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Chapter 1
Installing AUTO.

1.1 Installation.

The AUTO files auto.ps.Z, auto.tar.Z and README are available via FTP from directory
pub/doedel/auto at fip.cs.concordia.ca. The README file contains the instructions for print-
ing this manual. Below it is assumed that you are using the Unix shell csh and that the file
auto.tar.Z is in your main directory.

While in your main directory, enter the commands uncompress auto.tar.Z, followed by tar xufo
auto.tar. This will result in a directory auto, with one subdirectory, auto/97. Type cd auto/97
to change directory to auto/97. Then type make sgi , to compile AUTO on Silicon Graphics
machines, or make solaris on SUN/Solaris with ANSI C compiler, or make on SUN/OS with
K&R C compiler, and, in principle, on other Unix systems. Upon compilation, type make clean
to remove unnecessary files. Also enter the command source $HOME//auto/97/cmds/auto.env
and add this command to your .login or .cshrc file.

The Graphical User Interface (GUI) requires the X-Window system and Motif. It may be
necessary to enter their correct pathname in the appropriate makefile in auto/97/gui. Note that
AUTO can be very effectively run in Command Mode, i.e., the GUI is not strictly necessary. To
compile AUTO without GUI, type make cmd in directory auto/97.

For timing purposes, the file auto/97/src/autlibl.f contains references to the function
etime. If this function is not automatically supplied by your {77 compiler then it can be replaced by
an appropriate alternative call, or it can be disabled by replacing the two occurrences of the string
T=etime(timaray) with T=0. To recompile autlibl.f, type @C I in directory auto/97/src.

To enable the PostScript conversion command @ps, make the changes indicted in the README
file in directory auto/97/tek2ps and recompile by typing make in that directory. Moreover, to
enable the @pr command you may have to enter the correct printer name in auto/97/cmds/@pr.
To generate the on-line manual, type make in auto/97/doc.

To prepare AUTO for transfer to another machine, type make superclean in directory auto/97
before creating the tar-file. This will remove all executable, object, and other non-essential files,
and thereby reduce the size of the package.

AUTO can be tested by typing make > TEST & in directory auto/97/test. This will
execute a selection of demos from auto/97/demos and write a summary of the computations in
the file TEST. The contents of TEST can then be compared to other test result files in directory



auto/97/test. Note that minor differences are to be expected due to architecture and compiler
differences.

Some EISPACK routines used by AUTO for computing eigenvalues and Floquet multipliers
are included in the package ( , ).

1.2 Restrictions on Problem Size.

There are size restrictions in the file auto/97/include/auto.h on the following AUTO-constants :
the effective problem dimension NDIM, the number of collocation points NCOL, the number of mesh
intervals NTST, the effective number of boundary conditions NBC, the effective number of integral
conditions NINT, the effective number of equation parameters NPAR, the number of stored branch
points NBIF for algebraic problems, and the number of user output points NUZR. See Chapter 6
for the significance these constants. Their maxima are denoted by the corresponding constant
followed by an X. For example, NDIMX in auto.h denotes the maximum value of NDIM. If any of
these maxima is exceeded in an AUTO-run then a message will be printed. The exception is the
the maximum value of NPAR, which, if exceeded, may lead to unreported errors. Upon installation
NPARX=306; it should never be decreased below that value; see also Section 7.1. Size restrictions
can be changed by editing auto.h. This must be followed by recompilation by typing make in
directory auto/97/src. It is strongly recommended that NCOLX=4 be used, and that the value of
NDIMX and NTSTX be chosen as small as possible for the intended application of AUTO.

Note that in certain cases the effective dimension may be greater than the user dimension. For
example, for the continuation of folds, the effective dimension is 2NDIM+1 for algebraic equations,
and 2NDIM for ordinary differential equations, respectively. Similarly, for the continuation of Hopf
bifurcations, the effective dimension is 3NDIM+2.

1.3 Compatibility with Older Versions.

There are two changes compared to early versions of AUTO94: The user-supplied equations-
files must contain the subroutine PVLS. For an example of use of PVLS see the demo pvl in
Section 15.1. There is also a small change in the q.xxx data-file. If necessary, older AUTO94
files can be converted using the @94t097 command; see Section 3.5.



Chapter 2

Overview of Capabilities.

2.1 Summary.

AUTO can do a limited bifurcation analysis of algebraic systems

f(U,p) =0, f(-,-),ue]R”, (2'1)

and of systems of ordinary differential equation (ODEs) of the form

u'(t) = flut),p),  f(,)ul-) ERT, (2.2)

Here p denotes one or more free parameters.
It can also do certain stationary solution and wave calculations for the partial differential
equation (PDE)

Ut = Duat:v + f(u7p>’ f(a )7U() € Rn7 (23>
where D denotes a diagonal matrix of diffusion constants. The basic algorithms used in the
package, as well as related algorithms, can be found in ( , ), ( , ), (

: ) ( : )-

Below, the basic capabilities of AUTO are specified in more detail. Some representative demos
are also indicated.

2.2  Algebraic Systems.

Specifically, for (2.1) the program can :

- Compute solution branches.
(Demo ab; Run 1.)

- Locate branch points and automatically compute bifurcating branches.
(Demo pp2; Run 1.)

- Locate Hopf bifurcation points and continue these in two parameters.
(Demo ab; Runs 1 and 5.)

10



- Locate folds (limit points) and continue these in two parameters.
(Demo ab; Runs 1,3,4.)

- Do each of the above for fixed points of the discrete dynamical system u**+9 = f(u®) p)
(Demo dd2.)

- Find extrema of an objective function along solution branches and successively continue
such extrema in more parameters.
(Demo opt.)

2.3 Ordinary Differential Equations.
For the ODE (2.2) the program can :

- Compute branches of stable and unstable periodic solutions and compute the Floquet mul-
tipliers, that determine stability, along these branches. Starting data for the computation
of periodic orbits are generated automatically at Hopf bifurcation points.

(Demo ab; Run 2.)

- Locate folds, branch points, period doubling bifurcations, and bifurcations to tori, along
branches of periodic solutions. Branch switching is possible at branch points and at period
doubling bifurcations.

(Demos tor, lor.)

- Continue folds and period-doubling bifurcations, in two parameters.
(Demos plp, pp3.) The continuation of orbits of fixed period is also possible. This is the
simplest way to compute curves of homoclinic orbits, if the period is sufficiently large.
(Demo pp2.)

- Do each of the above for rotations, i.e., when some of the solution components are periodic
modulo a phase gain of a multiple of 2.
(Demo pen.)

- Follow curves of homoclinic orbits and detect and continue various codimension-2 bifur-
cations, using the HomCont algorithms of ( ),

(1996).

(Demos san, mnt, kpr, cir, she, rev.)

- Locate extrema of an integral objective functional along a branch of periodic solutions and
successively continue such extrema in more parameters.
(Demo ops.)

- Compute curves of solutions to (2.2) on [0, 1], subject to general nonlinear boundary and
integral conditions. The boundary conditions need not be separated, i.e., they may involve
both «(0) and u(1) simultaneously. The side conditions may also depend on parameters.
The number of boundary conditions plus the number of integral conditions need not equal
the dimension of the ODE, provided there is a corresponding number of additional parameter

11



variables.
(Demos exp, int.)

- Determine folds and branch points along solution branches to the above boundary value
problem. Branch switching is possible at branch points. Curves of folds can be computed
in two parameters.

(Demos bvp, int.)

2.4 Parabolic PDEs.

For (2.3) the program can :

- Trace out branches of spatially homogeneous solutions. This amounts to a bifurcation
analysis of the algebraic system (2.1). However, AUTO uses a related system instead, in
order to enable the detection of bifurcations to wave train solutions of given wave speed.
More precisely, bifurcations to wave trains are detected as Hopf bifurcations along fixed
point branches of the related ODE

u'(z) = v(2),
V'(z) = =D e v(z) + f(u(z),p)], (2.4)

where z =z — ct , with the wave speed c specified by the user.
(Demo wav; Run 2.)

- Trace out branches of periodic wave solutions to (2.3) that emanate from a Hopf bifurcation
point of Equation 2.4. The wave speed c is fixed along such a branch, but the wave length
L, i.e., the period of periodic solutions to (2.4), will normally vary. If the wave length L
becomes large, i.e., if a homoclinic orbit of Equation 2.4 is approached, then the wave tends
to a solitary wave solution of (2.3).

(Demo wav; Run 3.)

- Trace out branches of waves of fixed wave length L in two parameters. The wave speed ¢
may be chosen as one of these parameters. If L is large then such a continuation gives a
branch of approximate solitary wave solutions to (2.3).

(Demo wav; Run 4.)

- Do time evolution calculations for (2.3), given periodic initial data on the interval [0, L].
The initial data must be specified on [0, 1] and L must be set separately because of internal
scaling. The initial data may be given analytically or obtained from a previous computation
of wave trains, solitary waves, or from a previous evolution calculation. Conversely, if an
evolution calculation results in a stationary wave then this wave can be used as starting
data for a wave continuation calculation.

(Demo wav; Run 5.)

- Do time evolution calculations for (2.3) subject to user-specified boundary conditions. As
above, the initial data must be specified on [0, 1] and the space interval length L must be
specified separately. Time evolution computations of (2.3) are adaptive in space and in time.

12



Discretization in time is not very accurate : only implicit Euler. Indeed, time integration
of (2.3) has only been included as a convenience and it is not very efficient. (Demos pd1,
pd2.)

- Compute curves of stationary solutions to (2.3) subject to user-specified boundary con-
ditions. The initial data may be given analytically, obtained from a previous stationary
solution computation, or from a time evolution calculation.

(Demos pd1, pd2.)

In connection with periodic waves, note that (2.4) is just a special case of (2.2) and that its
fixed point analysis is a special case of (2.1). One advantage of the built-in capacity of AUTO to
deal with problem (2.3) is that the user need only specify f, D, and ¢. Another advantage is the
compatibility of output data for restart purposes. This allows switching back and forth between
evolution calculations and wave computations.

2.5 Discretization.

AUTO discretizes ODE boundary value problems (which includes periodic solutions) by the
method of orthogonal collocation using piecewise polynomials with 2-7 collocation points per
mesh interval ( , ). The mesh automatically adapts to the solution to
equidistribute the local discretization error ( , ). The number of mesh
intervals and the number of collocation points remain constant during any given run, although
they may be changed at restart points. The implementation is AUTO-specific. In particular, the
choice of local polynomial basis and the algorithm for solving the linearized collocation systems
were specifically designed for use in numerical bifurcation analysis.

13



Chapter 3
How to Run AUTO.

3.1 User-Supplied Files.

The user must prepare the two files described below. This can be done with the GUI described
in Chapter 5, or independently.

3.1.1 The equations-file xxx.f

A source file xxx . f containing the Fortran subroutines FUNC, STPNT, BCND, ICND, FOPT, and PVLS.
Here xxx stands for a user-selected name. If any of these subroutines is irrelevant to the problem
then its body need not be completed. Examples are in auto/97/demos, where, e.g., the file
ab/ab.f defines a two-dimensional dynamical system, and the file exp/exp.f defines a boundary
value problem. The simplest way to create a new equations-file is to copy an appropriate demo
file. For a fully documented equations-file see auto/97/gui/aut.f. In GUI mode, this file can
be directly loaded with the GUI-button Equations/New; see Section 5.2.

3.1.2 The constants-file r.xxx

AUTO-constants for xxx . f are normally expected in a corresponding file r.xxx. Specific examples
include ab/r.ab and exp/r.exp in auto/97/demos. See Chapter 6 for the significance of each
constant.
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3.2 User-Supplied Subroutines.

The purpose of each of the user-supplied subroutines in the file xxx.f is described below.

FUNC : defines the function f(u,p) in (2.1), (2.2), or (2.3).

- STPNT : This subroutine is called only if IRS=0 (see Section 6.8.5 for IRS), which typically
is the case for the first run. It defines a starting solution (u, p) of (2.1) or (2.2). The starting
solution should not be a branch point.

(Demos ab, exp, frc, lor.)

- BCND : A subroutine BCND that defines the boundary conditions.
(Demo exp, kar.)

- ICND : A subroutine ICND that defines the integral conditions.
(Demos int, lin.)

- FOPT : A subroutine FOPT that defines the objective functional.
(Demos opt, ops.)

- PVLS : A subroutine PVLS for defining “solution measures”.
(Demo pvl.)

3.3 Arguments of STPNT.

Note that the arguments of STPNT depend on the solution type :

- When starting from a fixed point, the subroutine STPNT must have three arguments, namely,
(NDIM,U,PAR). (See demo ab).

- When starting from an analytically or numerically known space-dependent solution, STPNT
must have four arguments, namely, (NDIM,U,PAR,T). Here T is the independent space vari-
able which takes values in the interval [0, 1].

(Demo exp.)

- Similarly, when starting from an analytically known time-periodic solution or rotation, the
arguments of STPNT are (NDIM,U,PAR,T), where T denotes the independent time variable
which takes values in the interval [0,1]. In this case one must also specify the period in
PAR(11).

