Exercise 8 (Example 3.1 in the notes revisited). Let X be an n-dimensional manifold and let $v \in \mathfrak{X}(X)$. The momentum function of the vector field v is given by

$$\mu_{v} \colon T^{*}X \longrightarrow \mathbb{R}$$

$$(x,\xi) \longmapsto \xi(v(x))$$

$$(1)$$

Let $H_{\mu_v} \in \mathfrak{X}(T^*X)$ denote the Hamiltonian vector field of μ_v with respect to the canonical symplectic structure $d\tau \in \Omega^2(T^*X)$. We want to show that its flow $e^{tH_{\mu_v}}$, which is known to preserve the symplectic form $d\tau$, obeys the following formula:

$$e^{tH_{\mu_{v}}}(x,\xi) = (e^{tv}(x), ((T_{x}e^{tv})^{*})^{-1}(\xi))$$
(2)

In particular, we have

$$\pi \circ e^{tH_{\mu_v}} = e^{tv} \circ \pi, \tag{3}$$

where $\pi: T^*X \to X$ is the projection.

We proceed to prove it in the following way:

For each $t \in \mathbb{R}$, we have a diffeomorphism $e^{tv} \colon X \to X$ (defined on an open subset of X). According to exercise 2.1, we have an induced diffeomorphism

$$\begin{aligned} \Phi^t \colon T^*X &\longrightarrow T^*X \\ (x,\xi) &\longmapsto (e^{tv}(x), ((T_x e^{tv})^*)^{-1}(\xi)), \end{aligned}$$

i.e. it is given by the formula in equation 2 (notice also that this formula makes sense for all $(t, x, \xi) \in \mathbb{R} \times T^*M$ for which $e^{tv}(x)$ is defined), and such that

$$\Phi^{t*}\tau =$$

Out of Φ^t one can define the following vector field in T^*X :

$$w(x,\xi) := \frac{d}{dt} \Phi^t(x,\xi)_{|t=0} \tag{4}$$

i. Show that Φ^t coincides with the flow of the vector field $w \in \mathfrak{X}(T^*X)$ in equation 4. In other words, you must show that for all $(x,\xi) \in T^*X$, $s \mapsto \Phi^s(x,\xi)$ is an integral curve for w, which is equivalent to showing

 τ

$$\frac{d}{ds}\Phi^s(x,\xi) = w(\Phi^s(x,\xi)),$$

and by equation 4

$$\frac{d}{ds}\Phi^s(x,\xi) = \frac{d}{dt}\Phi^t(\Phi^s(x,\xi))_{|t=0}$$
(5)

This last equation is equivalent to

$$\Phi^t \circ \Phi^s = \Phi^{t+s}$$

So we conclude that e^{tw} preserves τ (and hence also $d\tau$, the symplectic form). Equivalently,

$$\mathcal{L}_w \tau = 0 \tag{6}$$

Show that w is a Hamiltonian vector field.
 Hint: Rewrite equation 6 using Cartan's homotopy formula.

iii. Show that the Hamiltonian function of w coming from Cartan's formula is the momentum function $\mu_v : T^*X \to \mathbb{R}$.

We will study conditions under which the **Legendre transform** is a global diffeomorphism from TX to T^*X .

Exercise 9. Let E be a vector space and $F: E \to \mathbb{R}$ a smooth function. The Legendre transform is by definition

$$\begin{array}{ccccc} L_F \colon E & \longrightarrow & E^* \\ p & \longmapsto & dF_p \end{array}$$

The function F is said to be strictly convex if for every $p, v \in E$ the real function

$$t \mapsto F(p+tv)$$

is strictly convex (i.e. its second derivative is strictly positive everywhere).

The Hessian of F is the quadratic form

$$d^2 F_p: v \mapsto \frac{d^2}{dt^2} F(p+tv)$$

Recall that F is strictly convex if and only if its Hessian is positive definite for all points p in E (i.e. if and only if the Legendre condition holds).

- i. Show that if F is strictly convex then the Legendre transform is a local diffeomorphism.
- ii. Show that the following four conditions are equivalent:
 - (a) $dF_{p_0} = 0$ for some $p_0 \in E$.
 - (b) F has a local minimum at some point p_0 .
 - (c) F has a unique (global) minimum at some p_0 .
 - (d) $\lim_{|p|\to\infty} F(p) = +\infty$.

A strictly convex function is called **stable** if either of the previous conditions holds.

iii. Find an example of an strictly convex function $F \colon \mathbb{R} \to \mathbb{R}$ which is not stable.

Given F strictly convex we denote by S_F the set $l \in E^*$ for which the function

$$\begin{array}{ccc} F_l \colon E & \longrightarrow & \mathbb{R} \\ p & \longmapsto & F(p) - l(p) \end{array}$$

is stable.

iv. Show that the subset $S_F \subset E^*$ is open and convex.

v. Show that L_F maps diffeomorphically onto S_F .

