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Abstract

HOMCONT, an AUTO86-based toolbox for homoclinic bifurcation analysis, is described in detail. The toolbox
allows the continuation of codimension-one homoclinic orbits to hyperbolic and non-hyperbolic equilibria, as
well as detection and continuation of higher-order homoclinic singularities in more parameters. All known codim
2 cases that involve a unique homoclinic orbit are supported, and certain heteroclinic computations are also
possible. The document contains details on the various files supplied with HOMCONT and how to use them

to analyse several tutorial examples.
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Chapter 1

Introduction and installation

1. PurpPOSE OF HOMCONT

HoMCONT is a suite of routines to accompany AUT086 (Doedel & Kernévez (1986), Doedel, Keller &
Kernévez (1991a, 1991b)) in order to perform continuation in two or more parameters of homoclinic
solutions to equilibria in ordinary differential equations. In addition, the accurate detection and multi-
parameter continuation of certain codimension-two singularities is allowed for, and certain heteroclinic
computations are also possible. The theory behind the methods used is explained in Champneys &
Kuznetsov (1994), Bai & Champneys (1994), Sandstede (1995b, 1995¢), Champneys, Kuznetsov &
Sandstede (1995) and references therein. The final cited paper contains a concise description of the
present version.

2. SYSTEM REQUIREMENTS
HoMCONT requires that AUTO86 is installed under UNIX. Note that the present implementation of
HoMCoONT will not run under AUT094.

3. How 10 GET HOMCONT
HoMCONT is available on the anonymous ftp server ftp.cwi.nl in the directory pub/HomCont. Com-
ments and reports of bugs are very much appreciated.

4. INSTALLATION
HoMCONT comes as the compressed tar-file HomCont.tar.Z and can be extracted by running

uncompress HomCont.tar.Z
tar -xf HomCont.tar

in the directory in which the driver should be installed. Then the directories circuit, doc, koper,
marten, test, shear, src are created. The manual is contained in doc, while the source code
is written to src. The latter directory also contains the command files as well as the example file
autexample.f which can be used by the user for setting up new problems. Finally, the files used in the
tutorial examples described in Chapter 3 are contained in the remaining directories test, marten,
koper, circuit, shear. A list of all files can be found in the file doc/README.

It is assumed that the user has the standard UNIX version of the files for AUTO86 contained in a
directory which has been assigned to the environment variable AUTOLIBRARY and that the various
command files, @svaut, @plaut etc. have been defined (e.g. by executing source @auto.alias).

In order to run an HOMCONT example file from any directory, you first need to set up the command
files. To do this, edit the top line of the file src/@autoh.alias to set the environment variable
HOMCONTLIBRARY to be the full name of the directory src and then execute this file
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source Qautoh.alias

Including the above line in your .login (or .cshrc) file will automatically set up the files for Hom-
CONT.

If you do not run AUTO86 using the standard UNIX command files, then you will need to adapt the
command files @autoh, @adjaut and @delhaut to be similar to the command files used to run your
version of AUTO86.

5. NOTES

Because the code is licensed free of charge, there is absolutely no warranty. Please note that the
source code for certain NAG library routines for eigenvalues and eigenvectors is included within this
package. These routines are not free to be distributed further without the authors’ permission and
should not be used for commercial applications. If you have an access to the standard NAG library on
your machine, these source codes are redundant and you can replace $AUTOLIBRARY/nagroutines.f
in the compilation statements in @autoh with the standard option to link to the NAG library.

Acknowledgments: The authors are thankful to E. Doedel (Concordia University, Montreal),
W.J. Beyn (Universitit Bielefeld), M.J. Friedman (University of Alabama), A. Rucklidge (University
of Cambridge), M. Koper (University of Utrecht) and C.J. Budd (University of Bristol) among others
for various pieces of help and advice. BS is very grateful to Ingo Bremer for his generous help
concerning computers and for installing AUTO86.



Chapter 2
Running HomConT

1. GENERAL INFORMATION

In order to run HOMCONT on an example, one needs to specify an ezample file called aut<name>.f
(e.g. look at the file auttest.f in Appendix 1). The file autexample.f in the directory src serves as a
sample for new example files. The example files have a similar purpose to the example files of AUT086,
namely to specify the problem to be solved as well as various parameters and constants defining the
computation to be performed. However their structure is different to that of standard AUTO86 example
files. Standard AUT0O86 routines INIT, FUNC, STPNT, BCND, ICND, USZR are set up in an additional
library src/autlibh.f and should not need altering even if, for example, the dimension of the defining
differential equations changes (e.g. if computing the orientation of a homoclinic orbit, see below).
This library may be adapted by expert users to perform computations not automatically supported
by the current version of HOMCONT. The routines that must be specified by an ordinary user in
an example file are PROBLEM, PF, PDFDU, PEQUIB, PUSZR, PSTPNT (the ‘P’ stands for “problem-
specific”). These routines may be regarded as higher-level input routines that are called by the
standard AUT0O86 routines contained in autlibh.f. The purposes of the problem-specific routines are
the following.

PROBLEM In this routine constants are specified describing the problem and the computations to be
performed. It allows the user to choose some of the AUTO86 constants normally set up
in INIT and additionally, to specify certain other HOMCONT-specific problem-definition
constants. See below for a list of these constants.

PF Contains the right-hand-side of the differential equations in the format described in the
AUTO86 manual, see the example files.
PDFDU Contains the Jacobian matrix of the differential equation, that is the derivatives with

respect to the phase-space variables, in the AUT0O86 format.

PEQUIB This routine is only called if IEQUIB=0. Then it should contain an analytic expression for
the equilibrium towards which the homoclinic orbit converges (or two separate equilibria
for which a connecting orbit is sought in the heteroclinic case).

PUSZR This routine is similar to the subroutine USZR in AUT086. USZR in HOMCONT calls PUSZR
directly, but it is additionally used to define test functions. The number of additional
functions at zeros of which output is requested must be assigned to the variable NPUSZR
in the routine PROBLEM. Note that the variable NUZR must not be used for this purpose.

PSTPNT If an explicit homoclinic solution is known at the start, it can be specified in this routine
and will be used as an initial guess for the continuation. This routine is only called if
ISTART=2. The format in PSTPNT is U=U(T) where T runs in the interval [-PAR(11)/2,
PAR(11)/2]. The parameter PAR(11) is assigned in the routine PROBLEM.

The additional constants appearing in the routine PROBLEM are as listed below.
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NPROB Problem size (that is, the dimension of phase space).

NSTAB, NUNSTAB Numbers of stable and unstable eigenvalues.

NFREE, ICP(20) Number and labels of free parameters.

NPSI,IPSI(20) Number and labels of activated test functions for detecting homoclinic bifur-

cations, see below for a list.

NFIXED,IFIXED(20) Number and labels of fixed test functions. With NPSI=1, IFIXED(1) = ¢
one can continue a zero of IPSI = 4; in one more parameter, which should
be specified in ICP. Bifurcation points of higher codimension can be treated
similarly.

NPUSZR Number of user-defined functions (defined in PUSZR) for output.

IEQUIB = 0 if the equilibrium is specified explicitly in PEQUIB.
=1 if the saddle equilibrium is to be continued numerically.
= 2 if homoclinic orbits to a saddle-node are followed and the equilibrium is to be continued
numerically.
ISTART =1 ifstarting data is read from the file pstpnt.dat when IRS=0. This data must be given
in the form t,U in multi-column format at each point with t in the interval [0,1].
= 2 if an explicit solution is specified in the subroutine PSTPNT.
=3 if the “homotopy” approach is used for starting.
ITWIST =0 the orientation of the homoclinic solution is not computed.
=1 the orientation of the homoclinic solution is computed. Then the adjoint variational
equation is solved for the unique bounded solution. If IRS = 0 an initial guess for this
equation must be specified as well. However, the shell routine @adjaut can be used to
add an initial guess to the homoclinic solution at a restart label point.

The parameters PAR(1) — PAR(9) can be used freely by the user. The parameter PAR(11) has to
be specified by the user, too, while the remaining parameters should not be altered.

PAR(11) The value of PAR(11) equals the length of the time interval over which a homoclinic solution
is computed.

PAR(*)  The parameters PAR(10) and PAR(12) — PAR(19) are used by HOMCONT and therefore
must not be altered.

