EXERCISES III

Exercise 8 (Example 3.1 in the notes revisited). Let X be an n-dimensional ma-
nifold and let v € X(X). The momentum function of the vector field v is given
by
to: T"X — R
(2,6 — o) (1)
Let H,,, € X(T*X) denote the Hamiltonian vector field of ., with respect to the

canonical symplectic structure dr € Q?(T*X). We want to show that its flow e!Huv |
which is known to preserve the symplectic form dr, obeys the following formula:

e (2,€) = (" (), ((Toe™)") ™ (€)) (2)
In particular, we have

tH,

woetm = ¢l o

, ®3)
where w: T*X — X is the projection.
We proceed to prove it in the following way:
For each t € R, we have a diffeomorphism e': X — X (defined on an open
subset of X ). According to exercise 2.1, we have an induced diffeomorphism
T X — T*X
(2,8) (" (@), (Twe™)") " (€),
i.e. it is given by the formula in equation 2 (notice also that this formula makes
sense for all (t,x,£) € R x T*M for which e (x) is defined), and such that
O r =171
Out of ® one can define the following vector field in T*X :
d
’LU(J?, g) = @q)t(m? £)|t:O (4)

i. Show that ® coincides with the flow of the vector field w € X(T*X) in
equation 4. In other words, you must show that for all (z,£) € T*X,
s+ ®5(x, ) is an integral curve for w, which is equivalent to showing

d S _ S
$CI) (.’L’,f) - w((I) (‘T7€))7

1

and by equation 4
d s _ i t(&HS
&7 (@0 = Z¥ (@@ o (5)

This last equation is equivalent to
(Dt o (Ps _ (I>t+s
So we conclude that e* preserves T (and hence also dr, the symplectic form,).
Equivalently,
Loy7=0 (6)
ii. Show that w is a Hamiltonian vector field.
Hint: Rewrite equation 6 using Cartan’s homotopy formula.
iii. Show that the Hamiltonian function of w coming from Cartan’s formula is
the momentum function p,: T*X — R.
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2 EXERCISES III

We will study conditions under which the Legendre transform is a global
diffeomorphism from TX to T*X.

Exercise 9. Let E be a vector space and F: E — R a smooth function. The
Legendre transform is by definition

Lr: FE — E*
p — dF,

The function F is said to be strictly convex if for every p,v € E the real
function
t— F(p+tv)
is strictly convez (i.e. its second derivative is strictly positive everywhere).
The Hessian of F' is the quadratic form

2

d

Recall that F is strictly convez if and only if its Hessian is positive definite for
all points p in E (i.e. if and only if the Legendre condition holds).

szp DU

i. Show that if F is strictly convex then the Legendre transform is a local
diffeomorphism.
ii. Show that the following four conditions are equivalent:
(a) dFp, =0 for some py € E.
(b) F has a local minimum at some point py.
(¢) F has a unique (global) minimum at some py.
(d) lim|p|ﬂooF(p) = +o00.
A strictly convex function is called stable if either of the previous conditions
holds.
iii. Find an example of an strictly convex function F: R — R which is not
stable.

Given F strictly convex we denote by Sg the set | € E* for which the function
F:F — R
p — F(p)—IUp)
is stable.

iv. Show that the subset Sp C E* is open and convew.
v. Show that Lr maps diffeomorphically onto Sg.
Let F be strictly convex. It is said to have quadratic growth at infinity if
there exists a positive definite quadratic form @ and a constant K such that

F(p) > Qp) - K
vi. Show that if F has quadratic growth at infinity then Sp = E*, and hence
the Legendre transform is an isomorphism onto E*.

When we have L: TX — R such that L restricted to each fiber has quadratic
growth, then exercise 9 implies that the Legendre transform

TX — T'X
@) — @90

is a diffeomorphism onto its image.
Exercise 10. In R? with coordinates x,y consider

(1) the canonical symplectic structure oy = dx A dy, and
(2) o another symplectic form.
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i. Show that there exists a diffeomorphism ¢: R? — R? onto its image such
that ¢*og = 0.
Hint: Define ¢ by rescaling the vertical lines, say.
ii. Find a sufficient condition on o (or rather in h if 0 = hog) such that
¢: R2 — R? is onto. In other words, that we have a global Darboux
theorem.

Exercise 11.

i. Let (D?\{0},00) be the punctured open unit disk in R? equipped with the
restriction the canonical symplectic structure. Find a diffeomorphism

¢: D*\{0} — D*\{0}
such that
(a) ¢ sends circles with center the origin to circles with center the origin.

(b) ¢ sends circles approaching the outer boundary component to circles
approaching the puncture.

(C) P oo = 0p.

Hint: Use polar coordinates and the previous exercise.

ii. Let B>*\{0} be the punctured unit ball in R®™. Let ¢ be any self-diffeomorphism

of B>"\{0} which sends points approaching the outer boundary component
to points approaching the puncture. Then the manifold

BQnHB2n/ ~ ¢,

where the equivalence relation amounts to identifying x € B?"\{0} in the
first ball with ¢(x) in the second, is known to be homeomorphic to the sphere
S™.