(Demos frc, lor, pen.)

- When using the @fc command (Section 3.5) for conversion of numerical data, STPNT must
have three arguments, namely, (NDIM,U,PAR). In this case only the parameter values need
to be defined in STPNT. (Demos lor and pen.)
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3.4  User-Supplied Derivatives.

If AUTO-constant JAC equals 0 then derivatives need not be specified in FUNC, BCND, ICND, and
FOPT; see Section sec:JAC. If JAC=1 then derivatives must be given. This may be necessary for
sensitive problems, and is recommended for computations in which AUTO generates an extended
system. Examples of user-supplied derivatives can be found in demos dd2, int, plp, opt, and
ops.

3.5 Running AUTO using Command Mode.

AUTO can be run with the GUI described in Chapter 5 or with the commands described below.
The AUTO aliases must have been activated; see Section 1.1; and an equations-file xxx.f and a
corresponding constants-file r.xxx (see Section 3.1) must be in the current user directory.

Do not run AUTO in the directory auto/97 or in any of its subdirectories.

3.5.1 Basic commands.

Or : Type @r zzx to run AUTO. Restart data, if needed, are expected in q.xxx, and AUTO-
constants in r.xxx. This is the simplest way to run AUTO.

- Type @r zzzr yyy to run AUTO with equations-file xxx.f and restart data-file q.yyy.
AUTO-constants must be in r.xxx.

- Type @r xzz yyy 2zz to run AUTO with equations-file xxx.f, restart data-file q.yyy and
constants-file r.zzz.

@R : The command @R xxx is equivalent to the command @r zzx above.

- Type @R zzz ¢ to run AUTO with equations-file xxx.f, constants-file r.xxx.i and, if
needed, restart data-file q.xxx.

- Type @R zzx 1 yyy to run AUTO with equations-file xxx.f, constants-file r.xxx.i and
restart data-file q.yyy.

@sv : Type @sv zxx to save the output-files fort.7, fort.8, fort.9, as p.xxx, q.xxx, d.XXX,
respectively. Existing files by these names will be deleted.

Q@ap : Type @ap zzz to append the output-files fort.7, fort.8, fort.9, to existing data-files
P . XXX, q.XXX, d.XXX, resp.

- Type @ap zzx yyy to append p.xxx, q.xxx, d.xxX, to p.yyy, q.yyy, d.yyy, resp.

3.5.2 Plotting commands.

@ : Type @p zzz to run the graphics program PLAUT (See Chapter 4) for the graphical
inspection of the data-files p.xxx and q.xxx.
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- Type @p to run the graphics program PLAUT for the graphical inspection of the output-files
fort.7 and fort.8.

@ps : Type @ps fig.x to convert a saved PLAUT figure fig.x from compact PLOT10 format to
PostScript format. The converted file is called fig.x.ps. The original file is left unchanged.

@pr : Type @pr fig.x to convert a saved PLAUT figure fig.x from compact PLOT10 format
to PostScript format and send it to the printer. The converted file is called fig.x.ps. The
original file is left unchanged.

3.5.3 File-manipulation.

Q@cp : Type @cp zxx yyy to copy the data-files p.xxx, q.xxx, d.xxx, r.xxx to p.yyy, q.yyy,
d.yyy, r.yyy, respectively.

Omv : Type @mu xxx yyy to move the data-files p.xxx, q.xxx, d.xxx, r.xxx, to p.yyy, q.yyy,
d.yyy, r.yyy, respectively.

@df : Type @df to delete the output-files fort.7, fort.8, fort.9.

@cl : Type @cl to clean the current directory. This command will delete all files of the form
fort.*, *x.0, and *.exe.

@dl : Type @dl xxx to delete the data-files p.xxx, q.xxx, d.xxx.

3.5.4 Diagnostics.

@lp : Type @Ip to list the value of the “limit point function” in the output-file fort.9. This
function vanishes at a limit point (fold).

- Type @Ip zzx to list the value of the “limit point function” in the data-file d.xxx. This
function vanishes at a limit point (fold).

@bp : Type @bp to list the value of the “branch-point function” in the output-file fort.9. This
function vanishes at a branch point.

- Type @bp zxx to list the value of the “branch-point function” in the data-file d.xxx. This
function vanishes at a branch point.

@hb : Type @hb to list the value of the “Hopf function” in the output-file fort.9. This function
vanishes at a Hopf bifurcation point.

- Type @hb zzz to list the value of the “Hopf function” in the data-file d.xxx. This function
vanishes at a Hopf bifurcation point.

@sp : Type @sp to list the value of the “secondary-periodic bifurcation function” in the output-
file fort.9. This function vanishes at period-doubling and torus bifurcations.
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- Type @sp xxx to list the value of the “secondary-periodic bifurcation function” in the data-
file d.xxx. This function vanishes at period-doubling and torus bifurcations.

@it : Type @it to list the number of Newton iterations per continuation step in fort.9.
- Type @it zzx to list the number of Newton iterations per continuation step in d.xxx.
@st : Type @st to list the continuation step size for each continuation step in fort.9.
- Type @st zzx to list the continuation step size for each continuation step in d.xxx.
@ev : Type @ev to list the eigenvalues of the Jacobian in fort.9. (Algebraic problems.)
- Type @ev zzz to list the eigenvalues of the Jacobian in d.xxx. (Algebraic problems.)
efl : Type @fi to list the Floquet multipliers in the output-file fort.9. (Differential equations.)

- Type @fl zxz to list the Floquet multipliers in the data-file d.xxx. (Differential equations.)

3.5.5 File-editing.

@e7 : To use the vi editor to edit the output-file fort.7.

@e8 : To use the vi editor to edit the output-file fort.8.

@e9 : To use the vi editor to edit the output-file fort.9.

@j7 : To use the SGI jot editor to edit the output-file fort.7.
@j8 : To use the SGI jot editor to edit the output-file fort.8.

@j9 : To use the SGI jot editor to edit the output-file fort.9.

3.5.6 File-maintenance.

@1b : Type @Ib to run an interactive utility program for listing, deleting and relabeling solutions
in the output-files fort.7 and fort.8. The original files are backed up as ~fort.7 and
~fort.8.

- Type @Ib xxx to list, delete and relabel solutions in the data-files p.xxx and q.xxx. The
original files are backed up as ~p.xxx and ~q.xxx.

- Type @Ib xxx yyy to list, delete and relabel solutions in the data-files p.xxx and q.xxx.
The modified files are written as p.yyy and q.yyy.

@fc : Type @fc zxx to convert a user-supplied data file xxx.dat to AUTO format. The
converted file is called q.dat. The original file is left unchanged. AUTO automatically sets
the period in PAR(11). Other parameter values must be set in STPNT. (When necessary,
PAR(11) may also be redefined there.) The constants-file file r.xxx must be present, as
the AUTO-constants NTST and NCOL (Sections 6.3.1 and 6.3.2) are used to define the new
mesh. For examples of using the @fc command see demos lor and pen.
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@94t097 : Type @94t097 xxx to convert an old AUTO94 data-file q.xxx to new AUTO97 format.
The original file is backed up as ~q.xxx. This conversion is only necessary for files from
early versions of AUTO94.

3.5.7 HomCont commands.

@h : Use @h instead of @r when using HomCont, i.e., when IPS=9 (see Chapter 16). Type
@h zzz to run AUTO/HomCont. Restart data, if needed, are expected in q.xxx, AUTO-
constants in r.xxx and HomCont-constants in s.xxx.

- Type @h zzz yyy to run AUTO/HomCont with equations-file xxx.f and restart data-file
q.yyy. AUTO-constants must be in r.xxx and HomCont-constants in s.xxx.

- Type @h zzz yyy zzz to run AUTO/HomCont with equations-file xxx.f, restart data-file
q.yyy and constants-files r.zzz and s.zzz.

@H : The command @H xxz is equivalent to the command @h zzz above.

- Type @H zzzx i in order to run AUTO/HomCont with equations-file xxx.f and constants-
files r.xxx.1i and s.xxx.1i and, if needed, restart data-file q.xxx.

- Type @H zzz i yyy to run AUTO/HomCont with equations-file xxx.f, constants-files
r.xxx.1i and s.xxx.1, and restart data-file q.yyy.

3.5.8 Copying a demo.

@m : Type @dm xxx to copy all files from auto/97/demos/xxx to the current user directory.
Here xxx denotes a demo name; e.g., abc. Note that the @dm command also copies a
Makefile to the current user directory. To avoid the overwriting of existing files, always run
demos in a clean work directory.

3.5.9 Pendula animation.

@pn : Type @pn zzz to run the pendula animation program with data-file q.xxx. (On SGI
machine only; see demo pen in Section 10.10 and the file auto/97/pendula/README.)

3.5.10 Viewing the manual.

@mn : Use Ghostview to view the PostScript version of this manual.
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3.6 Output Files.

AUTO writes four output-files :

- fort.6: A summary of the computation is written in fort.6, which usually corresponds to
the window in which AUTO is run. Only special, labeled solution points are noted, namely
those listed in Table 3.1. The letter codes in the Table are used in the screen output. The
numerical codes are used internally and in the fort.7 and fort.8 output-files described

below.
BP | (1) | Branch point (algebraic systems)
LP | (2) | Fold (algebraic systems)
HB | (3) | Hopf bifurcation
(4) | User-specified regular output point
UZ | (-4) | Output at user-specified parameter value
LP | (5) | Fold (differential equations)
BP | (6) | Branch point (differential equations)
PD | (7) | Period doubling bifurcation
TR | (8) | Torus bifurcation
EP | (9) | End point of branch; normal termination
MX | (-9) | Abnormal termination; no convergence

Table 3.1: Solution Types.

- fort.7 : The fort.7 output-file contains the bifurcation diagram. Its format is the same
as the fort.6 (screen) output, but the fort.7 output is more extensive, as every solution
point has an output line printed.

- fort.8: The fort.8 output-file contains complete graphics and restart data for selected,
labeled solutions. The information per solution is generally much more extensive than that
in fort.7. The fort.8 output should normally be kept to a minimum.

- fort.9: Diagnostic messages, convergence history, eigenvalues, and Floquet multipliers are
written in fort.9. It is strongly recommended that this output be habitually inspected. The
amount of diagnostic data can be controlled via the AUTO-constant IID; see Section 6.9.2.

The user has some control over the fort.6 (screen) and fort.7 output via the AUTO-constant
IPLT (Section 6.9.3). Furthermore, the subroutine PVLS can be used to define “solution measures”
which can then be printed by “parameter overspecification”; see Section 6.7.10. For an example
see demo pvl.

The AUTO-commands @sv, @ap, and @df can be used to manipulate the output-files fort.7,
fort.8, and fort.9. Furthermore, the AUTO-command @Ib can be used to delete and relabel
solutions simultaneously in fort.7 and fort.8. For details see Section 3.5.

The graphics program PLAUT can be used to graphically inspect the data in fort.7 and
fort.8; see Chapter 4.
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Chapter 4

The Graphics Program PLAUT.

PLAUT can be used to extract graphical information from the AUTO output-files fort.7 and

fort

.8, or from the corresponding data-files p.xxx and q.xxx. To invoke PLAUT, use the the

@p command defined in Section 3.5. The PLAUT window (a Tektronix window) will appear, in
which PLAUT commands can be entered. For examples of using PLAUT see the tutorial demo
ab, in particular, Sections 8.7 and 8.10. See also demo pp2 in Section 10.3.

4.1

Basic PLAUT-Commands.

The principal PLAUT-commands are

bdO

bd

ax

2d

Sav

: This command is useful for an initial overview of the bifurcation diagram as stored in
fort.7. If you have not previously selected one of the default options d0, d1, d2, d3, or d/
described below then you will be asked whether you want solution labels, grid lines, titles,
or labeled axes.

: This command is the same as the bd0) command, except that you will be asked to enter the
minimum and the maximum of the horizontal and vertical axes. This is useful for blowing
up portions of a previously displayed bifurcation diagram.

: With the ax command you can select any pair of columns of real numbers from fort.7
as horizontal and vertical axis in the bifurcation diagram. (The default is columns 1 and
2). To determine what these columns represent, one can look at the screen ouput of the
corresponding AUTO run, or one can inspect the column headings in fort.7.

: Upon entering the 2d command, the labels of all solutions stored in fort.8 will be listed
and you can select one or more of these for display. The number of solution components is
also listed and you will be prompted to select two of these as horizontal and vertical axis
in the display. Note that the first component is typically the independent time or space
variable scaled to the interval [0,1].

: To save the displayed plot in a file. You will be asked to enter a file name. Each plot must
be stored in a separate new file. The plot is stored in compact PLOT10 format, which can
be converted to PostScript format with the AUTO-commands @ps and @pr; see Section 4.4.
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cl : To clear the graphics window.

lab : To list the labels of all solutions stored in fort.8. Note that PLAUT requires all labels
to be distinct. In case of multiple labels you can use the AUTO command @Ib to relabel
solutions in fort.7 and fort.8.

end : To end execution of PLAUT.