The user may in addition change any of the usual AUTO86 constants except for the following ones
which must not be altered, because values are assigned to these in the driver HOMCONT

Constants not allowed to be changed: NDIM, IPS, NUZR, JAC, NBC, NINT.

To run HOMCONT on an example file aut<name>.f the command file @autoh is used
Q@autoh <name>

This operates like the AUTO86 command @auto and output can be saved, plotted and appended to
using the usual AUTO86 commands @svaut, @plaut and @apaut, see the examples in Chapter 3 below.

To compute the orientation of a homoclinic orbit (i.e. in order to detect inclination-flip bifurcations)
it is necessary to compute, in tandem, a solution to the modified adjoint variational equation, by setting
ITWIST=1. In order to obtain starting data for such a computation, given AUTO86 output for just the
homoclinic, the following command is used:

Q@adjaut LAB <namel> <name2>

which copies the data at the point label LAB from q.<nameil> to the file q.<name2> appending at
the same time an initial guess for the solution of the adjoint equation. After changing ITWIST=0 to
ITWIST=1 a Newton step in the dummy parameter PAR(20) should be performed

IRS = LAB NMX = 2 ICP(1) = 20

Then the output contains the homoclinic solution as well as the bounded solution to the adjoint
variational equation (see Chapter 3, Section 1.1 or 3.1 for an example).
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Another command is used to delete these extra columns of data in the output in the q.<name> file
when one wants to “switch off” the computation of the orientation (e.g. when the eigenvalues become
complex). Calling

@delhaut LAB <namel> <name2>

stores the data corresponding to the label LAB from q.<namel> to the file q.<name2> removing at the
same time the solution data for the adjoint equation. After changing ITWIST=1 to ITWIST=0 one can
then proceed with computing the homoclinic solution without solving for the adjoint equation.

The output is in an identical format to AUTO86 except that there is additional information at each
computed point written in fort.9, described as follows. First, the eigenvalues of the lineariazation at
the equilibrium are output in the format

EIGENVALUES
( real part, imaginary part)
( e s ces )

Second, if ITTWIST=1 the orientation of the homoclinic solution is indicated below the eigenvalues by
either the line

ORIENTABLE (value)
or
NON-ORIENTABLE (value)

where the sign of value indicates the orientation. Note that the statement about orientability is only
meaningful if the leading eigenvalues are not complex and the homoclinic solution is not in a flip
configuration, that is, none of the test functions ¢; for i = 11,12,13, 14 is zero (or close to zero), see
Section 1.1 in Chapter 3. Finally, the values of the NPSI activated test functions are written in the
format

PSI(...)
USZR FUNCTION =

followed by the values of the functions defined by the user in the routine PUSZR

USER DEFINED FUNCTIONS:
USZR FUNCTION =

2. TEST FUNCTIONS

Codimension-two homoclinic orbits are detected along branches of codim 1 homoclinics by locating
zeroes of certain test functions ;. The various test functions that are “switched on” during any
continuation are given by the choice of the labels ¢, and are specified by the parameters IPSI. The
number of activated test functions is defined by in NPSI. An example is

NPSI = 2 IPSI(1) =7 IPSI(2) = 4

meaning that ¥4 and ¥; are turned on. In general, a list of indices i1,...,i, should be specified in the
following way

NPSI = n  IPSI(1) = 4 e IPSI(n) = iy,

activating the test functions v; for ¢ € {i1,...,55}.
The following codimension-two homoclinic singularities are given by zeroes of the test function
IPSI(...)=1i for the given value of i. The notation

Re pysTaB < -+ <Re p1 <0< Re Ay <--- <Re AyUNsSTAB>

is used for the eigenvalues as in Champneys & Kuznetsov (1994) and Champneys et al. (1995).
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Resonant eigenvalues (neutral saddle); Re(A1) +Im(A1) = —Re(p1) — Im(p1).
Double real leading stable eigenvalues (saddle to saddle-focus transition); p; = pa-
Double real leading unstable eigenvalues (saddle to saddle-focus transition);

A1 = Ag.

Neutral saddle, saddle-focus or bi-focus (includes i=1); Re(A1) = —Re(p1).
Neutrally-divergent saddle-focus (stable eigenvalues complex);

Re(Ar) = —Re(p1) — Re(pz).

Neutrally-divergent saddle-focus (unstable eigenvalues complex);

Re(p1) = —Re(A1) — Re(Aq).

Three leading eigenvalues (stable); Re(p1) = Re(uz) = Re(us).

Three leading eigenvalues (unstable); Re(A;) = Re(A2) = Re(X3).

Local bifurcation (zero eigenvalue or Hopf): number of stable eigenvalues decreases; Re(u1) =
0.

Local bifurcation (zero eigenvalue or Hopf): number of unstable eigenvalues decreases; Re(A1) =
0.

Orbit flip with respect to leading stable direction (e.g. 1D unstable manifold).
Orbit flip with respect to leading unstable direction, (e.g. 1D stable manifold).
Inclination flip with respect to stable manifold (e.g. 1D unstable manifold).
Inclination flip with respect to unstable manifold (e.g. 1D stable manifold).
Non-central homoclinic to saddle-node (in stable manifold).

Non-central homoclinic to saddle-node (in unstable manifold).

Expert users may wish to add their own test functions by editing the function PSI in autlibh.f.
Information about the values of each activated test function, including possible zeroes which AUT0O86
failed to accurately detect, is output to fort.9 as described in the previous section.

3. STARTING STRATEGIES
There are four possible starting procedures for continuation.

(@)

(ii)

(iii)
(iv)

Data can be read from a previously-obtained output point from AUT086 (e.g. from continuation
of a periodic orbit up to large period; note that the end-point of the data stored must be close
to the equilibrium). This data can be read from fort.8 (saved to q.<name>) by making IRS
correspond to the label of the data point in question.

Data from numerical integration (e.g. computation of a stable periodic orbit, or an approximate
homoclinic obtained by shooting) can be read in from a data file called pstpnt.dat. This data
should be in multi-column format according to the read statement

READ(...,*) T(J),(U(1,J),I=1,NPROB)
In other words, data should be stored in pstpnt.dat in the line format
T U(1) e U(NPROB)

where T runs in the interval [0,1]. Note that this implies that the true time variable must be
scaled by a factor of 1/PAR(11). In this case IRS should be set to zero (see the example on
Scheffer’s model in Section 2 in Chapter 3 below) and ISTART=1.

By setting ISTART=2, an explicit homoclinic solution can be specified in the routine PSTPNT in
the format U=..(T). Here T runs in the interval [-PAR(11)/2,PAR(11)/2].

The choice ISTART=3 allows for a homotopy method to be used to approach a homoclinic orbit
starting from a small approximation to a solution to the linear problem in the unstable manifold
(Doedel, Friedman & Monteiro 1993). For details of implementation, the reader is referred to
Section 5.1.2 of Champneys & Kuznetsov (1994), under the simplification that we do not solve
for the adjoint u(t) here. The basic idea is to start with a small solution in the unstable
manifold, and perform continuation in PAR(11) = T and dummy initial-condition parameters
&; in order to satisfy the correct right-hand boundary conditions, which are defined by zeroes
of other dummy parameters w;. See Section 3.1 in Chapter 3 below for an example.



Chapter 3
Tutorial examples

Ordinarily, a user would wish to plot data after each save. In most implementations of AUTO86 this
is achieved by using the command

@plaut <name>

where <name> would be test, marten, koper, circuit or shear in the examples defined below.
However, we shall not describe the use of @plaut for any example. Certain figures ahead are produced
with the help of visualization programs which are independent of AUT0S86.

1. GENERAL TEST EXAMPLE
Consider the system (Sandstede 1995a)

# = ar+by—ax?+ (i—az)z(2—3z)

3
y = bw+ay—§bx2—§a:vy—(ﬂ—az)2y (1.1)
: = cztprt+yzz+af(@®(l—z)—y?).