Let F be strictly convex. It is said to have quadratic growth at infinity if there exists a positive definite quadratic form Q and a constant K such that

$$F(p) \ge Q(p) - K$$

vi. Show that if F has quadratic growth at infinity then $S_F = E^*$, and hence the Legendre transform is an isomorphism onto E^* .

When we have $L: TX \to \mathbb{R}$ such that L restricted to each fiber has quadratic growth, then exercise 9 implies that the Legendre transform

$$\begin{array}{rccc} TX & \longrightarrow & T^*X \\ (x,v) & \longmapsto & (x,\frac{\partial L}{\partial v}) \end{array}$$

is a diffeomorphism onto its image.

Exercise 10. In \mathbb{R}^2 with coordinates x, y consider

- (1) the canonical symplectic structure $\sigma_0 = dx \wedge dy$, and
- (2) σ another symplectic form.

 $\mathbf{2}$

i. Show that there exists a diffeomorphism $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ onto its image such that $\phi^* \sigma_0 = \sigma$.

Hint: Define ϕ by rescaling the vertical lines, say.

ii. Find a sufficient condition on σ (or rather in h if $\sigma = h\sigma_0$) such that $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ is onto. In other words, that we have a global Darboux theorem.

Exercise 11.

i. Let $(D^2 \setminus \{0\}, \sigma_0)$ be the punctured open unit disk in \mathbb{R}^2 equipped with the restriction the canonical symplectic structure. Find a diffeomorphism

$$\phi \colon D^2 \backslash \{0\} \to D^2 \backslash \{0\}$$

such that

- (a) ϕ sends circles with center the origin to circles with center the origin.
- (b) ϕ sends circles approaching the outer boundary component to circles approaching the puncture.

(c) $\phi^* \sigma_0 = \sigma_0$.

Hint: Use polar coordinates and the previous exercise.

ii. Let $B^{2n}\setminus\{0\}$ be the punctured unit ball in \mathbb{R}^{2n} . Let ϕ be any self-diffeomorphism of $B^{2n}\setminus\{0\}$ which sends points approaching the outer boundary component to points approaching the puncture. Then the manifold

$$B^{2n} \coprod B^{2n} / \sim \phi,$$

where the equivalence relation amounts to identifying $x \in B^{2n} \setminus \{0\}$ in the first ball with $\phi(x)$ in the second, is known to be homeomorphic to the sphere S^n .

Let σ_0 be the restriction to $B^{2n} \setminus \{0\}$ of the canonical symplectic form in \mathbb{R}^{2n} . Show that for n > 1 one cannot find ϕ as above so that $\phi^* \sigma_0 = \sigma_0$.

Exercise 12. Let (M, σ) , (N, σ') be two symplectic manifolds, and $\phi: M \to N$ a diffeomorphism. Show that the following three statements are equivalent

- (1) $\phi^* \sigma' = \sigma$ (i.e. ϕ is a canonical transformation).
- (2) For all $f \in C^{\infty}(N)$,

$$T\phi H_{\phi^*f} = H_f,$$

where H_{ϕ^*f} is the Hamiltonian vector field of ϕ^*f w.r.t. σ , and H_f is the Hamiltonian vector field of f w.r.t. σ' .

(3) For all $f, g \in C^{\infty}(N)$,

$$\phi^* \{ f, g \}_{\sigma'} = \{ \phi^* f, \phi^* g \}_{\sigma},$$

where $\{\cdot, \cdot\}_{\sigma}$ (resp. $\{\cdot, \cdot\}_{\sigma'}$) denote the Poisson bracket on functions induced by σ (resp. σ'). In other words, ϕ is a **Poisson map**.

Exercise 13. Let (M, σ) be a symplectic manifold. Suppose that we have an action of a Lie group G on M with the following properties:

- For all $g \in M$, the corresponding diffeomorphism $g: M \to M$ is such that $g^* \sigma = \sigma$ (i.e. the action is symplectic).
- The action is free, meaning that for every $m \in M$ and $g \in G$ not the identity, $gm \neq m$.
- The action is proper meaning that the map

$$\begin{array}{rccc} G\times M & \to & M\times M \\ (g,m) & \longmapsto & (m,gm) \end{array}$$

 $is \ proper.$

The second and third condition condition imply that M is a principal fiber bundle with group G. Let B denote its base, i.e. the space of orbits -which is a manifoldand let $p: M \to B$ be the projection.

At each point $m \in M$ we have $T_m^v M$ the vertical tangent bundle. It is by definition the kernel of $T_m p$. It is easy to see that this is also the subspace of $T_p M$ generated by the symplectic vector fields $X_M, X \in \mathfrak{g}$.

i. Show that the symplectic annihilator of the subbundle $T^{v}M$ defines a foliation \mathcal{F}' on M.

Let us assume that the orbits of the action of G are coisotropic.