4.2 Default Options.

After entering the commands bd0, bd, or 2d, you will be asked whether you want solution labels,
grid lines, titles, or axes labels. For quick plotting it is convenient to bypass these selections.
This can be done by the default commands d0, di, d2, d3, or dj below. These can be entered
as a single command or they can be entered as prefixes in the bd0 and bd commands. Thus, for
example, one can enter the command d1bd0.

d0 : Use solid curves, showing solution labels and symbols.

dl : Use solid curves, except use dashed curves for unstable solutions and for solutions of
unknown stability. Show solution labels and symbols.

d2 : As dI, but with grid lines.

d3 : As d1, except for periodic solutions use solid circles if stable, and open circles if unstable
or if the stability is unknown.

d4 : Use solid curves, without labels and symbols.

If no default option d0, d1, d2, d3, or dj has been selected or if you want to override a default
feature, then the the following commands can be used. These can be entered as individual
commands or as prefixes. For example, one can enter the command sydpbd0.

sy : Use symbols for special solution points, for example, open square = branch point, solid
square = Hopf bifurcation.

dp : “Differential Plot”, i.e., show stability of the solutions. Solid curves represent stable
solutions. Dashed curves are used for unstable solutions and for solutions of unknown
stability. For periodic solutions use solid/open circles to indicate stability/instability (or
unknown stability).

st : Set up titles and axes labels.

nu : Normal usage (reset special options).
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4.3 Other PLAUT-Commands.

The full PLAUT program has several other capabilities, for example,

scr : To change the diagram size.

rss : To change the size of special solution point symbols.

4.4 Printing PLAUT Files.

@ps : Type @ps fig.1 to convert a saved PLAUT file fig.1 to PostScript format in fig.1.ps.

@pr : Type @pr fig.1 to convert a PLAUT file fig.1 to PostScript format and to print the
resulting file fig.1.ps.
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Chapter 5

Graphical User Interface.

5.1 General Overview.

The AUTO97 graphical user interface (GUI) is a tool for creating and editing equations-files and
constants-files; see Section 3.1 for a description of these files. The GUI can also be used to run
AUTO and to manipulate and plot output-files and data-files; see Section 3.5 for corresponding
commands. To use the GUI for a new equation, change to an empty work directory. For an
existing equations-file, change to its directory. (Do not activate the GUI in the directory auto/97
or in any of its subdirectories.) Then type
Qauto,

or its abbreviation @a. Here we assume that the AUTO aliases have been activated; see
Section 1.1. The GUI includes a window for editing the equations-file, and four groups of buttons,
namely, the Menu Bar at the top of the GUI, the Define Constants-buttons at the center-left,
the Load Constants-buttons at the lower left, and the Stop- and Ezit-buttons.

Note : Most GUI buttons are activated by point-and-click action with the left mouse button.
If a beep sound results then the right mouse button must be used.

5.1.1 The Menu bar.

It contains the main buttons for running AUTO and for manipulating the equations-file, the
constants-file, the output-files, and the data-files. In a typical application, these buttons are
used from left to right. First the Equations are defined and, if necessary, Fdited, before being
Written. Then the AUTO-constants are Defined. This is followed by the actual Run of AUTO.
The resulting output-files can be Saved as data-files, or they can be Appended to existing data-
files. Data-files can be Plotted with the graphics program PLAUT, and various file operations
can be done with the Files-button. Auxiliary functions are provided by the Demos-, Misc-, and
Help-buttons. The Menu Bar buttons are described in more detail in Section 5.2.

5.1.2 The Define-Constants-buttons.

These have the same function as the Define-button on the Menu Bar, namely to set and change
AUTO-constants. However, for the Define-button all constants appear in one panel, while for the
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Define Constants-buttons they are grouped by function, as in Chapter 6, namely Problem defini-
tion constants, Discretization constants, convergence Tolerances, continuation Step Size, diagram
Limits, designation of free Parameters, constants defining the Computation, and constants that
specify Qutput options.

5.1.3 The Load-Constants-buttons.

The Previous-button can be used to load an existing AUTO-constants file. Such a file is also
loaded, if it exists, by the Equations-button on the Menu Bar. The Default-button can be used
to load default values of all AUTO-constants. Custom editing is normally necessary.

5.1.4 The Stop- and Exit-buttons.

The Stop-button can be used to abort execution of an AUTO-run. This should be done only
in exceptional circumstances. Output-files, if any, will normally be incomplete and should be
deleted. Use the Ezit-button to end a session.

5.2 The Menu Bar.

5.2.1 Equations-button.

This pull-down menu contains the items Old, to load an existing equations-file, New, to load a
model equations-file, and Demo, to load a selected demo equations-file. Equations-file names are
of the form xxx.f. The corresponding constants-file r.xxx is also loaded if it exists. The equation
name xxx remains active until redefined.

5.2.2 Edit-button.

This pull-down menu contains the items Cut and Copy, to be performed on text in the GUI
window highlighted by click-and-drag action of the mouse, and the item Paste, which places
editor buffer text at the location of the cursor.

5.2.3 Write-button.

This pull-down menu contains the item Write, to write the loaded files xxx.f and r.xxx, by the
active equation name, and the item Write As to write these files by a selected new name, which
then becomes the active name.

5.2.4 Define-button.

Clicking this button will display the full AUTO-constants panel. Most of its text fields can be
edited, but some have restricted input values that can be selected with the right mouse button.
Some text fields will display a subpanel for entering data. To actually apply changes made in the
panel, click the OK- or Apply-button at the bottom of the panel.
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5.2.5 Run-button.

Clicking this button will write the constants-file r.xxx and run AUTO. If the equations-file has
been edited then it should first be rewritten with the Write-button.

5.2.6 Save-button.

This pull-down menu contains the item Save, to save the output-files fort.7, fort.8, fort.9,
as p.xxx, q.xxx, d.xxx, respectively. Here xxx is the active equation name. It also contains the
item Save As, to save the output-files under another name. Existing data-files with the selected
name, if any, will be overwritten.

5.2.7 Append-button.

This pull-down menu contains the item Append, to append the output-files fort.7, fort.8,
fort.9, to existing data-files p.xxx, q.xxx, d.xxx, respectively. Here xxx is the active equation
name. It also contains the item Append To, to append the output-files to other existing data-files.

5.2.8 Plot-button.

This pull-down menu contains the items Plot, to run the plotting program PLAUT for the data-
files p.xxx and q.xxx, where xxx is the active equation name, and the item Name, to run PLAUT
with other data-files.

5.2.9 Files-button.

This pull-down menu contains the item Restart, to redefine the restart file. Normally, when
restarting from a previously computed solution, the restart data is expected in the file q.xxx,
where xxx is the active equation name. Use the Restart-button to read the restart data from an-
other data-file in the immediately following run. The pull-down menu also contains the following
items :

Copy, to copy p.xxX, q.xxX, d.XXX, r.XXX, t0 p.yyy, q.yyy, d.Vyy, r.yyy, resp.;

Append, to append data-files p.xxx, q.xxx, d.xxx, to p.yyy, q.yyy, d.yyy, resp.;

Mowve, to move p.xxx, q.xXxX, d.XXX, r.XxXX, to p.yyy, q.yyy, d.yyy, r.yyy, resp.;

Delete, to delete data-files p.xxx, q.xxx, d.xxx;

Clean, to delete all files of the form fort.*, *x.0, and *.exe.

5.2.10 Demos-button.

This pulldown menu contains the items Select, to view and run a selected AUTO demo in the
demo directory, and Reset, to restore the demo directory to its original state. Note that demo
files can be copied to the user work directory with the Equations/Demo-button.
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5.2.11 Misc.-button.

This pulldown menu contains the items Tek Window and V1102 Window, for opening windows;
Emacs and Xedit, for editing files, and Print, for printing the active equations-file xxx.f.

5.2.12 Help-button.

This pulldown menu contains the items A UTO-constants, for help on AUTO-constants, and User
Manual, for viewing the user manual; i.e., this document.

5.3 Using the GUI.

AUTO-commands are described in Section 3.5 and illustrated in the demos. In Table 5.1 we list
the main AUTO-commands together with the corresponding GUI button.

@r Run
@sv Save
@ap | Append
@p Plot

@cp | Files/Copy

@mu | Files/Move

@cl Files/Clean

@dl | Files/Delete
@dm | Equations/Demo

Table 5.1: Command Mode - GUI correspondences.

The AUTO-command @r zzz yyy is given in the GUI as follows : click Files/Restart and
enter yyy as data. Then click Run. As noted in Section 3.5, this will run AUTO with the current
equations-file xxx.f and the current constants-file r.xxx, while expecting restart data in q.yyy.
The AUTO-command @ap zxz yyy is given in the GUI by clicking Files/Append.

5.4 Customizing the GUI.

5.4.1 Print-button.

The Misc/Print-button on the Menu Bar can be customized by editing the file GuiConsts.h in
directory auto/97/include.

5.4.2 GUI colors.

GUI colors can be customized by creating an X resource file. Two model files can be found in
directory auto/97/gui, namely, Xdefaults.1 and Xdefaults.2. To become effective, edit one
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of these, if desired, and copy it to .Xdefaults in your home directory. Color names can often be
found in the system file /usr/1ib/X11/rgb.txt.

5.4.3 On-line help.

The file auto/97/include/GuiGlobal.h contains on-line help on AUTO-constants and demos.
The text can be updated, subject to a modifiable maximum length. On SGI machines this is
10240 bytes, which can be increased, for example, to 20480 bytes, by replacing the line CC' =
cc -Wf, -XNl10240 -O in auto/97/gui/Makefile by CC = cc -Wf, -XNI20480 -O On other
machines, the maximum message length is the system defined maximum string literal length.
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Chapter 6

Description of AUTO-Constants.

6.1 The AUTO-Constants File.

As described in Section 3.1, if the equations-file is xxx.f then the constants that define the
computation are normally expected in the file r.xxx. The general format of this file is the same
for all AUTO runs. For example, the file r.ab in directory auto/97/demos/ab is listed below.
(The tutorial demo ab is described in detail in Chapter 8.)

2101 NDIM, IPS,IRS,ILP
1 1 NICP, (ICP(I),I=1,NICP)
504311000 NTST,NCOL, IAD,ISP,ISW,IPLT,NBC,NINT
100 0. 0.15 0. 100.  NMX,RLO,RL1,A0,Al

100 10 2 8 53 0 NPR,MXBF,IID,ITMX,ITNW,NWTN, JAC
1.e-6 1.e-6 0.0001 EPSL,EPSU, EPSS

0.01 0.005 0.05 1 DS,DSMIN,DSMAX, IADS

1 NTHL, ((I,THL(I)),I=1,NTHL)

11 0.

0 NTHU, ((I,THU(I)),I=1,NTHU)

0 NUZR, ((I,UZR(I)),I=1,NUZR)

The significance of the AUTO-constants, grouped by function, is described in the sections
below. Representative demos that illustrate use of the AUTO-constants are also mentioned.

6.2 Problem Constants.
6.2.1 NDIM

Dimension of the system of equations as specified in the user-supplied subroutine FUNC.

6.2.2 NBC

The number of boundary conditions as specified in the user-supplied subroutine BCND.
(Demos exp, kar.)
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6.2.3 NINT

The number of integral conditions as specified in the user-supplied subroutine ICND.
(Demos int, lin, obv.)

6.2.4 JAC

Used to indicate whether derivatives are supplied by the user or to be obtained by differencing :

- JAC=0 : No derivatives are given by the user. (Most demos use JAC=0.)

- JAC=1 : Derivatives with respect to state- and problem-parameters are given in the user-
supplied subroutines FUNC, BCND, ICND and FOPT, where applicable. This may be necessary
for sensitive problems. It is also recommended for computations in which AUTO generates
an extended system, for example, when ISW=2. (For ISW see Section 6.8.3.)

(Demos int, dd2, obt, plp, ops.)

6.3 Discretization Constants.

6.3.1 NTST

The number of mesh intervals used for discretization. NTST remains fixed during any particular
run, but can be changed when restarting. (For mesh adaption see IAD in Section 6.3.3.) Recom-
mended value of NTST : As small as possible to maintain convergence.

(Demos exp, ab, spb.)

6.3.2 NCOL

The number of Gauss collocation points per mesh interval, (2 < NCOL < 7). NCOL remains fixed
during any given run, but can be changed when restarting at a previously computed solution.
The choice NCOL=4, used in most demos, is recommended. If NDIM is “large” and the solutions
“very smooth” then NCOL=2 may be appropriate.

6.3.3 TIAD

This constant controls the mesh adaption :

- IAD=0: Fixed mesh. Normally, this choice should never be used, as it may result in spurious
solutions. (Demo ext.)

- TAD>0 : Adapt the mesh every IAD steps along the branch. Most demos use IAD=3, which
is the strongly recommended value.