Choosing the constants appearing in (1.1) appropriately allows one to find inclination and orbit flips
as well as non-orientable resonant bifurcations, see (Sandstede 1995a) for details and proofs. The
starting point for all calculationsis a =0,b=1,a8 = 0,7 = p = i = 0, where there exists an explicit
homoclinic solution given by

(@(t), (), (1) = (1 - (155) e %o) . (1.2

The defining HOMCONT problem is contained in the file auttest.f in the directory test and is
also listed as Appendix 1. Before begining, you should change directory to test. The system (1.1)
is specified in the subroutine PF of auttest.f with the following correspondence: =z = U(1), y =
U(2), z = U(3), a = PAR(1), b = PAR(2), ¢ = PAR(3),a = PAR(4), 8 = PAR(5), v = PAR(6), p =
PAR(7), ji = PAR(8). The subroutine PDFDU contains the Jacobian matrix of (1.1).

1.1 Inclination flip

We start witha =0,b=1,¢= -2, a=0,8=1and vy = p = i = 0 as chosen in auttest.f.
The homoclinic solution is followed in the parameters (a, i) =(PAR(1) ,PAR(8)) up to a = 0.25. The
following problem-dependent constants are assigned in the subroutine PROBLEM of auttest.f

NPROB = 3  NUNSTAB = 1 NSTAB = 2 TEQUIB = 0O ITWIST = 0 ISTART = 2
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The constants NPROB, NUNSTAB and NSTAB define the dimension of the system and that of the stable
and the unstable invariant manifolds of the saddle at the origin, respectively. The saddle coordinates
are explicitly given by the subroutine PEQUIB as indicated by IEQUIB = 0; the orientation of the
homoclinic solution is not computed (ITWIST = 0); and the initial homoclinic solution (1.2) is specified
in the routine PSTPNT (ISTART = 2). Running AUTO86

Qautoh test

yields the output!

BR PT TY LAB PAR(1) . PAR(8)
1 1 EP 1 0.000000E+00 . 0.000000E+00
1 5UZ 2 2.500000E-01 ... -3.620305E-11
1 10 EP 3 7.384434E-01 ... —9.038826E-09

which we save in dummy files p.testl, q.testl and d.testl using the standard AUTO86 command
@svaut testl
An initial guess of the adjoint equation is now created in q.test by running
Q@adjaut 2 testl test

Next, we have to perform a Newton step in the dummy parameter PAR(20) in order to obtain the
correct solution of the adjoint equation. This can be achieved by making the following changes in
auttest.f

ITWIST = 1 IRS =2 NMX = 3 ICP(1) = 20 NPUSZR = 0O

Note that it is the first assignment of ICP(1) (on line 197) that we change. On rerunning AUTO86
and appending the output to p.test, q.test and d.test

Q@autoh test
Q@apaut test

we get the output

BR PT TY LAB PAR(20) . PAR(8) PAR(10)
1 3 EP 3 5.628636E+00 ... -3.778346E-11 -4.776378E-09

We are now ready to perform continuation of the homoclinic plus adjoint in («, i) =(PAR(4) , PAR(8))
by changing the constants in the file auttest.f according to

IRS =3 NMX = 50 ICP(1) =4 NPSI = 2

The test functions for detecting resonant bifurcations (ISPI(1)=1) and inclination flips (ISPI(2)=13)
are now activated. Running

Q@autoh test
Q@apaut test

yields
BR PT TY LAB PAR(4) ce PAR(8) PAR(10)
1 20 4 7.847220E-01 ... -3.001077E-11 -4.270131E-09
1 35 UZ 5 1.230857E+00 ... -5.782999E-11 -4.552091E-09
1 40 6 1.383966E+00 ... -8.165651E-11 -4.665350E-09
1 50 EP 7 1.695202E+00 ... -1.386592E-10 -5.096954E-09

Note that the artificial parameter ¢ =PAR(10) is zero to within the allowed tolerance, as it is should
be according to the theory (Sandstede 1995¢). The file d.test contains the lines

TAll the computations in this manual are performed on a SGI Indy under IRIX 5.2 using the standard NAG library.



1. General test example 11

u6b

Figure 1.1: Second versus third component of the solution to the adjoint equation at labels 4,5 and 7

BRANCH 1 N= 20 IT=3 ...
EIGENVALUES

ORIENTABLE ( 0.1807863751D+06)
PSI( 13)

USZR FUNCTION =  0.144E+02
* DETECTION OF SINGULAR POINT :
BRANCH 1 N= 35 IT=0 ...

BRANCH 1 N= 35 IT=1 ...
EIGENVALUES

ORIENTABLE ( 0.6491192560D-03)

PSI( 13)
USZR FUNCTION = 0.373E-07

BRANCH 1 N= 40 IT= 2 ...
EIGENVALUES

NON-ORIENTABLE ( -0.2617339717D+05)

PST( 13)
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USZR FUNCTION = -0.135E+01

whence we have computed an inclination flip at N=35 corresponding to label 5. Indeed, the corre-
sponding test function is zero. Data for the adjoint equation at LAB=4, 5 and 7 at and on either side
of the inclination flip are presented in Fig. 1.1. The switching of the solution between components of
the leading unstable left eigenvector is apparent. However, the line

ORIENTABLE ( 0.6491192560D-03)

at N=35 would seem to contradict the detection of the inclination flip at this point. Nonetheless, the
important fact is the zero of the test function; and note that the value of the variable indicating the
orientation is small compared to its value at the other regular points.

Finally, we remark that the Newton step in the dummy parameter PAR(20) performed above is
crucial to obtain convergence. Indeed, if we try to continue the homoclinic orbit and the solution of
the adjoint equation directly by setting

IRS = 2
in auttest.f and running

Qautoh test
@svaut test2

we obtain the output

BR PT TY LAB PAR(4) ce PAR(8) PAR(10)
1 2 MX 8 0.000000E+00 ... -3.620305E-11 0.000000E+00

indicating a no-convergence error.

1.2 Non-orientable resonant eigenvalues

Inspecting the output of the computations performed in the previous section we observe the existence
of a non-orientable homoclinic orbit at label 6 corresponding to PT=40. We restart at this label, with
the first continuation parameter being once again a =PAR(1), by changing constants in auttest.f
according to

IRS = 6 DS = -0.05 NMX = 20 ICP(1) =1
Running
Qautoh test

the output is given by

BR PT TY LAB PAR(1) - PAR(8) PAR(10)
1 8 UZ 8 2.341636E-09 ... -5.160054E-12  -7.697015E-10
1 20 EP 9 -4.916798E-01 ... -2.077344E-12  -7.551938E-10

which we choose to append to the previous data
Q@apaut test

(however, for plotting purposes it may sometimes be advantageous to @svaut to save the data to a
new file). The file d.test contains the lines

* DETECTION OF SINGULAR POINT :
BRANCH 1 N= 8 IT=0 ...
BRANCH 1 N= 8 IT=1 ...
EIGENVALUES
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NON-ORIENTABLE ( -0.1314592670D+05)
PSI( 1)
USZR FUNCTION = 0.468E-08

indicating that a non-orientable resonant bifurcation occurred at that point.

1.8 Orbit flip

In this subsection we compute an orbit flip. To this end we restart from the original explicit solution,
but with @ = 1, § = 0 and without computing the orientation. We begin by separately performing

continuation in (a, ) and (b, i) in order to reach the parameter values (a,b) = (0.5,0.25). First, we
change the following constants in auttest.f to read

ITWIST = 0 IRS=0 DS = 0.05
PAR(4)= 1.0 PAR(5)= 0.0 PAR(11) = 10.0
NPUSZR = 1 NPSI = 0 PUSZR = PAR(1) - 0.5

and run the program
Q@autoh test

to get the following output

BR PT TY LAB PAR(1) e PAR(8)
1 1 EP 1 0.000000E+00 ... 0.000000E+00
1 8 UZ 2 4.999999E-01 ... -7.122160E-05
1 20 EP 3 1.668793E+00 ... -2.219671E-02

Saving this data via
@svaut test

will over-write the previous output (which you should therefore have copied elsewhere if you had
wished to keep). On changing auttest.f

IRS = 2 NMX = 30 ICP(1) = 2 PUSZR = PAR(2) - 3.0
and rerunning

Q@autoh test
Q@apaut test

we obtain
BR PT TY LAB PAR(2) . PAR(8)
1 20 4 2.613317E+00 ... =3.727036E-11
1 24 UZ 5 3.000000E+00 ... =1.743765E-10
1 30 EP 6 3.597855E+00 ... -3.090265E-10

Next we perform continuation with respect to u =PAR(7)
IRS = 5 NMX = 20 ICP(1) =7 PUSZR = PAR(7) - 0.25
and again run

Q@autoh test
Q@apaut test

to produce

BR PT TY LAB PAR(T) . PAR(8)
1 5UZ 7 2.500000E-01 ... 6.732622E-02
1 20 EP 8 1.737059E+00 ... 4.631532E-01
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Figure 1.2: Orbits either side of the orbit flip bifurcation. The critical orbit is contained in the
(z,y)-plane

The final step consists of computing in the other direction in y towards g = 0 with an appropriate
test function for an orbit flip activated. We make the following alterations
IRS = 7 DS = -0.05 NPUSZR = 0O NPST = 1 IPSI(1) = 11

and rerun

Q@autoh test
Q@apaut test

The output yields an orbit flip bifurcation

BR PT TY LAB PAR(T7) . PAR(8)
1 5UZ 9 -5.008722E-08 ... -1.370673E-08
1 20 EP 10 -1.486437E+00 ... -4.081331E-01

at approximately (u,ft) = 0 which is the value predicted by theory. Note that the critical orbit is
contained in the (z,y)-plane (see Fig. 1.2).