- ii. Show that the foliation \mathcal{F}' descends to a foliation \mathcal{F} in B (i.e. the pullback of \mathcal{F} by the submersion $p: M \to B$ is \mathcal{F}').
- iii. Show that there is a (unique) Poisson structure Λ on B for which the submersion $p: M \to B$ is a Poisson map (Hint: there is a unique possibility if p is to be a Poisson map).
- iv. Show that the symplectic leaves of Λ are the leaves of \mathcal{F} .

Let us assume that we have a free symplectic action of the Lie group $S^1 = \mathbb{R}/2\pi\mathbb{Z}$ on (M, σ) .

- v. Find $\alpha' \in \Omega^2(M)$, $\alpha \in \Omega^2(B)$ such that
 - $ker\alpha' = \mathcal{F}', ker\alpha = \mathcal{F}.$ 0.

•
$$d\alpha' = 0, \ d\alpha =$$

Hint: Use X_M .

vi. Suppose further that the symplectic form σ is integral. Then show that both \mathcal{F}' and \mathcal{F} are the fibers of surjective submersions $B \xrightarrow{[\mathcal{P}]} S^1, \ M \xrightarrow{p} B \xrightarrow{[\mathcal{P}]} S^1.$ To do that consider the **period map** defined as follows: fix $b_0 \in B$ and consider the manifold $\mathcal{P}(B, b_0)$ of homotopy classes of paths starting at b_0 . Then

$$\begin{array}{rccc} t \colon \mathcal{P}(B, b_0) & \longrightarrow & B \\ & \gamma/ \sim & \longmapsto & \gamma(1) \end{array}$$

Then we have the following map

 \mathcal{P}

$$\begin{array}{cccc} : \mathcal{P}(B, b_0) & \longrightarrow & \mathbb{R} \\ & & \\ \gamma/\sim & \longmapsto & \int_{\gamma} \alpha \end{array}$$

One has to show that it is a well defined map (and it is a surjective submersion).

One cannot make it descend to a map defined on B, but since if γ, γ' are paths from b_0 to b in different homotopy classes, we have

$$\mathcal{P}(\gamma) - \mathcal{P}(\gamma') \in \frac{1}{2\pi}\mathbb{Z},$$

then it induces a surjective submersion

$$[\mathcal{P}]\colon B \longrightarrow \mathbb{R}/(\mathbb{Z}/2\pi),$$

whose fibers are the leaves of \mathcal{F} (actually, when B is compact, B with its Poisson structure is what is called a symplectic mapping torus).

Exercise 14.

i. Let (M, σ) be a symplectic manifold, and let G be a Lie group acting on M in a Hamiltonian fashion on M

$$G \times M \to M$$

Let $\mu: M \to \mathfrak{g}^*$ be the momentum map. For each H a closed subgroup of G (with the inclusion denoted by $i: H \hookrightarrow G$), consider the restriction of the action to H, *i.e.*

$$H \times M \xrightarrow{i \times Id} G \times M \to M$$

Show that this is also a Hamiltonian action (observe that there is a natural candidate for the momentum map, which is the composition of μ with the obvious map from \mathfrak{g}^* to \mathfrak{h}^* , where \mathfrak{h} is the Lie algebra of H).

ii. Let G_j , j = 1, ..., s be Lie groups acting in a Hamiltonian fashion on (M_j, σ_j) , j = 1, ..., s, with momentum maps $\mu_j \colon M_j \to \mathfrak{g}_j$. Show that the product action of $G_1 \times \cdots \times G_s$ on $(M_1 \times \cdots \times M_s, pr_1^*\sigma_1 + \cdots + pr_s^*\sigma_s)$ (pr_j the projection onto the j-th factor) is Hamiltonian, with momentum map

$$\mu_1 \times \cdots \times \mu_s \colon M_1 \times \cdots \times M_s \to \mathfrak{g}_1^* \times \cdots \times \mathfrak{g}_s^*$$

iii. Let G be a Lie group acting in a Hamiltonian fashion on manifolds (M_j, σ_j) , $j = 1, \ldots, s$, with momentum maps $\mu_j \colon M_j \to \mathfrak{g}$. Show that the diagonal action of G on $M_1 \times \cdots \times M_s$ is hamiltonian with moment map $\mu_1 + \cdots + \mu_s$.

Exercise 15. Let $T^n = \{(t_1, \ldots, t_n) \in \mathbb{C}^n | |t_j| = 1\}$ be the n-torus acting on \mathbb{C}^n via the formula

$$(t_1,\ldots,t_n)\cdot(z_1,\ldots,z_n)=(t_1^{k_1}z_1,\ldots,t_n^{k_n}z_n),$$

where k_1, \ldots, k_n are fixed integers. Show that the action is Hamiltonian w.r.t. the standard symplectic form (the imaginary part of the standard hermitian inner product), with momentum map

$$\mu(z_1, \dots, z_n) = -\frac{1}{2}(k_1|z_1|^2, \dots, k_n|z_n|^2) + constant$$