When computing “trivial” solutions to a boundary value problem, for example, when all
solution components are constant, then the mesh adaption may fail under certain circumstances,
and overflow may occur. In such case, try recomputing the solution branch with a fixed mesh
(IAD=0). Be sure to set IAD back to IAD=3 for computing eventual non-trivial bifurcating solution
branches.
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6.4 Tolerances.

6.4.1 EPSL

Relative convergence criterion for equation parameters in the Newton/Chord method. Most
demos use EPSL=10"% or EPSL=10"", which is the recommended value range.

6.4.2 EPSU

Relative convergence criterion for solution components in the Newton/Chord method. Most
demos use EPSU=10"% or EPSU=10"", which is the recommended value range.

6.4.3 EPSS

Relative arclength convergence criterion for the detection of special solutions. Most demos use
EPSS=10"* or EPSS=1075, which is the recommended value range. Generally, EPSS should be
approximately 100 to 1000 times the value of EPSL, EPSU.

6.4.4 ITMX

The maximum number of iterations allowed in the accurate location of special solutions, such
as bifurcations, folds, and user output points, by Miiller’s method with bracketing. The recom-
mended value is ITMX=8, used in most demos.

6.4.5 NWIN

After NWTN Newton iterations the Jacobian is frozen, i.e., AUTO uses full Newton for the first NWTN
iterations and the Chord method for iterations NWTN+1 to ITNW. The choice NWTN=3 is strongly
recommended and used in most demos. Note that this constant is only effective for ODEs, i.e.,
for solving the piecewise polynomial collocation equations. For algebraic systems AUTO always
uses full Newton.

6.4.6 ITNW

The maximum number of combined Newton-Chord iterations. When this maximum is reached,
the step will be retried with half the stepsize. This is repeated until convergence, or until the
minimum stepsize is reached. In the latter case the computation of the branch is discontinued
and a message printed in fort.9. The recommended value is ITNW=5, but ITNW=7 may be used
for “difficult” problems, for example, demos spb, chu, plp, etc.
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6.5 Continuation Step Size.

6.5.1 DS

AUTO uses pseudo-arclength continuation for following solution branches. The pseudo-arclength
stepsize is the distance between the current solution and the next solution on a branch. By
default, this distance includes all state variables (or state functions) and all free parameters.
The constant DS defines the pseudo-arclength stepsize to be used for the first attempted step
along any branch. (Note that if TADS>0 then DS will automatically be adapted for subsequent
steps and for failed steps.) DS may be chosen positive or negative; changing its sign reverses the
direction of computation. The relation DSMIN < |DS| < DSMAX must be satisfied. The precise
choice of DS is problem-dependent; the demos use a value that was found appropriate after some
experimentation.

6.5.2 DSMIN

This is minimum allowable absolute value of the pseudo-arclength stepsize. DSMIN must be pos-
itive. It is only effective if the pseudo-arclength step is adaptive, i.e., if TADS>0. The choice of
DSMIN is highly problem-dependent; most demos use a value that was found appropriate after
some experimentation. See also the discussion in Section 7.2.

6.5.3 DSMAX

The maximum allowable absolute value of the pseudo-arclength stepsize. DSMAX must be positive.
It is only effective if the pseudo-arclength step is adaptive, i.e., if TADS>0. The choice of DSMAX
is highly problem-dependent; most demos use a value that was found appropriate after some
experimentation. See also the discussion in Section 7.2.

6.5.4 IADS

This constant controls the frequency of adaption of the pseudo-arclength stepsize.

- IADS=0 : Use fixed pseudo-arclength stepsize, i.e., the stepsize will be equal to the specified
value of DS for every step. The computation of a branch will be discontinued as soon as the
maximum number of iterations ITNW is reached. This choice is not recommended.

(Demo tim.)

- IADS>0 : Adapt the pseudo-arclength stepsize after every IADS steps. If the Newton/Chord
iteration converges rapidly then |DS| will be increased, but never beyond DSMAX. If a step
fails then it will be retried with half the stepsize. This will be done repeatedly until the step
is successful or until |DS| reaches DSMIN. In the latter case nonconvergence will be signalled.
The strongly recommended value is TADS=1, which is used in almost all demos.

6.5.5 NTHL

By default, the pseudo-arclength stepsize includes all state variables (or state functions) and all
free parameters. Under certain circumstances one may want to modify the weight accorded to

32



individual parameters in the definition of stepsize. For this purpose, NTHL defines the number of
parameters whose weight is to be modified. If NTHL=0 then all weights will have default value
1.0 . If NTHL>O0 then one must enter NTHL pairs, Parameter Index  Weight , with each pair on
a separate line.

For example, for the computation of periodic solutions it is recommended that the period
not be included in the pseudo-arclength continuation stepsize, in order to avoid period-induced
limitations on the stepsize near orbits of infinite period. This exclusion can be accomplished by
setting NTHL=1, with, on a separate line, the pair 11 0.0 . Most demos that compute periodic
solutions use this option; see for example demo ab.

6.5.6 NTHU

Under certain circumstances one may want to modify the weight accorded to individual state
variables (or state functions) in the definition of stepsize. For this purpose, NTHU defines the
number of states whose weight is to be modified. If NTHU=0 then all weights will have default
value 1.0 . If NTHU>0 then one must enter NTHU pairs, State Index Weight , with each pair on
a separate line. At present none of the demos use this option.

6.6 Diagram Limits.
There are three ways to limit the computation of a branch :

- By appropriate choice of the computational window defined by the constants RLO, RL1, AO,
and Al. One should always check that the starting solution lies within this computational
window, otherwise the computation will stop immediately at the starting point.

- By specifying the maximum number of steps, NMX.

- By specifying a negative parameter index in the list associated with the constant NUZR; see
Section 6.9.4.

6.6.1 NMX

The maximum number of steps to be taken along any branch.

6.6.2 RLO

The lower bound on the principal continuation parameter. (This is the parameter which appears
first in the ICP list; see Section 6.7.1.).

6.6.3 RL1

The upper bound on the principal continuation parameter.
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6.6.4 AO

The lower bound on the principal solution measure. (By default, if IPLT=0, the principal solution
measure is the Lo-norm of the state vector or state vector function. See the AUTO-constant IPLT
in Section 6.9.3 for choosing another principal solution measure.)

6.6.5 A1l

The upper bound on the principal solution measure.

6.7 Free Parameters.

6.7.1 NICP, ICP

For each equation type and for each continuation calculation there is a typical (“generic”) number
of problem parameters that must be allowed to vary, in order for the calculations to be properly
posed. The constant NICP indicates how many free parameters have been specified, while the
array ICP actually designates these free parameters. The parameter that appears first in the
ICP list is called the “principal continuation parameter”. Specific examples and special cases are
described below.

6.7.2 Fixed points.

The simplest case is the continuation of a solution branch to the system f(u,p) = 0, where
f(,9),u € R" cf. Equation (2.1). Such a system arises in the continuation of ODE stationary
solutions and in the continuation of fixed points of discrete dynamical systems. There is only one
free parameter here, so NICP=1.

As a concrete example, consider Run 1 of demo ab, where NICP=1, with ICP(1)=1. Thus, in
this run PAR(1) is designated as the free parameter.

6.7.3 Periodic solutions and rotations.

The continuation of periodic solutions and rotations generically requires two parameters, namely,
one problem parameter and the period. Thus, in this case NICP=2. For example, in Run 2 of
demo ab we have NICP=2, with ICP(1)=1 and ICP(2)=11. Thus, in this run, the free parameters
are PAR(1) and PAR(11). (Note that AUTO reserves PAR(11) for the period.)

Actually, for periodic solutions, one can set NICP=1 and only specify the index of the free
problem parameter, as AUTO will automatically addd PAR(11). However, in this case the period
will not appear in the screen output and in the fort.7 output-file.

For fixed period orbits one must set NICP=2 and specify two free problem parameters. For
example, in Run 7 of demo pp2, we have NICP=2, with PAR(1) and PAR(2) specified as free
problem parameters. The period PAR(11) is fixed in this run. If the period is large then such a
continuation provides a simple and effective method for computing a locus of homoclinic orbits.
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6.7.4 Folds and Hopf bifurcations.

The continuation of folds for algebraic problems and the continuation of Hopf bifurcations requires
two free problem parameters, i.e., NICP=2. For example, to continue a fold in Run 3 of demo ab,
we have NICP=2, with PAR(1) and PAR(3) specified as free parameters. Note that one must set
ISW=2 for computing such loci of special solutions. Also note that in the continuation of folds
the principal continuation parameter must be the one with respect to which the fold was located.

6.7.5 Folds and period-doublings.

The continuation of folds, for periodic orbits and rotations, and the continuation of period-
doubling bifurcations require two free problem parameters plus the free period. Thus, one would
normally set NICP=3. For example, in Run 6 of demo pen, where a locus of period-doubling
bifurcations is computed for rotations, we have NICP=3, with PAR(2), PAR(3), and PAR(11)
specified as free parameters. Note that one must set ISW=2 for computing such loci of special
solutions. Also note that in the continuation of folds the principal continuation parameter must
be the one with respect to which the fold was located.

Actually, one may set NICP=2, and only specify the problem parameters, as AUTO will
automatically add the period. For example, in Run 3 of demo plp, where a locus of folds
is computed for periodic orbits, we have NICP=2, with PAR(4) and PAR(1) specified as free
parameters. However, in this case the period will not appear in the screen output and in the
fort.7 output-file.

To continue a locus of folds or period-doublings with fixed period, simply set NICP=3 and
specify three problem parameters, not including PAR(11).

6.7.6 Boundary value problems.

The simplest case is that of boundary value problems where NDIM=NBC and where NINT=0. Then,
generically, one free problem parameter is required for computing a solution branch. For example,
in demo exp, we have NDIM=NBC=2, NINT=0. Thus NICP=1. Indeed, in this demo one free
parameter is designated, namely PAR(1).

More generally, for boundary value problems with integral constraints, the generic number of
free parameters is NBC + NINT—NDIM +1. For example, in demo lin, we have NDIM=2, NBC=2,
and NINT=1. Thus NICP=2. Indeed, in this demo two free parameters are designated, namely
PAR(1) and PAR(3).

6.7.7 Boundary value folds.

To continue a locus of folds for a general boundary value problem with integral constraints, set
NICP=NBC+NINT—NDIM+2, and specify this number of parameter indices to designate the free
parameters.

6.7.8 Optimization problems.

In algebraic optimization problems one must set ICP(1)=10, as AUTO uses PAR(10) as principal
continuation parameter to monitor the value of the objective function. Furthermore, one must
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designate one free equation parameter in ICP(2). Thus, NICP=2 in the first run.

Folds with respect to PAR(10) correspond to extrema of the objective function. In a second
run one can restart at such a fold, with an additional free equation parameter specified in ICP(3).
Thus, NICP=3 in the second run.

The above procedure can be repeated. For example, folds from the second run can be continued
in a third run with three equation parameters specified in addition to PAR(10). Thus, NICP=4 in
the third run.

For a simple example see demo opt, where a four-parameter extremum is located. Note
that NICP=5 in each of the four constants-files of this demo, with the indices of PAR(10) and
PAR(1)-PAR(4) specified in ICP. Thus, in the first three runs, there are overspecified parameters.
However, AUTO will always use the correct number of parameters. Although the overspecified
parameters will be printed, their values will remain fixed.

6.7.9 Internal free parameters.

The actual continuation scheme in AUTO may use additional free parameters that are automati-
cally added. The simplest example is the computation of periodic solutions and rotations, where
AUTO automatically adds the period, if not specified. The computation of loci of folds, Hopf bi-
furcations, and period-doublings also requires additional internal continuation parameters. These
will be automatically added, and their indices will be greater than 10.

6.7.10 Parameter overspecification.

The number of specified parameter indices is allowed to be be greater than the generic number.
In such case there will be “overspecified” parameters, whose values will appear in the screen and
fort.7 output, but which are not part of the continuation process. A simple example is provided
by demo opt, where the first three runs have overspecified parameters whose values, although
constant, are printed.

There is, however, a more useful application of parameter overspecification. In the user-
supplied subroutine PVLS one can define solution measures and assign these to otherwise unused
parameters. Such parameters can then be overspecified, in order to print them on the screen and
in the fort.7 output. It is important to note that such overspecified parameters must appear at
the end of the ICP list, as they cannot be used as true continuation parameters.

For an example of using parameter overspecification for printing user-defined solution mea-
sures, see demo pvl. This is a boundary value problem (Bratu’s equation) which has only one true
continuation parameter, namely PAR(1). Three solution measures are defined in the subroutine
PVLS, namely, the Lo-norm of the first solution component, the minimum of the second compo-
nent, and the left boundary value of the second component. These solution measures are assigned
to PAR(2), PAR(3), and PAR(4), respectively. In the constants-file r.pvl we have NICP=4, with
PAR(1)-PAR(4) specified as parameters. Thus, in this example, PAR(2)-PAR(4) are overspecified.
Note that PAR(1) must appear first in the ICP list; the other parameters cannot be used as true
continuation parameters.
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6.8 Computation Constants.