2. PREDATOR-PREY MODEL BY M. SCHEFFER
Consider the following system of two equations (Scheffer 1995)

X = rx(1-X)_AXY | pk
K) B +X (2.1)
_ g AXY o AZY? :
T 'Bi+x 7Y BZyye

The values of all parameters except (K, Z) are set as follows:

R=0.5, A, =04, B, =0.6, Dy =0.01, E; = 0.6, Ay = 1.0, B, = 0.5, D; = 0.15.
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Figure 2.1: Parametric portrait of the predator-prey system

The parametric portrait of the system (2.1) on the (Z, K)-plane is presented in Figure 2.1. It contains
fold (¢1,2) and Hopf (H) bifurcation curves, as well as a homoclinic bifurcation curve P. The fold curves
meet at a cusp singular point C, while the Hopf and the homoclinic curves originate at a Bogdanov-
Takens point BT'. Only the homoclinic curve P will be considered here, the other bifurcation curves
can be computed using AUTO86 or LOCBIF (Khibnik, Kuznetsov, Levitin & Nikolaev 1993).

2.1 Continuation of central saddle-node homoclinics
Local bifurcation analysis shows that at K = 6.0, Z = 0.06729762.. ., the system has a saddle-node
equilibrium

(X%,Y%) = (5.738626....,0.5108401 .. ),

with one zero and one negative eigenvalue. Direct simulations reveal a homoclinic orbit to this saddle-
node, departing and returning along its central direction (i.e., tangent to the null-eigenvector).

Starting from this solution, stored in the file pstpnt.dat, we continue the saddle-node central
homoclinic orbit with respect to the parameters K and Z by running

Qautoh marten

in the directory marten. The file autmarten.f contains approximate parameter values corresponding
to the homoclinic orbit,

K =PAR(1) = 6.0, Z = PAR(2) = 0.06729762,
as well as the coordinates of the saddle-node
X% =PAR(12) = 5.738626, Y? = PAR(13) = 0.5108401,
and the length of the truncated time-interval

Tp = PAR(11) = 1046.178
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Since a homoclinic orbit to a saddle-node is being followed, we also set

IEQUIB = 2 NUNSTAB = 0 NSTAB = 1

and monitor two test-functions to detect non-central saddle-node homoclinic orbits:

NPST = 2 IPSI(1) = 15 IPSI(2) = 16
Among the output there is a line
BR PT TY LAB PAR(1) L2-NORM PAR(2)

1 23 UZ 4 6.610455E+00 6.254906E+00 6.932481E-02 ...

indicating that a zero of the test function IPSI(1)=15 (see the output in fort.9) has been accurately
located. This means that at

D, = (K',Z') = (6.610458...,0.06932482. . .)

the homoclinic orbit to the saddle-node becomes non-central, namely, it returns to the equilibrium
along the stable eigenvector, forming a non-smooth loop. Save the output in the usual way

@svaut marten
Repeating computations in the opposite direction along the curve by editing the constants
IRS = 1 DS = -0.01
in autmarten.f and running it
Q@autoh marten
one obtains

BR PT TY LAB
1 29 UZ

PAR(1) L2-NORM
8 b5.180308E+00 4.819672E+00

PAR(2)
6.385499E-02 ...

which means another non-central saddle-node homoclinic bifurcation occurs at
D, = (K?,Z%) = (5.180308...,0.06385499.. .).

Save the output by typing
@apaut marten
2.2 Switching between saddle-node and saddle homoclinic orbits

Now we can switch to continuation of saddle homoclinic orbits at the located codim 2 points D; and
D,. For this, make the following changes in autmarten.f:

NUNSTAB = 1 IEQUIB = 1 IRS=4 DS =0.01 DSMAX = 0.5 NMX = 40

and set
IPSI(1) =9 IPSI(2) = 10
to monitor for nonhyperbolic equilibria along the homoclinic locus. On running

Qautoh marten

we get the following output

BR PT TY LAB

PAR(1)

L2-NORM

PAR(2)

1 10 10 6.968309E+00 6.605262E+00 7.038941E-02
1 20 11 8.698321E+00 8.288411E+00 7.539922E-02
1 30 12 1.214421E+01 1.162850E+01 8.554196E-02
1 40 EP 13 1.573264E+01 1.510738E+01 9.639685E-02
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Figure 2.2: Approximation by a large-period cycle

This is the upper branch of P in Figure 2.1. Append this data to the stored results
@apaut marten

Notice that restarting in the opposite direction with IRS=10, DS=-0.01 will detect the same codim
2 point Dy but now as a zero of the test-function IPSI(1)=9

BR PT TY LAB PAR(1) L2-NORM ce PAR(2)
1 10 UZ 14 6.610459E+00 6.254910E+00 ... 6.932482E-02

Note that the value of PAR(1) differs from that at label 4 only in the final decimal place. Actually,
the program runs further and eventually computes the point Dy and the whole lower branch of P
emanating from it, however, the solutions between D; and D, should be considered as spurious?,
therefore we do not save this data. The reliable way to compute the lower branch of P is to restart

@autoh marten from the point LAB=8 by setting
IRS = 8 NMX = 50

in autmarten.f. This gives the lower branch of P approaching the Bogdanov-Takens point BT (see
Figure 2.1)

BR PT TY LAB PAR(1) L2-NORM .. PAR(2)
1 10 14 4.990545E+00 4.610448E+00 6.305166E-02
1 20 15 4.944760E+00 4.196061E+00 8.054530E-02
1 30 16 6.992942E+00 5.204561E+00 1.554437E-01
1 40 17 1.121011E+01 7.433009E+00 ... 2.867595E-01
1 50 EP 18 1.168976E+01 7.693878E+00 ... 3.011494E-01

2 The program actually computes the saddle-saddle heteroclinic orbit bifurcating from the non-central saddle-node
homoclinic at the point D1, see Champneys et al. (1995, Fig. 2), and continues it to the one emanating from Ds.
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Figure 2.3: Projection onto the (K, Dy)-plane of the three-parameter curve of non-central saddle-node
homoclinic orbit

Upon appending this data to the stored results
Q@apaut marten

one could now plot the entire data to reproduce both branches of the curve P shown in Figure 2.1.

It is worthwhile to compare the homoclinic curves computed above with a curve Ty = const along
which the system has a limit cycle of constant large period Ty = 1046.178, which can easily be
computed using AUTO86 or LOCBIF. Such a curve is plotted in Figure 2.2. It obviously approximates
well the saddle homoclinic loci of P, but demonstrates much bigger deviation from the saddle-node
homoclinic segment Dy Dy. This happens because the period of the limit cycle grows to infinity while
approaching both types of homoclinic orbit, but with different asymptotics: as ||a — a*||?, where
~ = p1 /A1 in the saddle homoclinic case, and as —In |ja — o*|| in the saddle-node case.

2.8 Three-parameter continuation

Finally, we can follow the curve of non-central saddle-node homoclinic orbits in three parameters. The
extra continuation parameter is Dy=PAR(3). To achieve this we restart at label 4, corresponding to
the codim 2 point D;. We return to continuation of saddle-node homoclinics, but append the defining
equation ¥15 = 0 to the continuation problem. This is achieved by making the following changes to
autmarten.f.

