hessian is positive definite for
all points p in E (i.e. if and only if the Legendre condition holds).

i. Show that if F is strictly convex then the Legendre transform is a local
diffeomorphism.

ii. Show that the following four conditions are equivalent:
(a) dFp0 = 0 for some p0 ∈ E.
(b) F has a local minimum at some point p0.
(c) F has a unique (global) minimum at some p0.
(d) lim|p|→∞F (p) = +∞.

A strictly convex function is called stable if either of the previous conditions
holds.

iii. Find an example of an strictly convex function F : R → R which is not
stable.

Given F strictly convex we denote by SF the set l ∈ E∗ for which the function

Fl : E −→ R
p 7−→ F (p)− l(p)

is stable.
iv. Show that the subset SF ⊂ E∗ is open and convex.
v. Show that LF maps diffeomorphically onto SF .

Let F be strictly convex. It is said to have quadratic growth at infinity if
there exists a positive definite quadratic form Q and a constant K such that

F (p) ≥ Q(p)−K

vi. Show that if F has quadratic growth at infinity then SF = E∗, and hence
the Legendre transform is an isomorphism onto E∗.

When we have L : TX → R such that L restricted to each fiber has quadratic
growth, then exercise 9 implies that the Legendre transform

TX −→ T ∗X

(x, v) 7−→ (x,
∂L

∂v
)

is a diffeomorphism onto its image.

Exercise 10. In R2 with coordinates x, y consider
(1) the canonical symplectic structure σ0 = dx ∧ dy, and
(2) σ another symplectic form.
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i. Show that there exists a diffeomorphism φ : R2 → R2 onto its image such
that φ∗σ0 = σ.

Hint: Define φ by rescaling the vertical lines, say.
ii. Find a sufficient condition on σ (or rather in h if σ = hσ0) such that

φ : R2 → R2 is onto. In other words, that we have a global Darboux
theorem.

Exercise 11.
i. Let (D2\{0}, σ0) be the punctured open unit disk in R2 equipped with the

restriction the canonical symplectic structure. Find a diffeomorphism

φ : D2\{0} → D2\{0}

such that
(a) φ sends circles with center the origin to circles with center the origin.
(b) φ sends circles approaching the outer boundary component to circles

approaching the puncture.
(c) φ∗σ0 = σ0.

Hint: Use polar coordinates and the previous exercise.
ii. Let B2n\{0} be the punctured unit ball in R2n. Let φ be any self-diffeomorphism

of B2n\{0} which sends points approaching the outer boundary component
to points approaching the puncture. Then the manifold

B2n
∐

B2n/ ∼ φ,

where the equivalence relation amounts to identifying x ∈ B2n\{0} in the
first ball with φ(x) in the second, is known to be homeomorphic to the sphere
Sn.

Let σ0 be the restriction to B2n\{0} of the canonical symplectic form in
R2n. Show that for n > 1 one cannot find φ as above so that φ∗σ0 = σ0 .

Exercise 12. Let (M,σ), (N,σ′) be two symplectic manifolds, and φ : M → N a
diffeomorphism. Show that the following three statements are equivalent

(1) φ∗σ′ = σ (i.e. φ is a canonical transformation).
(2) For all f ∈ C∞(N),

TφHφ∗f = Hf ,

where Hφ∗f is the Hamiltonian vector field of φ∗f w.r.t. σ, and Hf is the
Hamiltonian vector field of f w.r.t. σ′.

(3) For all f, g ∈ C∞(N),

φ∗{f, g}σ′ = {φ∗f, φ∗g}σ,

where {·, ·}σ (resp. {·, ·}σ′) denote the Poisson bracket on functions induced
by σ (resp. σ′). In other words, φ is a Poisson map.

Exercise 13. Let (M,σ) be a symplectic manifold. Suppose that we have an action
of a Lie group G on M with the following properties:

• For all g ∈ M , the corresponding diffeomorphism g : M → M is such that
g∗σ = σ (i.e. the action is symplectic).

• The action is free, meaning that for every m ∈ M and g ∈ G not the
identity, gm 6= m.