6.8.1 ILP

- ILP=0 : No detection of folds. This choice is recommended.

- ILP=1 : Detection of folds. To be used if subsequent fold continuation is intended.

6.8.2 ISP

This constant controls the detection of branch points, period-doubling bifurcations, and torus
bifurcations.

ISP=0 : This setting disables the detection of branch points, period-doubling bifurcations,
and torus bifurcations and the computation of Floquet multipliers.

ISP=1 : Branch points are detected for algebraic equations, but not for periodic solutions
and boundary value problems. Period-doubling bifurcations and torus bifurcations are not
located either. However, Floquet multipliers are computed.

ISP=2 : This setting enables the detection of all special solutions. For periodic solutions
and rotations, the choice ISP=2 should be used with care, due to potential inaccuracy in
the computation of the linearized Poincaré map and possible rapid variation of the Floquet
multipliers. The linearized Poincaré map always has a multiplier z = 1. If this multiplier
becomes inaccurate then the automatic detection of secondary periodic bifurcations will be
discontinued and a warning message will be printed in fort.9. See also Section 7.4.

ISP=3 : Branch points will be detected, but AUTO will not monitor the Floquet multipliers.
Period-doubling and torus bifurcations will go undetected. This option is useful for certain
problems with non-generic Floquet behavior.

6.8.3 ISW

This constant controls branch switching at branch points for the case of differential equations.
Note that branch switching is automatic for algebraic equations.

- ISW=1 : This is the normal value of ISW.

- ISwW=—1: If IRS is the label of a branch point or a period-doubling bifurcation then branch
switching will be done. For period doubling bifurcations it is recommended that NTST be
increased. For examples see Run 2 and Run 3 of demo lor, where branch switching is done
at period-doubling bifurcations, and Run 2 and Run 3 of demo bvp, where branch switching
is done at a transcritical branch point.

- ISw=2: If IRS is the label of a fold, a Hopf bifurcation point, or a period-doubling bifurcation
then a locus of such points will be computed. An additional free parameter must be specified
for such continuations; see also Section 6.7.
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6.8.4 MXBF

This constant, which is effective for algebraic problems only, sets the maximum number of bifur-
cations to be treated. Additional branch points will be noted, but the corresponding bifurcating
branches will not be computed. If MXBF is positive then the bifurcating branches of the first
MXBF branch points will be traced out in both directions. If MXBF is negative then the bifurcating
branches of the first [MXBF| branch points will be traced out in only one direction.

6.8.5 1IRS

This constant sets the label of the solution where the computation is to be restarted.

IRS=0: This setting is typically used in the first run of a new problem. In this case a starting
solution must be defined in the user-supplied subroutine STPNT; see also Section 3.3. For
representative examples of analytical starting solutions see demos ab and frc. For starting
from unlabeled numerical data see the @fc command (Section 3.5) and demos lor and pen.

IRS>0 : Restart the computation at the previously computed solution with label IRS. This
solution is normally expected to be in the current data-file q.xxx; see also the @r and @R
commands in Section 3.5. Various AUTO-constants can be modified when restarting.

6.8.6 IPS
This constant defines the problem type :

IPS=0 : An algebraic bifurcation problem. Hopf bifurcations will not be detected and
stability properties will not be indicated in the fort.7 output-file.

IPS=1 : Stationary solutions of ODEs with detection of Hopf bifurcations. The sign of PT,
the point number, in fort.7 is used to indicate stability : — is stable , + is unstable.
(Demo ab.)

IPS=—1 : Fixed points of the discrete dynamical system u*+1) = f(u(*), p), with detection
of Hopf bifurcations. The sign of PT in fort.7 indicates stability : — is stable , 4 is
unstable. (Demo dd2.)

IPS=—2 : Time integration using implicit Euler. The AUTO-constants DS, DSMIN, DSMAX,
and ITNW, NWTN control the stepsize. In fact, pseudo-arclength is used for “continuation in
time”. Note that the time discretization is only first order accurate, so that results should
be carefully interpreted. Indeed, this option has been included primarily for the detection
of stationary solutions, which can then be entered in the user-supplied subroutine STPNT.
(Demo ivp.)

IPS=2 : Computation of periodic solutions. Starting data can be a Hopf bifurcation point
(Run 2 of demo ab), a periodic orbit from a previous run (Run 4 of demo pp2), an ana-
lytically known periodic orbit (Run 1 of demo frc), or a numerically known periodic orbit
(Demo lor). The sign of PT in fort.7 is used to indicate stability : — is stable , + is
unstable or unknown.
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IPS=4 : A boundary value problem. Boundary conditions must be specified in the user-
supplied subroutine BCND and integral constraints in ICND. The AUTO-constants NBC and
NINT must be given correct values. (Demos exp, int, kar.)

IPS=5 : Algebraic optimization problems. The objective function must be specified in the
user-supplied subroutine FOPT. (Demo opt.)

IPS=7 : A boundary value problem with computation of Floquet multipliers. This is a
very special option; for most boundary value problems one should use IPS=4. Boundary
conditions must be specified in the user-supplied subroutine BCND and integral constraints
in ICND. The AUTO-constants NBC and NINT must be given correct values.

IPS=9 : This option is used in connection with the HomCont algorithms described in
Chapters 16-22 for the detection and continuation of homoclinic bifurcations.
(Demos san, mtn, kpr, cir, she, rev.)

IPS=11 : Spatially uniform solutions of a system of parabolic PDEs, with detection of
traveling wave bifurcations. The user need only define the nonlinearity (in subroutine FUNC),
initialize the wave speed in PAR(10), initialize the diffusion constants in PAR(15,16,---),
and set a free equation parameter in ICP(1). (Run 2 of demo wav.)

IPS=12 : Continuation of traveling wave solutions to a system of parabolic PDEs. Starting
data can be a Hopf bifurcation point from a previous run with IPS=11, or a traveling wave
from a previous run with IPS=12. (Run 3 and Run 4 of demo wav.)

IPS=14 : Time evolution for a system of parabolic PDEs subject to periodic boundary
conditions. Starting data may be solutions from a previous run with IPS=12 or 14. Starting
data can also be specified in STPNT, in which case the wave length must be specified in
PAR(11), and the diffusion constants in PAR(15,16,---). AUTO uses PAR(14) for the time
variable. DS, DSMIN, and DSMAX govern the pseudo-arclength continuation in the space-time
variables. Note that the time discretization is only first order accurate, so that results
should be carefully interpreted. Indeed, this option is mainly intended for the detection of
stationary waves. (Run 5 of demo wav.)

IPS=15: Optimization of periodic solutions. The integrand of the objective functional must
be specified in the user supplied subroutine FOPT. Only PAR(1-9) should be used for problem
parameters. PAR(10) is the value of the objective functional, PAR(11) the period, PAR(12)
the norm of the adjoint variables, PAR(14) and PAR(15) are internal optimality variables.
PAR(21-29) and PAR(31) are used to monitor the optimality functionals associated with the
problem parameters and the period. Computations can be started at a solution computed
with IPS=2 or IPS=15. For a detailed example see demo ops.

IPS=16 : This option is similar to IPS=14, except that the user supplies the boundary
conditions. Thus this option can be used for time-integration of parabolic systems subject
to user-defined boundary conditions. For examples see the first runs of demos pd1, pd2,
and bru. Note that the space-derivatives of the initial conditions must also be supplied
in the user supplied subroutine STPNT. The initial conditions must satisfy the boundary
conditions. This option is mainly intended for the detecting stationary solutions.
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- IPS=17 : This option can be used to continue stationary solutions of parabolic systems
obtained from an evolution run with IPS=16. For examples see the second runs of demos
pdl and pd2.

6.9 Output Control.

6.9.1 NPR

This constant can be used to regularly write fort.8 plotting and restart data. IF NPR>0 then
such output is written every NPR steps. IF NPR=0 or if NPR>NMX then no such output is written.
Note that special solutions, such as branch points, folds, end points, etc., are always written in
fort.8. Furthermore, one can specify parameter values where plotting and restart data is to be
written; see Section 6.9.4. For these reasons, and to limit the output volume, it is recommended
that NPR output be kept to a minimum.

6.9.2 1IID

This constant controls the amount of diagnostic output printed in fort.9 : the greater IID the
more detailed the diagnostic output.

IID=0 : Minimal diagnostic output. This setting is not recommended.

IID=2 : Regular diagnostic output. This is the recommended value of IID.

IID=3 : This setting gives additional diagnostic output for algebraic equations, namely the
Jacobian and the residual vector at the starting point. This information, which is printed
at the beginning of fort.9, is useful for verifying whether the starting solution in STPNT is
indeed a solution.

I1ID=4 : This setting gives additional diagnostic output for differential equations, namely
the reduced system and the associated residual vector. This information is printed for every
step and for every Newton iteration, and should normally be suppressed. In particular it
can be used to verify whether the starting solution is indeed a solution. For this purpose,
the stepsize DS should be small, and one should look at the residuals printed in the fort.9
output-file. (Note that the first residual vector printed in fort.9 may be identically zero,
as it may correspond to the computation of the starting direction. Look at the second
residual vector in such case.) This residual vector has dimension NDIM+NBC+NINT+1, which
accounts for the NDIM differential equations, the NBC boundary conditions, the NINT user-
defined integral constraints, and the pseudo-arclength equation. For proper interpretations
of these data one may want to refer to the solution algorithm for solving the collocation
system, as described in ( , ).

- IID=5: This setting gives very extensive diagnostic output for differential equations, namely,
debug output from the linear equation solver. This setting should not normally be used as
it may result in a huge fort.9 file.
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6.9.3 IPLT

This constant allows redefinition of the principal solution measure, which is printed as the second
(real) column in the screen output and in the fort.7 output-file :

- If IPLT = 0 then the Lo-norm is printed. Most demos use this setting. For algebraic
problems, the standard definition of Lo-norm is used. For differential equations, the Lo-
norm is defined as

1 NDIM

/D ; Up()? da .

Note that the interval of integration is [0, 1], the standard interval used by AUTO. For
periodic solutions the independent variable is transformed to range from 0 to 1, before
the norm is computed. The AUTO-constants THL(*) and THU(*) (see Section 6.5.5 and
Section 6.5.6) affect the definition of the Lo-norm.

If 0 < IPLT < NDIM then the maximum of the IPLT’th solution component is printed.

If —NDIM < IPLT <0 then the minimum of the IPLT’th solution component is printed.
(Demo fsh.)

If NDIM < IPLT < 2*NDIM then the integral of the (IPLT—NDIM)th solution component is
printed. (Demos exp, lor.)

If 2*NDIM < IPLT < 3*NDIM then the Lo-norm of the (IPLT—NDIM)’th solution component
is printed. (Demo frc.)

Note that for algebraic problems the maximum and the minimum are identical. Also, for
ODEs the maximum and the minimum of a solution component are generally much less accurate
than the Lo-norm and component integrals. Note also that the subroutine PVLS provides a second,
more general way of defining solution measures; see Section 6.7.10.

6.9.4 NUZR

This constant allows the setting of parameter values at which labeled plotting and restart infor-
mation is to be written in the fort.8 output-file. Optionally, it also allows the computation to
terminate at such a point.

- Set NUZR=O0 if no such output is needed. Many demos use this setting.

- If NUZR>0 then one must enter NUZR pairs, Parameter-Index  Parameter-Value , with
each pair on a separate line, to designate the parameters and the parameter values at which
output is to be written. For examples see demos exp, int, and fsh.

- If such a parameter index is preceded by a minus sign then the computation will terminate
at such a solution point. (Demos pen and bru.)

Note that fort.8 output can also be written at selected values of overspecified parameters.
For an example see demo pvl. For details on overspecified parameters see Section 6.7.10.
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Chapter 7
Notes on Using AUTO.

7.1 Restrictions on the Use of PAR.

The array PAR in the user-supplied subroutines is available for equation parameters that the
user wants to vary at some point in the computations. In any particular computation the free
parameter(s) must be designated in ICP; see Section 6.7. The following restrictions apply :

- The maximum number of parameters, NPARX in auto/97/include/auto.h, has pre-defined
value NPARX=36. NPARX should not normally be increased and it should never be decreased.
Any increase of NPARX must be followed by recompilation of AUTO.

- Generally one should only use PAR(1)-PAR(9) for equation parameters, as AUTO may need
the other components internally.

7.2  Efficiency.

In AUTO, efficiency has at times been sacrificed for generality of programming. This applies in
particular to computations in which AUTO generates an extended system, for example, compu-
tations with ISW=2. However, the user has significant control over computational efficiency, in
particular through judicious choice of the AUTO-constants DS, DSMIN, and DSMAX, and, for ODEs,
NTST and NCOL. Initial experimentation normally suggests appropriate values.

Slowly varying solutions to ODEs can often be computed with remarkably small values of
NTST and NCOL, for example, NTST=5, NCOL=2. Generally, however, it is recommended to set
NCOL=4, and then to use the “smallest” value of NTST that maintains convergence.