Let o be the restriction to B>*\{0} of the canonical symplectic form in
R2™. Show that for n > 1 one cannot find ¢ as above so that ¢*oy = oy .

Exercise 12. Let (M,o), (N,0’) be two symplectic manifolds, and ¢: M — N a
diffeomorphism. Show that the following three statements are equivalent
(1) ¢*c' =0 (i.e. ¢ is a canonical transformation).
(2) For all f € C*(N),
ToHy-y = Hy,
where Hy-¢ is the Hamiltonian vector field of ¢* f w.r.t. o, and Hy is the

Hamiltonian vector field of f w.r.t. o’'.
(3) For all f,g € C*(N),

o*{f.gte ={8"f, ¢ g}s,

where {-, -} (resp. {-,-}o) denote the Poisson bracket on functions induced
by o (resp. ¢'). In other words, ¢ is a Poisson map.

Exercise 13. Let (M, o) be a symplectic manifold. Suppose that we have an action
of a Lie group G on M with the following properties:

e For all g € M, the corresponding diffeomorphism g: M — M is such that
g*o = o (i.e. the action is symplectic).

o The action is free, meaning that for every m € M and g € G not the
identity, gm #* m.

e The action is proper meaning that the map

GxM — MxM
(g,m) +— (m,gm)

18 proper.
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The second and third condition condition imply that M is a principal fiber bundle
with group G. Let B denote its base, i.e. the space of orbits -which is a manifold-
and let p: M — B be the projection.

At each point m € M we have T)), M the vertical tangent bundle. It is by
definition the kernel of Ty,p. It is easy to see that this is also the subspace of T, M
generated by the symplectic vector fields X,;, X € g.

i. Show that the symplectic annihilator of the subbundle T M defines a foli-
ation F' on M.

Let us assume that the orbits of the action of G are coisotropic.

ii. Show that the foliation F' descends to a foliation F in B (i.e. the pullback
of F by the submersion p: M — B is F').
iii. Show that there is a (unique) Poisson structure A on B for which the sub-
mersion p: M — B is a Poisson map (Hint: there is a unique possibility if
p is to be a Poisson map).
iv. Show that the symplectic leaves of A are the leaves of F.
Let us assume that we have a free symplectic action of the Lie group S* = R/277Z
on (M, o).
v. Find o/ € Q*(M), o € Q%(B) such that
o kera = F', kera = F.
e do/ =0, da = 0.
Hint: Use Xyy.

vi. Suppose further that the symplectic form o is integral. Then show that both
F' and F are the fibers of surjective submersions B 7] St M5B G St
To do that consider the period map defined as follows: fix by € B and
consider the manifold P(B,by) of homotopy classes of paths starting at by.
Then

t: P(B,by) — B
W~ = )
Then we have the following map

P P(B,bo) — R

v/~ — o
¥

One has to show that it is a well defined map (and it is a surjective
submersion).

One cannot make it descend to a map defined on B, but since if v, are
paths from by to b in different homotopy classes, we have

P(y) =P() €

then it induces a surjective submersion

1
—7
o2

[P]: B — R/(Z/2),
whose fibers are the leaves of F (actually, when B is compact, B with its
Poisson structure is what is called a symplectic mapping torus).

Exercise 14.

i. Let (M,o) be a symplectic manifold, and let G be a Lie group acting on M
in a Hamiltonian fashion on M

GxM—M



ii.

iii.
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Let y: M — g* be the momentum map. For each H a closed subgroup of G
(with the inclusion denoted by i: H — G), consider the restriction of the
action to H, 1.e.
HxM2Maxm—m

Show that this is also a Hamiltonian action (observe that there is a nat-
ural candidate for the momentum map, which is the composition of p with
the obvious map from g* to b*, where b is the Lie algebra of H ).
Let G;, j = 1,...,s be Lie groups acting in a Hamiltonian fashion on
(Mj,0;), j=1,...,s, with momentum maps p;: M; — g;. Show that the
product action of Gy x --- X Gg on (My X ---x Mg, prioi+---+prios) (pr;
the projection onto the j-th factor) is Hamiltonian, with momentum map

,uflX"'XHS:MlX"'XMSHQTX"'XQ:

Let G be a Lie group acting in a Hamiltonian fashion on manifolds (M;,0;),
Jj=1,...,s, with momentum maps p;: M; — g. Show that the diagonal
action of G on My X - - - X Mg is hamiltonian with moment map pq1+- -+ .

Exercise 15. Let T™ = {(t1,...,t,) € C"||t;| = 1} be the n-torus acting on C"
via the formula

Tyeeesln) (Z1y...,2n) = 1 Zlyeeey nZn7
(¢ tn) - ( ) = (¢ ty 2n)

whre k1, ...,k, are fived integers. Show that the action is Hamiltonian w.r.t. the
standard symplectic form (the imaginary part of the standard hermitian inner prod-
uct), with momentum map

1
w(z1,y .o 2n) = —§(k1|z1|2, ey kn|za]?) + constant