NUNSTAB = 0O TEQUIB = 2 IRS = 4 DS = 0.001 DSMAX = 0.1 NFIXED = 1
To specify the free parameters, one can type
NFREE = 3 ICP(1) = 3 ICP(2) =1 ICP(3) = 2

Notice that we consider Dy as the first continuation parameter because AUTO86 detects limit points
with respect to this parameter. To this end we also set

ILP =1 NPUSZR =1 NPSI =0
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the second of which is used to activate the first user-defined output function in PUSZR which detects
the intersection with the plane Dy = 0.01, while the last discharges monitoring of test functions. Upon
running using

Qautoh marten

we get among other output

BR PT TY LAB PAR(3) . PAR(1) PAR(2)
1 20 LP 20 1.081234E-02 ... b5.673620E+00 6.608181E-02
1 26 UZ 21 1.000000E-02 ... b5.180308E+00 6.385499E-02

the first line of which represents the Dy value at which the homoclinic curve P has a tangency with the
branch t5 of fold bifurcations. Beyond this value of Dy, P consists entirely of saddle homoclinic orbits.
The data at label 21 reproduces the coordinates of the point Dy. The results of this computation and
a similar one starting from D; in the opposite direction (DS=-0.001) are displayed in Figure 2.3.

3. KOPER’S EXTENDED VAN DER POL MODEL
The example file autkoper.f in the directory koper contains the equations

et (ky —a®+32—))
Yy = z—2y+z (3.1)
z = 52(y_z)a

with 1 = 0.1 and g5 = 1 (Koper (1994, 1994)).

3.1 The primary branch of homoclinics

First, we solve for a homoclinic orbit using the homotopy method (ISTART=3). To do this, we take the
AUTOS86 constants as initially specified in autkoper.f, which already contains approximate parameter
values for a homoclinic orbit, namely A =PAR(1)=-1.851185, £k =PAR(2)=-0.15. We begin with
continuation in 27'=PAR(11);

Q@autoh koper
Among the output there is the line

BR PT TY LAB PAR(11) L2-NORM . PAR(17)
1 26 UZ 3 1.908778E+01 1.693730E+00 ... -5.845273E-11 ...

which indicates that a zero has been located of the artificial parameter w; = PAR(17), which measures
the distance of the solution at the right-hand endpoint from the linearized stable manifold. The
continuation ends in a no convergence error

1 46 MX 6 2.197655E+01 1.687785E+00 ... 1.149913E+00 ...

as the right-hand endpoint leaves the saddle close to its unstable manifold. We can save this output
in the usual way

@svaut koper

However, upon plotting the data at label 3 (see Figure 3.1) it can be noted that although the right-
hand projection boundary condition is satisfied, the solution is still quite away from the equilibrium.
The right-hand endpoint can be made to approach the equilibrium by performing a further continu-
ation in T with the right-hand projection condition satisfied (PAR(17) fixed) but with A allowed to
vary. That is, edit autkoper.f, so that the following two constants are altered to read

IRS = 3 ICP(2) =1

Note that values are assigned to the variables ICP(..) at two places in autkoper.f depending on
whether ISTART=3 or ISTART=1,2. Here we change ICP(2) at the second place, that is, in line 222 of
autkoper.f. Running AUTO86 again using
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Figure 3.1: Projection on the (z,y)-plane of solutions of the boundary value problem with PAR(11)
= 19.08778

-0. 950

-0.960

-0.970

-0.980

-0.990

-1.000 \ \ \ \ \ \ \
-1.020 -1.000 -0.980 -0. 960 -0. 940
-1.010 -0.990 -0.970 -0. 950 X

Figure 3.2: Projection on the (z,y)-plane of solutions of the boundary value problem with PAR(11)
= 60
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Q@autoh koper
the output at label 10

BR PT TY LAB PAR(11) L2-NORM . PAR(1)
1 34 UZ 10 6.000000E+01 1.672806E+00 ... -1.851185E+00 ...

provides a good approximation to a homoclinic solution (see Figure 3.2). We add this data to that
already obtained in the usual way

Q@apaut koper

The second stage to obtain a starting solution is to add a solution to the modified adjoint variational
equation. This is done by a simple two-step process. First we add some trivial data to that defining
the homoclinic orbit at label 10.

@adjaut 10 koper koper2

The new data is now stored in q.koper2. We start with a Newton step in a trivial parameter in
order to solve the linear adjoint equation. To do this, make the following changes to the constants in
autkoper.f

ITWIST = 1 ISTART = 1 IRS = 10 NMX =2 NPR = 2

and save the new file to autkoper2.f. Continuation is now performed with respect to the dummy
parameter PAR(20). Upon running AUTO86 and saving the output

Q@autoh koper2
Q@apaut koper2

the output at the second point contains the converged homoclinic solution (variables (U(1), U(2),
U(3)) and the adjoint (U(4), U(5), U(6))). We now have a starting solution and are ready to
perform two-parameter continuation.

We make the following changes in autkoper2.f

IRS = 11 DS = 0.02 DSMAX = 0.2 NMX = 60 NPR = 2
ICP(1) = 1 (the first occurrence, line 176 in autkoper2.f)

Note that this small value of NPR=2 is kept in order to produce detailed output near the inclination-
flip points computed below; if the user has a limited filespace available, then we recommend taking a
larger value, say NPR=10. Then we run again

Q@autoh koper2

Among the output we find two zeroes of the test function IPSI(2)=13 (see the output in fort.9),
which gives the accurate location of two inclination-flip bifurcations,

BR PT TY LAB PAR(1) e PAR(2) PAR(10)
1 14 UZ 18 -1.801663E+00 ... —2.002655E-01 -2.317688E-08
1 20 UZ 21 -1.568756E+00 ... -4.395466E-01 2.578296E-09

and a point at which the equilibrium undergoes a saddle-node bifurcation (a zero of the test function
IPSI(1)=9), namely a non-central saddle-node homoclinic orbit

1 54 UZ 38 1.765060E-01 ... —2.405332E+00 8.769192E-09

Any output beyond the point LAB=38 is spurious®. Note from this output, that at each computed

point (not just the codim 2 points) the artificial parameter € =PAR(10) is zero to within the allowed
tolerance, as it should be theoretically. This output is saved rather than appended to the previous
data,

3See footnote 2 or Champneys et al. (1995, Fig. 2).
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Figure 3.3: Projection on the (z,y)-plane of solutions ¢(t) at LAB=16 (PAR(1)=-1.825470,
PAR(2)=-0. 1760749) and LAB=20 (PAR(1)=—1.686154, PAR(2)=—O.3183548)

Figure 3.4: Three-dimensional blow-up of the solution curves ¢(t) at LAB=16 (solid line) and LAB=20
(dotted)
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Figure 3.5: Computed homoclinic orbits approaching the BT point

@svaut koper2

since that contained the artificial Newton step which no longer need. Figure 3.3 presents solutions
©(t) of the modified adjoint variational equation (for details see Sandstede (1995¢)) at LAB=16 and
20 which are points on the homoclinic branch before and after the first detected inclination flip. A
blow-up of the region close to the origin of this figure is shown in Figure 3.4 illustrating the flip of
the solutions of the adjoint equation while moving through the bifurcation point. Note that the data
in Figure 3.4 was plotted after first performing an additional continuation of the solutions at both
points with respect to the truncation interval PAR(11).
Continuing in the other direction by changing autkoper2.f

IRS = 12 DS = -0.02 DSMAX = 0.05 NPR = 10
and running
Q@autoh koper?2
we approach a Bogdanov-Takens point.