The choice of the pseudo-arclength stepsize parameters DS, DSMIN, and DSMAX is highly problem
dependent. Generally, DSMIN should not be taken too small, in order to prevent excessive step
refinement in case of non-convergence. It should also not be too large, in order to avoid instant
non-convergence. DSMAX should be sufficiently large, in order to reduce computation time and
amount of output data. On the other hand, it should be sufficiently small, in order to prevent
stepping over bifurcations without detecting them. For a given equation, appropriate values of
these constants can normally be found after some initial experimentation.

The constants ITNW, NWTN, THL, EPSU, EPSL, EPSS also affect efficiency. Understanding their
significance is therefore useful; see Section 6.4 and Section 6.5. Finally, it is recommended that
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initial computations be done with ILP=0; no fold detection; and ISP=1; no bifurcation detection
for ODEs.

7.3 Correctness of Results.

AUTO-computed solutions to ODEs are almost always structurally correct, because the mesh
adaption strategy, if IAD>0, safeguards to some extent against spurious solutions. If these do
occur, possibly near infinite-period orbits, the unusual appearance of the solution branch typically
serves as a warning. Repeating the computation with increased NTST is then recommended.

7.4 Bifurcation Points and Folds.

It is recommended that the detection of folds and bifurcation points be initially disabled. For
example, if an equation has a “vertical” solution branch then AUTO may try to locate one fold
after another.

Generally, degenerate bifurcations cannot be detected. Furthermore, bifurcations that are
close to each other may not be noticed when the pseudo-arclength step size is not sufficiently
small. Hopf bifurcation points may go unnoticed if no clear crossing of the imaginary axis takes
place. This may happen when there are other real or complex eigenvalues near the imaginary
axis and when the pseudo-arclength step is large compared to the rate of change of the critical
eigenvalue pair. A typical case is a Hopf bifurcation close to a fold. Similarly, Hopf bifurcations
may go undetected if switching from real to complex conjugate, followed by crossing of the
imaginary axis, occurs rapidly with respect to the pseudo-arclength step size. Secondary periodic
bifurcations may not be detected for similar reasons. In case of doubt, carefully inspect the
contents of the diagnostics file fort.9.

7.5 Floquet Multipliers.

AUTO extracts an approximation to the linearized Poincaré map from the Jacobian of the lin-
earized collocation system that arises in Newton’s method. This procedure is very efficient; the
map is computed at negligible extra cost. The linear equations solver of AUTO is described
in ( , ). The actual Floquet multiplier solver was written by
( ). For a detailed description of the algorithm see ( , ).

For periodic solutions, the exact linearized Poincaré map always has a multiplier z = 1. A good
accuracy check is to inspect this multiplier in the diagnostics output-file fort.9. If this multiplier
becomes inaccurate then the automatic detection of potential secondary periodic bifurcations (if
ISP=2) is discontinued and a warning is printed in fort.9. It is strongly recommended that the
contents of this file be habitually inspected, in particular to verify whether solutions labeled as
BP or TR (cf. Table 3.1) have indeed been correctly classified.
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7.6 Memory Requirements.

Pre-defined maximum values of certain AUTO-constants are in auto/97/include/auto.h; see
also Section 1.2. These maxima affect the run-time memory requirements and should not be set
to unnecessarily large values. If an application only solves algebraic systems and if NDIM is “large”
then memory requirements can be much reduced by setting each of NTSTX, NCOLX, NBCX, NINTX,
equal to 1 in auto/97/include/auto.h, followed by recompilation of the AUTO libraries.
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Chapter 8
AUTO Demos : Tutorial.
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8.1 Introduction.

The directory auto/97/demos has a large number of subdirectories, for example ab, pp2, exp,
etc., each containing all necessary files for certain illustrative calculations. Each subdirectory, say
xxx, corresponds to a particular equation and contains one equations-file xxx.f and one or more
constants-files r.xxx.1, one for each successive run of the demo. To see how the equations have
been programmed, inspect the equations-file. To understand in detail how AUTO is instructed
to carry out a particular task, inspect the appropriate constants-file. In this chapter we describe
the tutorial demo ab in detail. A brief description of other demos is given in later chapters.

8.2 ab : A Tutorial Demo.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
solutions, and the computation loci of folds and Hopf bifurcation points. The equations, that

model an A — B reaction, are those from ( ), namely
uy = —uy +p1(l —up)er?,
/ ug (81)
uy = —uy + pipa(l — ur)e™ — psus.

8.3 Copying the Demo Files.

The commands listed in Table 8.1 will copy the demo files to your work directory.

Unix-COMMAND ACTION

cd go to your main directory (or other directory)
mbkdir ab create an empty work directory

cd ab change to the work directory
AUTO-COMMAND | ACTION

@dm ab copy the demo files to the work directory

Table 8.1: Copying the demo ab files.

At this point you may want to see what files have been copied to the work directory. In
particular, you may want to edit the equations-file ab.f to see how the equations have been
entered (in subroutine FUNC) and how the starting solution has been set (in subroutine STPNT).
Note that, initially, p; = 0 po = 14, and p3 = 2, for which u; = uy = 0 is a stationary solution.

8.4 Executing all Runs Automatically.

To execute all prepared runs of demo ab, simply type the command given in Table 8.2.

The resulting screen output is given below in somewhat abbreviated form. Some differences
in output are to be expected on different machines. This does not mean that the results have
different accuracy, but simply that arithmetic differences have accumulated from step to step,
possibly leading to different step size decisions.
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Unix-COMMAND | ACTION
make execute all runs of demo ab

Table 8.2: Executing all runs of demo ab.

Note that there are five separate runs. In the first run, a branch of stationary solutions
is traced out. Along it, two folds (LP) and one Hopf bifurcation (HB) are located. The free
parameter is p;. The other parameters remain fixed in this run. Note also that only special,
labeled solution points are printed on the screen. More detailed results are saved in the data-files
p-ab, q.ab, and d.ab.

The second run traces out the branch of periodic solutions that emanates from the Hopf
bifurcation. The free parameters are p; and the period. The detailed results are appended to the
existing data-files p.ab, q.ab, and d.ab.

In the third run, one of the folds detected in the first run is followed in the two parameters
p1 and p3, while py remains fixed. The fourth run continues this branch in opposite direction.
Similarly, in the fifth run, the Hopf bifurcation located in the first run is followed in the two
parameters p; and ps. (In this example this is done in one direction only.) The detailed results
of these continuations are accumulated in the data-files p.2p, q.2p, and d.2p.

One could now use PLAUT to graphically inspect the contents of the data-files, but we shall
do this later. However, it may be useful to edit these files to view their contents.

Next, reset the work directory, by typing the command given in Table 8.3.

Unix-COMMAND | ACTION
make clean remove data-files and temporary files of demo ab

Table 8.3: Cleaning the demo ab work directory.
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ab :

BR

1
1
1
1
1

first run :

PT TY LAB

1 EP
33 LP
70 LP
90 HB
92 EP

ad W N -

Saved as *.ab

ab :

BR

4
4
4
4
4

Appended to *.ab

ab :

BR
2
2

second run :

PT TY LAB
30 6
60 7
90 8
120 9
150 EP 10

third run :

PT TY LAB
2r LP 11
100 EP 12

Saved as *.2p

ab :

BR
2

ab :

BR
4

Appended to *.2p

fourth run :

PT TY LAB

35 EP

fifth run :

PT TY LAB
100 EP 11

PAR(1)
0.00000E+00
1.05739E-01
8.89318E-02
1.30899E-01
1.51241E-01

stationary solutions

L2-NORM
0.00000E+00
1.48439E+00
3.28824E+00
4.27186E+00
4.36974E+00

periodic solutions

PAR(1)
1.19881E-01
1.15303E-01
1.05650E-01
1.05507E-01
1.05507E-01

a 2-parameter

PAR(1)
1.35335E-01
1.09381E-08

the locus of

PAR(1)

11 -1.31939E-03
Appended to *.2p

a 2-parameter

PAR(1)
8.80940E-05

L2-NORM
3.98712E+00
3.14630E+00
2.21917E+00
1.69684E+00
1.60388E+00

U
0.00000E+00
3.11023E-01
6.88982E-01
8.95080E-01
9.15589E-01

MAX U(1)

.91911E-01
.99577E-01
.99166E-01
.99086E-01
.99789E-01

© © © © ©

locus of folds

L2-NORM
2.06012E+00
2.13650E+01

Uu(1)
4 .99653E-01
9.53147E-01

U(2)
0.00000E+00
1.45144E+00
3.21525E+00
4.17704E+00
4.27275E+00

MAX U(2)

.02034E+00
.95764E+00
.36609E+00
.29629E+00
.28146E+00

© © © © N

U(2)
1.99861E+00
2.13437E+01

folds in reverse direction

L2-NORM

U(1)

U(2)

9.96432E-01 -3.58651E-03 9.96426E-01

locus of Hopf points

L2-NORM
1.17440E+01
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U(1)
9.14609E-01

U(2)
1.17083E+01

PERIOD
2.721E+00
6.147E+00
1.399E+01
9.956E+01
1.867E+03

PAR(3)
2.499E+00
-3.748E-01

PAR(3)
-1.050E+00

PAR(3)
9.362E-02



8.5 Executing Selected Runs Automatically.

As illustrated by the commands in Table 8.4, one can also execute selected runs of demo ab. In
general, this cannot be done in arbitrary order, as any given run may need restart data from a
previous run. Run 3 only requires the results of Run 1, so that the displayed command sequence is
indeed appropriate. The screen output of these runs will be identical to that of the corresponding
earlier runs, except for a change in solution labels in Run 3.

Unix-COMMAND | ACTION
make first execute the first run of demo ab
make third execute the third run of demo ab

Table 8.4: Selected runs of demo ab.

Of course, in real use, one must prepare a constants-file for each run. In the illustrative
runs above, the constants-files were carefully prepared in advance. For example, the file r.ab.1
contains the AUTO-constants for Run 1, r.ab.3 contains the AUTO-constants for Run 3, etc.

8.6 Using AUTO-Commands.

Next, with the commands in Table 8.5, we execute the first two runs of demo ab again, but now
using the commands that one would normally use in an actual application. We still use the demo
constants-files that were prepared in advance.

COMMAND | ACTION

make clean reset the work directory

cp r.ab.1 r.ab | get the first constants-file

@r ab compute a stationary solution branch with folds and Hopf bifurcation
@sv ab save output-files as p.ab, q.ab, d.ab

cp r.ab.2 r.ab | get the second constants-file

Q@r ab compute a branch of periodic solutions from the Hopf point

@ap ab append the output-files to p.ab, q.ab, d.ab

Table 8.5: Commands for Run 1 and Run 2 of demo ab.

It is instructive to look at the constants-files r.ab.1 and r.ab.2 used in the two runs above.
The significance of each AUTO-constant set in these files can be found in Chapter 6. Note in
particular the AUTO-constants that were changed between the two runs; see Table 8.6.

Actually, for periodic solutions, AUTO automatically adds PAR(11) (the period) as second
parameter. However, for the period to be printed, one must specify the index 11 in the ICP list,
as shown in Table &8.6.
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Constant | Run 1 | Run 2 | Reason for Change

IPS 1 2 | To compute periodic solutions in Run 2

IRS 0 4 | To specify the Hopf bifurcation restart label
NICP 1 2 | The second run has two free parameters

ICP 1| 1,11 | To use and print PAR(1) and PAR(11) in Run 2
NMX 100 150 | To allow more continuation steps in Run 2

NPR 100 30 | To print output every 30 steps in Run 2

Table 8.6: Differences in AUTO-constants between r.ab.1 and r.ab.2.

8.7 Plotting the Results with PLAUT.

The bifurcation diagram computed in the runs above is stored in the file p.ab, while each labeled
solution is fully stored in q.ab. To use PLAUT to graphically inspect these data-files, type the
AUTO-command given in Table 8.7. The PLAUT window (a Tektronix window) will appear, in
which one can enter the PLAUT-commands given in Table 8.8. The saved plots are shown in
Figure 8.1 and in Figure 8.2.

AUTO-COMMAND | ACTION
@p ab run PLAUT to graph the contents of p.ab and q. ab;

Table 8.7: Command for plotting the files p.ab and q.ab.

8.8 Following Folds and Hopf Bifurcations.

The commands in Table 8.9 will execute the remaining runs of demo ab. Here, as in later demos,
some of the AUTO-constants that have been changed between runs are indicated in the Table.

8.9 Relabeling Solutions in the Data-Files.

Next we want to plot the two-parameter diagram computed in the last three runs. However, the
solution labels in these runs are not distinct. This is due to the fact that in each of these three
runs the restart solution was read from q.ab, while the computed solutions were stored in q. 2p.
Consequently, these runs were unaware of each other’s results, which led to non-unique labels.
For relabeling purpose, and more generally for file maintenance, there is a utility program that
can be invoked as indicated in Table 8.10. Its use is illustrated in Table 8.11.