• The action is proper meaning that the map

G×M → M ×M

(g,m) 7−→ (m, gm)

is proper.
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The second and third condition condition imply that M is a principal fiber bundle
with group G. Let B denote its base, i.e. the space of orbits -which is a manifold-
and let p : M → B be the projection.

At each point m ∈ M we have T v
mM the vertical tangent bundle. It is by

definition the kernel of Tmp. It is easy to see that this is also the subspace of TpM
generated by the symplectic vector fields XM , X ∈ g.

i. Show that the symplectic annihilator of the subbundle T vM defines a foli-
ation F ′ on M .

Let us assume that the orbits of the action of G are coisotropic.
ii. Show that the foliation F ′ descends to a foliation F in B (i.e. the pullback

of F by the submersion p : M → B is F ′).
iii. Show that there is a (unique) Poisson structure Λ on B for which the sub-

mersion p : M → B is a Poisson map (Hint: there is a unique possibility if
p is to be a Poisson map).

iv. Show that the symplectic leaves of Λ are the leaves of F .
Let us assume that we have a free symplectic action of the Lie group S1 = R/2πZ

on (M,σ).
v. Find α′ ∈ Ω2(M), α ∈ Ω2(B) such that

• kerα′ = F ′, kerα = F .
• dα′ = 0, dα = 0.

Hint: Use XM .
vi. Suppose further that the symplectic form σ is integral. Then show that both

F ′ and F are the fibers of surjective submersions B
[P]→ S1, M

p→ B
[P]→ S1.

To do that consider the period map defined as follows: fix b0 ∈ B and
consider the manifold P(B, b0) of homotopy classes of paths starting at b0.
Then

t : P(B, b0) −→ B

γ/ ∼ 7−→ γ(1)

Then we have the following map

P : P(B, b0) −→ R

γ/ ∼ 7−→
∫

γ

α

One has to show that it is a well defined map (and it is a surjective
submersion).

One cannot make it descend to a map defined on B, but since if γ, γ′ are
paths from b0 to b in different homotopy classes, we have

P(γ)− P(γ′) ∈ 1
2π

Z,

then it induces a surjective submersion

[P] : B −→ R/(Z/2π),
whose fibers are the leaves of F (actually, when B is compact, B with its
Poisson structure is what is called a symplectic mapping torus).

Exercise 14.
i. Let (M,σ) be a symplectic manifold, and let G be a Lie group acting on M

in a Hamiltonian fashion on M

G×M → M
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Let µ : M → g∗ be the momentum map. For each H a closed subgroup of G
(with the inclusion denoted by i : H ↪→ G), consider the restriction of the
action to H, i.e.

H ×M
i×Id−→ G×M → M

Show that this is also a Hamiltonian action (observe that there is a nat-
ural candidate for the momentum map, which is the composition of µ with
the obvious map from g∗ to h∗, where h is the Lie algebra of H).

ii. Let Gj, j = 1, . . . , s be Lie groups acting in a Hamiltonian fashion on
(Mj , σj), j = 1, . . . , s, with momentum maps µj : Mj → gj. Show that the
product action of G1×· · ·×Gs on (M1×· · ·×Ms, pr∗1σ1 + · · ·+pr∗sσs) (prj

the projection onto the j-th factor) is Hamiltonian, with momentum map

µ1 × · · · × µs : M1 × · · · ×Ms → g∗1 × · · · × g∗s

iii. Let G be a Lie group acting in a Hamiltonian fashion on manifolds (Mj , σj),
j = 1, . . . , s, with momentum maps µj : Mj → g. Show that the diagonal
action of G on M1×· · ·×Ms is hamiltonian with moment map µ1+· · ·+µs.

Exercise 15. Let Tn = {(t1, . . . , tn) ∈ Cn||tj | = 1} be the n-torus acting on Cn

via the formula

(t1, . . . , tn) · (z1, . . . , zn) = (tk1
1 z1, . . . , t

kn
n zn),

whre k1, . . . , kn are fixed integers. Show that the action is Hamiltonian w.r.t. the
standard symplectic form (the imaginary part of the standard hermitian inner prod-
uct), with momentum map

µ(z1, . . . , zn) = −1
2
(k1|z1|2, . . . , kn|zn|2) + constant