BR PT TY LAB PAR(1) . PAR(2) PAR(10)
1 60 EP 47 -1.949015E+00 ... =-5.120101E-02 -8.332154E+01

Note that the numerical approximation has ceased to become reliable, since PAR(10) has now become
large. To follow the homoclinic orbit to the BT point with more precision, we would need to first
perform continuation in 27" (PAR(11) ) to obtain a more accurate homoclinic solution (see Section 3.3.2
below). We could now plot the locus of homoclinic bifurcations so far obtained, after first appending
this data to that already obtained for the branch of homoclinics

@apaut koper2

Phase portraits of homoclinic orbits between the BT point and the first inclination flip (in fact,
between labels 12 and 18 and from labels 42 to 46) are depicted in Figure 3.5, note how the computed
homoclinic orbits approaching the BT point have their endpoints well away from the equilibrium,
again showing that we need to take a larger truncation interval.
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3.2 More accuracy and saddle-node homoclinic orbits

To analyze the branch of homoclinic orbits further, we first perform continuation in 7" from one point
on the previously computed branch in order to obtain an approximation of the homoclinic orbit over
a longer interval. This is necessary for parameter values near a non-hyperbolic equilibrium (either a
saddle-node or BT) where the convergence to the equilibrium is slower. First, we pick a point well
away from the non-hyperbolic equilibrium (label 12) and remove the data for the computation of the
adjoint variational equation, because inclination flips will not be involved in what follows.

@delhaut 12 koper2 koper3
The following changes are then made to autkoper2.f

ITWIST =0 DS = 2.0 DSMAX = 10.0 NMX = 100 NPR = 20
NPSTI = 2 RL1 = 2000.0 ICP(1) = 11

with the resulting file renamed as autkoper3.f. We then run this new file
Q@autoh koper3
The last point in this computation is

BR PT TY LAB PAR(11) L2-NORM A PAR(2)
1 100 EP 17 9.855682E+02 1.661016E+00 ... -1.516927E-01 ...

We can now repeat the computation of the branch of saddle homoclinic orbits from this point, by
saving this data

@svaut koper3
setting
IRS = 17 DS = 0.02 DSMAX = 0.1 ICP(1) =1
in autkoper3.f and running in the usual way
Q@autoh koper3
The saddle-node point is now detected at

BR PT TY LAB PAR(1) L2-NORM .. PAR(2)
1 46 UZ 20 1.764948E-01 7.472675E-01 ... -2.405358E+00

Note that the parameter values differ from that at the previously-computed saddle-node homoclinic
point only in the fifth decimal place. We save this output as a new file

@svaut koper4
Replacing
DS = -0.01 DSMAX = 0.02 NMX = 20 NPR = 10
in autkoper3.f and rerunning
Q@autoh koper3

results in a more accurate approximation to the curve of homoclinics approaching the BT point

BR PT TY LAB PAR(1) L2-NORM . PAR(2)
1 10 18 -1.945502E+00 1.714829E+00 ... -5.474625E-02
1 20 EP 19 -1.950577E+00 1.717653E+00 ... -—4.962832E-02

Note that we do not save this output.
To switch to continuation of the central saddle-node homoclinic curve in two parameters from the
non-central saddle-node homoclinic orbit at LAB=20, we make the following changes to autkoper3.f
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Figure 3.6: Two non-central saddle-node homoclinic orbits (LAB=20 and 28), and a central saddle-node

homoclinic orbit between these two points (LAB=24).

NSTAB = 1 TEQUIB = 2 IRS = 20 DS = 0.01
NMX = 30 NPR =5 IPSI(1) = 15 IPSI(2) = 16

which we rename to autkoper4.f. Upon running, among the output, we get

Q@autoh koper4d
Q@apaut koper4

BR PT TY LAB PAR(1) L2-NORM . PAR(2)

1 28 UZ 28 1.764896E-01 7.491793E-01 ... -2.405369E+00 ...

At LAB=28, the branch of homoclinic orbits once again leaves the locus of saddle-nodes in a second
non-central saddle-node homoclinic bifurcation (a zero of 916). Using the 2d function in @plaut at this
stage to plot a phase space diagram (see Figure 3.6) shows clearly that, between the two codimension-
two points (labels 20 and 28), the homoclinic orbit rotates between the two components of the 1D
stable manifold, i.e. between the two boundaries of the center-stable manifold of the saddle node. The
overall effect of this process is the transformation of a nearby “small” saddle homoclinic orbit to a

“big” saddle homoclinic orbit (i.e. with two extra tuning points in phase space).

Finally, we can switch to continuation of the big saddle homoclinic orbit from the new codim 2

point. To this end we change constants according to

NSTAB = 2 TEQUIB = 1 IRS = 28 DSMAX = 0.2
NMX = 400 NPR =40 NPSTI =0

in autkoper4.f, rerun and append the data

Q@autoh koper4d
Q@apaut koper4

Note that AUTO86 takes a large number of steps near the line PAR(1)=0, while PAR(2) approaches

—2.189... (which is why we chose such a large value of NMX). This particular computation ends at
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Figure 3.7: The big homoclinic orbit approaching a figure-of-eight

BR PT TY LAB PAR(1) L2-NORM ce PAR(2)
1 400 EP 39 -2.026640E-04 2.194528E-01 ... -2.189919E+00 ...

By plotting phase portraits of the last ten orbits approaching this end point (see Figure 3.7) we see a
“canard-like” like transformation of the big homoclinic orbit to a pair of homoclinic orbits in a figure-
of-eight configuration. That we get a figure-of-eight is not a surprise because PAR(1)=0 corresponds
to a symmetry in the differential equations (Koper 1994); note also that the equilibrium, stored as
(PAR(12), PAR(13), PAR(14)), approaches the origin as we approach the figure-of-eight homoclinic.

3.8 Three parameter continuation

We now consider curves in three parameters of each of the codimension-two points encountered in
Section 3.3.2, by freeing the parameter ¢ = PAR(3). In order to continue in three parameters the
inclination flips detected at label 18, we make the following changes to autkoper2.f

IRS = 18 DS = -0.2 DSMAX = 0.5 NMX = 35
NPST =1 NFIXED = 1 IFIXED(1) = 13 NFREE = 3
ICP(1) = 3 ICP(2) =1 ICP(3) = 2

and run

Q@autoh koper2
We save the output to a new file

@svaut koperb

Among the output there is a codimension three point (zero of 1) where the neutrally twisted homo-
clinic orbit collides with the saddle-node curve

BR PT TY LAB PAR(3) ce PAR(1) PAR(2)
1 32UZ 51 5.744773E-01 ... 1.282702E-01 -2.519325E+00 ...
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Figure 3.8: Projection onto the (PAR(3),PAR(2))-plane of the non-central saddle-node homoclinic
orbit curves (labeled a and b) and the inclination-flip curves (labeled ¢ and 4d)

We continue the other detected inclination flip (at LAB=21), by changing
IRS = 21 NMX = 25
in autkoper2.f, run the driver and append the data

@autoh koper2
@apaut koper)

Again we find a point at which the inclination-flip curve collides with that of the saddle-node homo-
clinic orbits

BR PT TY LAB PAR(3) . PAR(1) PAR(2)
1 23 UZ 50 1.171705E+00 ... 1.535420E-01 -2.458100E+00

To continue the non-central saddle-node homoclinic orbits it is necessary to work on the data without
the solution ((t). We therefore restart from the data at LAB=20 and LAB=28 saved in koper4. We
could continue these codim 2 points in two ways, either by appending the defining condition ¥4 = 0
to the continuation of saddle-node homoclinic orbits (IEQUIB=2, etc.), or by appending 19 = 0 to
the continuation of a saddle homoclinic orbit. The first approach was used in the example in Section
3.2, for contrast we shall adopt the second approach here. We achieve this by changing autkoper4.f
according to

IRS = 20 DS = -0.2 DSMAX = 0.5 NMX = 50 NPR 10

NFREE = 3 ICP(1) = 3 NFIXED = 1 IFIXED(1) 9
running in the usual way and saving the data to a new file

Q@autoh koper4d
@svaut koper6

Similarly, we restart from label 28 by setting IRS=28 in autkoper4.f and rerun
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Q@autoh koper4
Q@apaut koper6

The projection onto the (g, k)-plane of all four of these codimension-two curves is given in Figure 3.8.
The intersection of the inclination-flip lines with one of the non-central saddle-node homoclinic lines
is apparent. Note that the two non-central saddle-node homoclinic orbit curves are almost overlaid.

4. ELECTRONIC CIRCUIT OF FREIRE et al
Consider the following model of a three-variable autonomous electronic circuit (Freire, Rodriguez-Luis,
Gamero & Ponce 1993)

re = —v+ 5(?4 - m) — Asz® + B3(1/ - x)s’
j = —By—2)—z—Bsly—2)*, 4
z = Y.