8.10 Plotting the 2-Parameter Diagram.

To run PLAUT on the files p.2p and q.2p, enter the command listed in Table 8.12. The PLAUT-
commands for plotting the two-parameter diagram are then as given in Table 8.13. The saved
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PLAUT-COMMAND | ACTION

dl1 choose one of the default settings

bd0 plot the default bifurcation diagram; Lo-norm versus p;
bd make a blow-up of current bifurcation diagram
08 .14 .5 4.5 enter diagram limits

sav save the current plot

fig. 1 upon prompt, enter a new file name, e.g., fig.1
2d enter 2D mode, for plotting labeled solutions
6710 select labeled orbits 6, 7, and 10 in q.ab

d default orbit display; u; versus scaled time

18 select columns 1 and 3 in q.ab

d display the orbits; uy versus scaled time

23 select columns 2 and 3 in q.ab

d phase plane display; us versus u;

sav save the current plot

fig.2 upon prompt, enter a new file name

exr exit from 2D mode

end exit from PLAUT

Table 8.8: Commands to be typed in the PLAUT window.

I
0.080 0.090

I I I I
0. 100 0. 110 0.120 0.130 0. 140

Figure 8.1: The bifurcation diagram of demo ab.
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10.

3. 10

Figure 8.2: The phase plot of solutions 6, 7, and 10 in demo ab.

COMMAND | ACTION

cp r.ab.3 r.ab | changes (from r.ab.1) : IRS, NICP, ICP, ISW, DSMAX
@r ab compute a locus of folds

@sv 2p save output-files as p.2p, q.2p, d.2p

cp r.ab.4 r.ab | changes (from r.ab.3) : DS (sign)

@r ab compute the locus of folds in reverse direction

Q@Qap 2p append the output-files to p.2p, q.2p, d.2p

cp r.ab.5 r.ab | changes (from r.ab.4) : IRS

@r ab compute a locus of Hopf points

Q@Qap 2p append the output-files to p.2p, q.2p, d.2p

Table 8.9: Commands for Runs 3, 4, and 5 of demo ab.

AUTO-COMMAND | ACTION
Q@lb 2p run the relabeling program on p.2p and q.2p

Table 8.10: Command to run the relabeling program on p.2p and q.2p.
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RELABELING COMMAND

ACTION

1

r

1
w

list the labeled solutions in q.2p
relabel the solutions

list the new solution labeling
rewrite p.2p and q.2p

Table 8.11: Relabeling commands for the files p.2p and q.2p.

plot is shown in Figure 8.3.

AUTO-COMMAND

ACTION

@p 2p

run PLAUT to graph the contents of p.2p and q.2p;

Table 8.12: Command to run PLAUT for files p.2p and q.2p.

PLAUT-COMMAND | ACTION

do set default option

ax select axes

15 select real columns 1 (p;) and 5 (ps) in p.2p
bd0 plot the 2-parameter diagram; ps versus p;
cl clear the screen

a2 set other default option

bd0 plot the 2-parameter diagram; ps versus p;
bd make a blow-up of the current diagram

0 .15 0 2.5 enter diagram limits

sav save plot

fig.3 upon prompt, enter a new file name, e.g., fig.3
end exit from PLAUT

Table 8.13: PLAUT-commands for files p.2p and q.2p.

Converting Saved PLAUT Files to PostScript.

Plots are saved in compact Tektronix PLOT10 format. In Table 8.14 it is shown how such files
can be converted to PostScript format. Note that the latter files are much bigger.
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0.000 0.025 0. 050 0.075 0.100 0.125 0.150

Figure 8.3: Loci of folds and Hopf bifurcations for demo ab.

AUTO-COMMAND | ACTION

@ps fig.1 convert file fig.1 into PostScript file fig.1.ps

Ipr fig.1.ps system dependent : print fig.1.ps on your printer
@ps fig.2 convert file fig.2 into PostScript file fig.2.ps

Ipr fig.2.ps system dependent : print fig.2.ps on your printer
@ps fig.3 convert file fig.3 into PostScript file fig.3.ps

Ipr fig.3.ps system dependent : print fig.3.ps on your printer

Table 8.14: Printing commands for the saved Figures in demo ab.

8.12 Using the GUI.

Demos can also be run using the GUI. See Table 5.1 for the correspondence between Command
Mode and GUI actions. To activate the GUI, type the command in Table 8.15. The GUI actions
to execute the first two runs of demo ab are given in Table 8.16. In GUI Mode one can copy
demo files to the user work directory using the Equations/Demo-button. To load a selected
constants-file, use the Previous-button in the LoadConsts area of the GUI window. Press the
Filter-button in the pop-up window to update the displayed list of files, and then select the
appropriate constants-file.

To execute all runs of a selected demo with the GUI, click Demos/Select, select a demo, and
click the Run-button in the pop-up window. This will actually run the demo in the corresponding
subdirectory of auto/97/demos, which is only possible if you have write access to this directory.
Make sure to click the Demos/Reset-button afterwards. Do not otherwise run AUTO in the
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AUTO-COMMAND | ACTION
@auto Activate the Graphical User Interface

Table 8.15: Command to activate the GUI.

GUI-button ACTION

FEquations/Demo | Select demo ab, then press OK

Previous Push Filter, select file r.ab.1, then press OK
Run This will execute Run 1 of demo ab
Save/Save Save the output files as p.ab, q.ab, d.ab
Previous Select file r.ab.2, then press OK

Run This will execute Run 2 of demo ab
Append/Append | Append the output-files to p.ab, q.ab, d.ab

Table 8.16: GUI actions for Run 1 and Run 2 of demo ab.

directory auto/97 or in any of its subdirectories.

8.13 Abbreviated AUTO-Commands.

The AUTO-commands given in, for example, Table 8.5 can be simplified by using the @R com-
mand. For Table 8.5 the equivalent command sequence is given in Table 8.17.

COMMAND | ACTION

make clean | reset the work directory

@R ab 1 (reads AUTO-constants from r.ab.1)

@sv ab save output-files as p.ab, q.ab, d.ab

@R ab 2 (reads AUTO-constants from r.ab.?2)

@ap ab append the output-files to p.ab, q.ab, d.ab

Table 8.17: Abbreviated AUTO-commands.
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Chapter 9

AUTO Demos : Fixed points.

9.1 enz : Stationary Solutions of an Enzyme Model.
The equations, that model a two-compartment enzyme system ( , ), are given by

sy = (50— 81) + (52 — 51) — pR(s1),

9.1
Sy = (0 -+ fu— 52) + (51 — 52) — pR(s2), (0.1)
where 5
R(s) = 14 s+ ks?'

The free parameter is sg. Other parameters are fixed. This equation is also considered in (

Y )'

COMMAND ACTION

mkdir enz create an empty work directory

cd enz change directory

@dm enz copy the demo files to the work directory
cp r.enz.1 r.enz | get the constants-file

@r enz compute stationary solution branches

@sv enz save output-files as p.enz, q.enz, d.enz

Table 9.1: Commands for running demo enz.
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9.2 dd2 : Fixed Points of a Discrete Dynamical System.

This demo illustrates the computation of a solution branch and its bifurcating branches for a
discrete dynamical system. Also illustrated is the continuation of Naimark-Sacker (or Hopf)
bifurcations The equations, a discrete predator-prey system, are

= k(L ul) — pund o
ust = (1 — p3)ub + poubub.

In the first run p; is free. In the second run, both p; and py are free. The remaining equation
parameter, ps, is fixed in both runs.

AUTO-COMMAND | ACTION

mkdir dd2 create an empty work directory

cd dd2 change directory

@dm dd2 copy the demo files to the work directory

cp r.dd2.1 r.dd2 get the first constants-file

Qr dd2 1st run; fixed point solution branches

Q@sv dd2 save output-files as p.dd2, q.dd2, d.dd2

cp r.dd2.2 r.dd2 constants changed : IRS, ISW

Qr dd2 2nd run; a locus of Naimark-Sacker bifurcations
@sv ns save output-files as p.ns, q.ns, d.ns

Table 9.2: Commands for running demo dd2.
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Chapter 10

AUTO Demos : Periodic solutions.
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10.1 Irz : The Lorenz Equations.

This demo computes two symmetric homoclinic orbits in the Lorenz equations
uy = p3(uz — uy),
uh = prug — us — ugug, (10.1)
Uz = Uyl — PaUs.

Here p; is the free parameter, and p, = 8/3, p3 = 10. The two homoclinic orbits correspond to
the final, large period orbits on the two periodic solution branches.

COMMAND | ACTION

mbkdir lrz create an empty work directory

cd Irz change directory

@Qdm lrz copy the demo files to the work directory

cp r.lrz.1 rirz
Q@r lrz

Qsv lrz

get the first constants-file
compute stationary solutions
save output-files as p.1lrz, q.lrz, d.lrz

cp rlrz.2 rlrz
Q@r lrz
@Qap Irz

constants changed : IPS, IRS, NICP, ICP, NMX, NPR, DS
compute periodic solutions; the final orbit is near-homoclinic
append the output-files to p.1rz, q.lrz, d.1lrz

cp rlrz.3 r.lrz
Q@r lrz
@Qap Irz

constants changed : IRS
compute the symmetric periodic solution branch
append the output-files to p.1lrz, q.lrz, d.1lrz

Table 10.1: Commands for running demo 1rz.
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10.2 abc: The A — B — C Reaction.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
solutions in the A — B — C reaction ( , ).

up = —up +pi(l —up)e™,
U/Q = —Us9 +p1€u3(1 — U — p5U2), (102)
uy = —uz — psus + pipa€* (1 — ur + papsua),

with py = 1, p3 = 1.55, py = 8, and p; = 0.04. The free parameter is p;.

COMMAND ACTION

mbkdir abc create an empty work directory

cd abe change directory

@dm abc copy the demo files to the work directory

cp r.abe.1 r.abc
@r abc
@sv abc

get the first constants-file
compute the stationary solution branch with Hopf bifurcations
save output-files as p.abc, q.abc, d.abc

cp r.abe.2 r.abe
@r abc
@ap abc

constants changed : IRS, IPS, NICP, ICP
compute a branch of periodic solutions from the first Hopf point
append the output-files to p.abc, q.abc, d.abc

cp r.abe.3 r.abe
@r abc
@ap abc

constants changed : IRS, NMX
compute a branch of periodic solutions from the second Hopf point
append the output-files to p.abc, q.abc, d.abc

Table 10.2: Commands for running demo abc.
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10.3 pp2: A 2D Predator-Prey Model.

This demo illustrates a variety of calculations.
system with harvesting, are

The equations, which model a predator-prey

uwy = pour(l —uy) — ugug — py (1 — e P341),

10.3
Uy = —Uy + patiUs. ( )

Here p; is the principal continuation parameter, ps = 5, p, = 3, and, initially, p, = 3. For
two-parameter computations ps is also free. The use of PLAUT is also illustrated. The saved
plots are shown in Figure 10.1 and Figure 10.2.

COMMAND ACTION

mbkdir pp2 create an empty work directory

cd pp2 change directory

@dm pp2 copy the demo files to the work directory

cp r.pp2.1 r.pp2 | get the first constants-file

Qr pp2 1st run; stationary solutions

@sv pp2 save output-files as p.pp2, q.pp2, d.pp2

cp r.pp2.2 r.pp2 | constants changed : IRS, RL1

Qr pp2 2nd run; restart at a labeled solution

Q@Qap pp2 append output-files to p.pp2, q.pp2, d.pp2
cp r.pp2.3 r.pp2 | constants changed : IRS, IPS, ILP

Q@r pp2 3rd run; periodic solutions

Q@Qap pp2 append output-files to p.pp2, q.pp2, d.pp2
cp r.pp2.4 r.pp2 | constants changed : IRS, NTST

@r pp2 4th run; restart at a labeled periodic solution
Q@Qap pp2 append output-files to p.pp2, q.pp2, d.pp2
cp r.pp2.5 r.pp2 | constants changed : IRS, IPS, ISW, ICP
Qr pp2 5th run; continuation of folds

@sv lp save output-files as p.1p, q.1lp, d.1lp

cp r.pp2.6 r.pp2 | constants changed : IRS

Qr pp2 6th run; continuation of Hopf bifurcations
@sv hb save output-files as p.hb, q.hb, d.hb

cp r.pp2.7 r.pp2 | constants changed : IRS, IPS, ISP

@r pp2 7th run; continuation of homoclinic orbits
@sv hom save output-files as p.hom, q.hom, d.hom

Table 10.3: Commands for running demo pp2.
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AUTO-COMMAND

ACTION

@p pp2 run PLAUT to graph the contents of p.pp2 and q.pp2;
PLAUT-COMMAND | ACTION

d1 set convenient defaults

bd0 plot the default bifurcation diagram; Le-norm versus p;
cl clear the screen

ax select axes

13 select real columns 1 and 3 in p.pp2

bd0 plot the bifurcation diagram; maz u; versus p;
cl clear the screen

ds choose other default settings

bd0 bifurcation diagram

bd get blow-up of current bifurcation diagram

0 1 -0.25 1 enter diagram limits

sav save plot (see Figure 10.1)

fig.1 upon prompt, enter a new file name, e.g., fig.1
cl clear the screen

2d enter 2D mode, for plotting labeled solutions
1213 14 select labeled orbits 12, 13, and 14 in q.pp2

d default orbit display; u; versus time

13 select columns 1 and 3 in q.pp2

d display the orbits; uy versus time

238 select columns 2 and 3 in q.pp2

d phase plane display; uy versus u;

sav save plot (see Figure 10.2)

fig.2 upon prompt, enter a new file name

exr exit from 2D mode

end exit from PLAUT

Table 10.4: Plotting commands for demo pp2.
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Figure 10.1: The bifurcation diagram of demo pp2.
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Figure 10.2: The phase plot of solutions 12, 13, and 14 in demo pp2.
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10.4 lor : Starting an Orbit from Numerical Data.