The equations are included in the HOMCONT example file autcircuit.f in the directory circuit.
We begin by reading in data from pstpnt.dat for a saddle-focus homoclinic orbit at 8 = 0.6, v =
—0.721309, r = 0.6, A3 = 0.328578 and B3 = 0.933578, which was obtained by shooting over the time
interval 27" =PAR(11)= 36.13. We wish to follow the branch in the (3, v)-plane, but first we perform
continuation in (7, v) to obtain a better approximation to a homoclinic orbit. Running AUTO86

Q@autoh circuit

yields the output

BR PT TY LAB PAR(11) L2-NORM PAR(2)

1 1 EP 1 3.613000E+01 2.140388E-01 -7.213090E-01
1 21 UZ 2 1.000000E+02 1.286637E-01 -7.213093E-01
1 42 UZ 3 2.000000E+02 9.097897E-02 -7.213093E-01
1 50 EP 4 2.400000E+02 8.305206E-02 -7.213093E-01

which we save in dummy files p.circuitl, q.circuitl and d.circuitl
Osvaut circuitl

Note that ¥ =PAR(2) remains constant during the continuation as the parameter values do not change,
only the solution. We now restart at LAB=3, corresponding to a time interval 7' = 200, and change
the principal continuation parameter to be 8. To this end, the following changes are made to the file
autcircuit.f

IRS =3 DS =-0.01 DSMAX = 0.05
ICP(1) =1 NMX = 30 NPR = 30
1 PUSZR=PAR(1)-0.1 2 PUSZR=PAR(1)+0.1

which is then saved as a new file autcircuitl.f. Rerunning AUTO86 via
Q@autoh circuitl

we get the output

BR PT TY LAB PAR(1) L2-NORM PAR(2)
1 9 UZ 5 4.535585E-01 1.246500E-01 -7.256936E-01
1 17 UZ 6 1.000000E-01 2.228733E-01 -9.196704E-01
1 20 UZ 7 -6.218301E-09 2.754461E-01 -1.026452E+00
1 24 UZ 8 -1.000000E-01 3.711805E-01 -1.154211E+00
1 30 EP 9 -3.247670E-01 5.681331E-01 -1.508869E+00

which is saved to p.circuit etc.

@svaut circuit
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0.00 0.20 0. 40 0.60 0.80 1.00
0.10 0.30 0.50 0.70 0.90  Time

Figure 4.1: Solutions of the boundary value problem at labels 6 and 8 either side of the Shilnikov-Hopf
bifurcation

Figure 4.2: Phase portraits of three homoclinic orbits on the branch, showing the saddle-focus to
saddle transition
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Inspecting the output in d.circuit, we see that label 5 corresponds to neutrally-divergent saddle-
focus (¢p5 = 0), while label 7 corresponds to a local bifurcation (9 = 0) which we note from the
eigenvalues there corresponds to a Shilnikov-Hopf bifurcation. Labels 6 and 8 are the user-defined
output points, the solutions at which are plotted in Fig. 4.1. Note that solutions beyond label 7
(e.g. the plotted solution at label 8) do not correspond to homoclinic orbits, but to point-to-periodic
heteroclinic orbits (c.f. Section 2.2.1 of Champneys et al. (1995)).

To continue the locus in the other direction, we make the following changes to autcircuitl.f

IRS = 5 DS = 0.01
save the file to autcircuit.f, rerun and append the data

@autoh circuit
@apaut circuit

The output

BR PT TY LAB

PAR(1)

L2-NORM

PAR(2)

1 9 UZ 10 5.912146E-01 9.305334E-02 -7.203984E-01
1 13 UZ 11 7.428710E-01 4.869731E-02 -7.590573E-01
1 21 UZ 12 7.746145E-01 1.020295E-02 -7.746679E-01
1 23 MX 13 7.746301E-01 9.871745E-03 -7.746785E-01

contains a neutral saddle-focus (a Belyakov transition) at LAB=10 (¢4 = 0), a double real leading
eigenvalue (saddle-focus to saddle transition) at LAB=11 (¢ = 0) and a neutral saddle at LAB=12
(4 = 0). Data at several points on the complete branch are plotted in Fig. 4.2. The computation
ends at a no convergence error TY=MX owing to the homoclinic branch approaching a Bogdanov-
Takens singularity at small amplitude. To compute further towards the BT point one would first need
to continue to a higher value of PAR(11).

5. A HETEROCLINIC EXAMPLE
The following system of five equations by Rucklidge & Mathews (1995)

¢

T = pz4zxy-—zu,
:‘J = _y_m2a
! ¢ = —vz+tzu, (5.1)
1
i = 7, 09,,30+40
4 472 40
¢ ¢
v = Zu— =0
\ 4 4

have been used to describe shearing instabilities in fluid convection. The equations possess a rich
structure of local and global bifurcations. Here we shall reproduce a single curve in the (o, p)-plane of
codimension-one heteroclinic orbits connecting a non-trivial equilibrium to the origin for @ = 0 and
¢ = 4. The defining problem is contained in the HOMCONT example file autshear.f in the directory
shear, and starting data for the orbit at (o,p) = (0.5,0.163875) is stored in pstpnt.dat, with a
truncation interval of PAR(11)=85.07.

We begin by computing towards =0

Qautoh shear
@svaut shear

which yields the output
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BR

s

We restart in the other direction by making the following changes in autshear.f

Figure 5.1: Projections into (z,y, z)-space of the family of heteroclinic orbits.

PT TY LAB
1 EP 1
5 2

10 3

15 4

20 5

25 6

30 EP 7

D= NN WO,

rerunning, and saving

to get the output

BR

e

PT TY LAB
5 8
10 9
15 10
20 11
25 12
30 EP 13

O 000 ~N O W,

PAR(3)

.000000E-01
.377582E-01
.611938E-01
.854734E-01
.104957E-01
.359888E-01
.104020E-02

PAR(3)

.624535E-01
.417016E-01
.221099E-01
.037082E-01
.865009E-01
.704713E-01

N R NW W

IRS = 1

~N OO OO

L2-NORM

.059140E-01
.618591E-01
.060609E-01
.495465E-01
.921718E-01
.337901E-01
.642498E-02

Q@autoh shear
Q@apaut shear

L2-NORM

.496259E-01
.032011E-01
.556790E-01
.069428E-01
.568957E-01
.054625E-01

= 00N OO = =

DS = 0.02

PAR(1)

.638750E-01
.280061E-01
.742184E-02
.285155E-02
.611675E-02
.835810E-03
.167419E-03

B W W NN

PAR(1)
.015640E-01
.508191E-01
.014721E-01
.527945E-01
.042239E-01
.5563292E-01

31

The results of both computations are presented in Fig. 5.1, from which we see that the orbit shrinks
to zero as PAR(1)=p — 0.
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Appendix |
Source code auttest.f

An Authomcont example program for the general test example

VERSION 2.0 Last revision 7/95

This sets up various various constants which are problem specific
and puts them in a common block /PROB/
It also sets up several run specific constants to be used in INIT

This is the only routine that should need changing from

one run to another on the same problem even if the

dimensions of the stable or unstable manifold or the number of
frozen parameters etc. vary

The constants set are the following

NPROB ........... problem size (i.e. dimension of phase-space)

NFREE, ICP(20) .. number and labels of free parameters

NFIXED, IFIXED(20) number and labels of fixed conditions

NPSI, IPSI(20) .. number and labels of test functions for degenerate
homoclinic orbits (see the function PSI in AUTLIBH.F)

NSTAB, NUNSTAB .. dimensions of the stable and unstable manifolds

NPUSZR .......... number of user defined functions (defined in PUSZR)
for output

TEQUIB =0 if equilibrium is specified explicitly in PEQUIB
=1 if equilibrium is to be solved for during continuation
=2 if homoclinic orbits to saddle-node are followed and
equilibrium is to be solved for during continuation
in this case one has to supply initial data of PAR(11+K)
(K=1,NPROB) for equilibrium solution
ITWIST =0 orientation not computed
=1 orientation computed via adjoint variational equation

32
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ISTART =1 if starting data is read from pstpnt.dat when IRS=0; this data
must be t,U at each point with t in [0,1]; multi column format
=2 if an explicit solution is specified in the subroutine PSTPNT
=3 if the "artificial parameter" approach is used for starting

The other constants are as described in the AUT086 manual
The bifurcation parameter is ICP(1)

and this may be equal to the truncation interval T=PAR(11)
Note that for a non-degenerate homoclinic orbits NFREE=NFIXED+2.

O 0000000000

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON /BLBCN/ NDIM,IPS,IRS,ILP,ICP(20),PAR(20)

COMMON /BLCDE/ NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

COMMON /BLDLS/ DS,DSMIN,DSMAX,IADS

COMMON /BLLIM/ NMX,NUZR,RLO,RL1,A0,Al

COMMON /BLMAX/ NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

COMMON /PROB/ IPSI(20),IFIXED(20),ITWIST,ISTART,IEQUIB,NFIXED,
+ NPSI,NFREE, NPROB,NUNSTAB, NSTAB, NPUSZR

COMMON /ACC/COMPZERD

COMMON /BLEPS/ EPSL(20) ,EPSU,EPSS

c problem dependent

NPROB =
NUNSTAB
NSTAB =
IEQUIB
ITWIST
ISTART =

N Il W
-

nonon
N O O

c restart
IRS = 0
c step length
DS = 0.05D0

DSMIN = 1.0D-04
DSMAX = 0.1DO

(¢}

stop

NMX = 10
NPR = 20

parameter/phase space region

(el e]

RLO = -100.0DO
RL1 = 100.0DO
A0 = -100.0DO
A1 = 100.0DO

c limit point and bifurcation detection

33
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ILP =0
ISW =1
ISP =0

c

c mesh

c
NTST = 35
NCOL = 4
IAD =1
IADS = 1

machine precision

O o0 o000

COMPZERD = 1.0e-13

¢]

c relative tolerances

EPSU = 1.0E-7
EPSS = 1.0E-7
DO I=1,20
EPSL(I) = 1.0E-7
END DO

c maximal iterations

ITNW = 8
ITMX = 8
c
c step length weigths
c
c THETAU=1.0d0
c THETAL (1)=1.0d0
c THETAL (2)=0.0d0
c
c output
c
c IPLT = 0O
c IID =2
c
c the initial values of all (non-artificial) parameters if IRS=0
c
IF (IRS.EQ.0) THEN
c
C Parameter (only PAR(1) up to PAR(9) available for the user)
C
C
C d/dt x = ax + by - ax"2 + (timu - alpha z) x(2-3x)
C d/dt y =bx + ay - 1.5 bx"2 - 1.5 axy - (timu - alpha z) 2y
C d/dt z = cz + mu x + gamma xz + alpha beta (x"2(1-x)-y~2)
C
C a

PAR(1)= 0.0DO
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PAR(2)= 1.0DO

PAR(3)= -2.0D0O

Q

C alpha
PAR(4)= 0.0DO

(@]

C beta
PAR(5)= 1.0DO

Q

C gamma
PAR(6)= 0.0DO

C
C mu
PAR(7)= 0.0DO
C
C timu (tilde mu_2)
PAR(8)= 0.0DO
c
c
c -PAR(11) is reserved for the truncation interval
c
PAR(11) = 20.0DO
c
c —-if IEQUIB=1, PAR(12)--PAR(12+NPROB) are reserved for the equilibrium
c
IF (IEQUIB.NE.O) THEN
PAR(12) = 0.0DO
PAR(13) = 0.0DO
PAR(14) = 0.0DO
ENDIF
ENDIF
c
C okokokokokkokokokokok ok kK koK ok
c regular continuation
C koK kK kK Kok
c

IF(ISTART.NE.3) THEN

Q

¢ free parameters (user defined)

NFREE = 2
ICP(1) =1
ICP(2) = 8

c fixed conditions and test functions
NPUSZR =1

NFIXED
IFIXED(1) =

| |
o O
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NPSI =0
IPSI(1) = 1
IPSI(2) = 13

3k 3k 3k 3k 3k ok 3k 3k 3k 3k ok ok 3k 3k 3k ok >k ok >k >k >k 3k 3k 3k 3k 3k %k %k %k %k %k %k %

starting solutions using homotopy (only if ITWIST=0)
sk ok ko ko ko ok ok ok ok ok ok o ok ko sk sk ok ok o o sk ook ok

o o0 o000

ELSE

CONTINUE

ENDIF

RETURN
END

(el e]

co-ordinates of the equilibrium if IEQUIB=0
j=1 => t=-infty, j=2 => t=+infty

O 0 o0 o0

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION PAR(20),XEQUIB(20)

¢]

the origin

DO I=1,20
XEQUIB(I) = 0.0DO
END DO
c
RETURN
END
c
C ______________________
SUBROUTINE PF(F,U,PAR)
¢ mmmmmmm
c
c the right-hand sides of the 0.D.E. du(i)/dt = pf(i)
c
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION U(*),PAR(20),F(*)
c
c test example
c

F(1)= PAR(1)*U(1) + PAR(2)*U(2) - PAR(1)*U(1)*U(1)
1 + (PAR(8) - PAR(4)*U(3)) * U(1)*(2.0D0 - 3.0D0*U(1))

F(2)= PAR(2)*U(1) + PAR(1)*U(2)
1 - 1.5DO*PAR(2)*U(1)*U(1) - 1.5DO*PAR(1)*U(1)*U(2)
2 - (PAR(8) - PAR(4)*U(3)) * 2.0D0*U(2)

F(3)= PAR(3)*U(3) + PAR(7)*U(1) + PAR(6)*U(1)*U(3)

36
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1 + PAR(4)*PAR(5)*(U(1)*U(1)*(1.0D0-U(1))-U(2)*xU(2))

RETURN
END

(¢}

(¢}

returns as PA the jacobian of PF at U

o o0 00

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSTION PAR(20),U(20),PA(20,20)

PA(1,1)= PAR(1) - 2.0DO*PAR(1)*U(1)

1 + (PAR(8)-PAR(4)x*U(3)) * (2.0D0-6.0D0*U(1))
PA(1,2)= PAR(2)

PA(1,3)= - PAR(4) * U(1)*(2.0D0-3.0D0*U(1))

PA(2,1)= PAR(2) - 3.0DO*PAR(2)*U(1) - 1.5DO*PAR(1)x*U(2)
PA(2,2)= PAR(1) - 1.5DO*PAR(1)*U(1)

1 - (PAR(8)-PAR(4)*U(3)) * 2.0DO

PA(2,3)= 2.0D0*PAR(4)*U(2)

PA(3,1)= PAR(7) + PAR(6)*U(3)

1 + PAR(4)*PAR(5) * U(1)*(2.0D0-3.0D0*U(1))
PA(3,2)= -2.0D0*PAR(4)*PAR(5) * U(2)

PA(3,3)= PAR(3) + PAR(6)*U(1)

RETURN
END

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSTION PAR(20)

COMMON /PROB/ IPSI(20),IFIXED(20),ITWIST,ISTART,IEQUIB,NFIXED,
+ NPSI,NFREE,NPROB,NUNSTAB,NSTAB,NPUSZR

User-defined functions of parameters (artificial or otherwise)
for which accurate location and the ability to plot and restart
are required. Identical to the ususal AUT086 routine USZR.

2k 2k >k 2k 2k ok ok >k ok ok ok >k >k >k >k %k %k %k %k Xk

regular continuation
sk ks ke ksl e ksl ook ok ek

O o0 o000 00000

IF (ISTART.NE.3) THEN

PUSZR = PAR(1) - 0.25D0
RETURN
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3k 3k 3k 3k 3k 3k 3k 3k % ok 3k 3k 3k ok ok Sk 3k ok 3k 3k ok 3k 3k k 3k 3k 5k >k 3k %k %k 3k 3k

starting solutions using homotopy
sk ks e ok sk ok sk sk sk sk ek sk ke e ko ek ok

O o0 o0 o0

ELSE
CONTINUE

ENDIF
END

Substitute the explicit solution U=U(T)
The length of the time interval is PAR(11), the solution U(T)
will be computed symmetrically with respect to T=0.

o o0 o0 o000

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSTION U(*)

C

c test example (a=0,b=1)

c
U(1) = 1.0D0 - ( (1.0DO-DEXP(T))/(1.0DO+DEXP(T)) )**2
U(2) = 4.0D0 * DEXP(T) * (1.0DO-DEXP(T)) / (1.0DO+DEXP(T))*x*3
U(3) = 0.0D0

[
RETURN
END

C
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