This demo illustrates how to start the computation of a branch of periodic solutions from nu-
merical data obtained, for example, from an initial value solver. As an illustrative application we
consider the Lorenz equations

/ _

Uq —P3(U2 —U1)7
!/

Uy = Pruy — U — U U3, (10.4)
!/

Uz = UUg — P2U3.

Numerical simulations with a simple initial value solver show the existence of a stable periodic
orbit when p; = 280, p» = 8/3, p3 = 10. Numerical data representing one complete periodic
oscillation are contained in the file lor.dat. Each row in lor.dat contains four real numbers,
namely, the time variable ¢, u1, us and uz. The correponding parameter values are defined in the
user-supplied subroutine STPNT. The AUTO-command @fc lor then converts the data in lor.dat
to a labeled AUTO solution (with label 1) in a new file q.dat. The mesh will be suitably adapted
to the solution, using the number of mesh intervals NTST and the number of collocation point per
mesh interval NCOL specified in the constants-file r.1lor. (Note that the file q.dat should be used
for restart only. Do not append new output-files to q.dat, as the command @fc lor only creates
q.dat, with no corresponding p.dat.)

COMMAND ACTION

mbkdir lor create an empty work directory

cd lor change directory

@dm lor copy the demo files to the work directory

cp r.lor.1 r.lor | get the first constants-file

@fc lor convert lor.dat to AUTO format in q.dat

@r lor dat compute a solution branch, restart from q.dat
@sv lor save output-files as p.lor, q.lor, d.lor

cp r.lor.2 r.lor | constants changed : IRS, ISW, NTST

@r lor switch branches at a period-doubling detected in the first run
@ap lor append the output-files to p.lor, q.lor, d.lor

Table 10.5: Commands for running demo lor.
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10.5 frc : A Periodically Forced System.

This demo illustrates the computation of periodic solutions to a periodically forced system. In
AUTO this can be done by adding a nonlinear oscillator with the desired periodic forcing as one
of the solution components. An example of such an oscillator is

¥ =+ By — z(2? +y?),

10.
v =—Pr+y—y@®+y°), (105)

which has the asymptotically stable solution = = sin(ft), y = cos(5t). We couple this oscillator
to the Fitzhugh-Nagumo equations :

v = (Fv) —w)/e,

w' =wv—dw— (b+rsin(ft)), (10.6)
by replacing sin(t) by z. Above, F(v) = v(v — a)(1 — v) and a,b,e and d are fixed. The first
run is a homotopy from r = 0, where a solution is known analytically, to » = 0.2. Part of the
solution branch with r = 0.2 and varying (3 is computed in the second run. For detailed results
see ( ; ).

COMMAND | ACTION

mkdir frc create an empty work directory

cd fre change directory

@dm frc copy the demo files to the work directory

cp r.fre.1 r.frc | get the first constants-file

Q@r frc homotopy to r = 0.2

@sv 0 save output-files as p.0, q.0, d.0

cp r.frc.2 r.frc | constants changed : IRS, ICP(1), NTST, NMX, DS, DSMAX
Q@r frc 0 compute solution branch; restart from q.0

@sv frc save output-files as p.frc, q.frc, d.frc

Table 10.6: Commands for running demo frc.
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10.6 ppp : Continuation of Hopf Bifurcations.

This demo illustrates the continuation of Hopf bifurcations in a 3-dimensional predator prey model
( , ). This curve contain branch points, where one locus of Hopf points bifurcates from
another locus of Hopf points. The equations are

wy = uy(1 —uy) — pgugug,
uly = —pals + pauiuy — Psugus — pr(l — e PEU2) (10.7)
ufy = —psus + psusus.

Here po = 1/4, p3 =1/2, py = 3, p5s = 3, ps = 5, and p; is the free parameter. In the continuation
of Hopf points the parameter p, is also free.

COMMAND ACTION

mkdir ppp create an empty work directory

cd ppp change directory

@dm ppp copy the demo files to the work directory

cp r.ppp.1 r.ppp | get the first constants-file

Q@r ppp compute stationary solutions; detect Hopf bifurcations
@sv ppp save output-files as p.ppp, q.ppp, d.ppp

cp r.ppp.2 r.ppp | constants changed : IPS, IRS, ICP, etc.

@r ppp compute a branch of periodic solutions

Q@Qap ppp append the output-files to p.ppp, q.ppp, 4.ppp
cp r.ppp.3 r.ppp | constants changed :

@r ppp compute Hopf bifurcation curves

@sv hb save the output-files as p.hb, q.hb, d.hb

Table 10.7: Commands for running demo ppp.
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10.7

This demo, which corresponds to computations in ( ,

plp : Fold Continuation for Periodic Solutions.

), shows

how one can continue a fold on a branch of periodic solution in two parameters. The calculation
of a locus of Hopf bifurcations is also included. The equations, that model a one-compartment

activator-inhibitor system ( , ), are given by

/

s = (so—s)— pR(s,a),

!/

a = alay —a) — pR(s,a),
where

sa
1+ s+ ks?
The free parameter is p. In the fold continuation s is also free.

R(s,a) = k> 0.

COMMAND ACTION

mkdir plp create an empty work directory

cd plp change directory

@dm plp copy the demo files to the work directory

cp r.plp.1 r.plp | get the first constants-file

@r plp 1st run; compute a stationary solution branch and locate HBs
@sv plp save output-files as p.plp, q.plp, d.plp

cp r.plp.2 r.plp | constants changed : IPS, IRS, NMX

@r plp compute a branch of periodic solutions and locate a fold
Qap plp append output-files to p.plp, q.plp, d.plp

cp r.plp.3 r.plp | constants changed : IPS, ICP, ISW, NMX, RL1

@r plp Compute a locus of Hopf bifurcation points

@sv 2p save output-files as p.2p, q.2p, d.2p

cp r.plp.4 r.plp | constants changed : IPS, IRS, ICP, NMX

@r plp generate starting data for the fold continuation

@sv tmp save output-files as p.tmp, q.tmp, d.tmp

cp r.plp.5 r.plp | constants changed : IRS, NUZR

@r plp tmp fold continuation; restart data from q.tmp

Q@Qap 2p append output-files to p.2p, q.2p, d.2p

cp r.plp.6 r.plp | constants changed : IRS, ISW, NMX, NUZR

Q@r plp 2p compute an isola of periodic solutions; restart data from q.2p
@sv is0 save output-files as p.iso, q.iso, d.iso

Table 10.8: Commands for running demo plp.

67

(10.8)



10.8 pp3 : Period-Doubling Continuation.

This demo illustrates the computation of stationary solutions, Hopf bifurcations, and periodic
solutions, branch switching at a period-doubling bifurcation, and the computation of a locus of
period-doubling bifurcations. The equations model a 3D predator-prey system with harvesting

( , 1984).

wy = wui(1 —uy) — pyugug,
ul = —pals + pauiuy — Pyuguz — pr(l — e PeU2) (10.9)
ufy = —psus + psusus.

The free parameter is p;, except in the period-doubling continuation, where both p; and psy are
free.

COMMAND ACTION

mkdir pp3 create an empty work directory

cd pp3 change directory

@dm pp3 copy the demo files to the work directory
cp r.pp3.1 r.pp3 | get the first constants-file

Qr pp3 1st run; stationary solutions

@sv pp3 save output-files as p.pp3, q.pp3, d.pp3

cp r.pp3.2 r.ppd
Qr pp3
@ap pp3

constants changed : IRS, IPS, NMX
compute a branch of periodic solutions
append output-files to p.pp3, q.pp3, d.pp3

cp r.pp3.3 r.pp3
Qr pp3

@ap pp3

constants changed : IRS, ISW, NTST
compute the branch bifurcating at the period-doubling
append output-files to p.pp3, q.pp3, d.pp3

cp r.pp3.4 r.pp3
Q@r pp3

constants changed : ISW
generate starting data for the period-doubling continuation

@sv tmp save output-files as p.tmp, q.tmp, d.tmp

cp r.pp3.5 r.pp8d | constants changed : IRS

@r pp3 tmp period-doubling continuation; restart from q.tmp
@sv 2p save output-files as p.2p, q.2p, d.2p

Table 10.9: Commands for running demo pp3.
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10.9 tor : Detection of Torus Bifurcations.

This demo uses a model in ( , ) to illustrate the
detection of a torus bifurcation. It also illustrates branch switching at a secondary periodic
bifurcation with double Floquet multiplier at z = 1. The computational results also include
folds, homoclinic orbits, and period-doubling bifurcations. Their continuation is not illustrated
here; see instead the demos plp, pp2, and pp3, respectively. The equations are

2(t) =[— (B+v)x+ By — aza® + bs(y — x)*]/r,
y’gt; =fr— (B+7)y—z—bs(y — x)?, (10.10)
Z(t) =y,

where v = —0.6, r = 0.6, a3 = 0.328578, and b3 = 0.933578. Initially » = —0.9 and 3 = 0.5.

COMMAND ACTION

mbkdir tor create an empty work directory

cd tor change directory

@dm tor copy the demo files to the work directory

cp r.tor.1 r.tor | get the first constants-file

@r tor 1st run; compute a stationary solution branch with Hopf bifurcation
@sv 1 save output-files as p.1, q.1, d.1

cp r.tor.2 r.tor | constants changed : IPS, IRS

@r tor 1 compute a branch of periodic solutions; restart from q.1

Q@Qap 1 append output-files to p.1, q.1, d.1

cp r.tor.3 r.tor | constants changed : IRS, ISW, NMX

@r tor 1 compute a bifurcating branch of periodic solutions; restart from q.1
@Qap 1 append output-files to p.1, q.1, d.1

Table 10.10: Commands for running demo tor.
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10.10 pen : Rotations of Coupled Pendula.

This demo illustrates the computation of rotations, i.e., solutions that are periodic, modulo a
phase gain of an even multiple of 7. AUTO checks the starting data for components with such a
phase gain and, if present, it will automatically adjust the computations accordingly. The model
equations, a system of two coupled pendula, ( , ), are given by

¢/1, + €¢,1 + sin ¢1 =1 +7(¢2 - ¢1)a (10 11)
¢y +edy +singy = I +7(¢1 — ¢2), '

or, in equivalent first order form,

qbll - 77ZJ17

¢ = s,

Py = —ePy —singy + I +y(pa — ¢1), (10.12)
Py = —ethy — sin gy + I + y(d1 — ¢o).

Throughout v = 0.175. Initially, ¢ = 0.1 and [ = 0.4.

Numerical data representing one complete rotation are contained in the file pen.dat. Each
row in pen.dat contains five real numbers, namely, the time variable ¢, ¢y, ¢, ¥; and 5. The
correponding parameter values are defined in the user-supplied subroutine STPNT.

Actually, in this example, a scaled time variable ¢ is given in pen.dat. For this reason
the period (PAR(11)) is also set in STPNT. Normally AUTO would automatically set the period
according to the data in pen.dat.

The AUTO-command @fc pen converts the data in pen.dat to a labeled AUTO solution (with
label 1) in a new file q.dat. The mesh will be suitably adapted to the solution, using the number
of mesh intervals NTST and the number of collocation point per mesh interval NCOL specified in
the constants-file r.pen. (Note that the file q.dat should be used for restart only. Do not append
new output-files to q.dat, as the command @fc pen only creates q.dat, with no corresponding
p.dat.)

The first run, with I as free problem parameter, starts from the converted solution with label 1
in pen.dat. A period-doubling bifurcation is located, and the period-doubled branch is computed
in the second run. Two branch points are located, and the bifurcating branches are traced out in
the third and fourth run, respectively. The fifth run generates starting data for the subsequent
computation of a locus of period-doubling bifurcations. The actual computation is done in the
sixth run, with € and I as free problem parameters.
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COMMAND ACTION

mkdir pen create an empty work directory

cd pen change directory

@dm pen copy the demo files to the work directory

cp r.pen.1 r.pen | get the first constants-file

@fc pen convert pen.dat to AUTO format in q.dat

@r pen dat locate a period doubling bifurcation; restart from q.dat
Q@sv pen save output-files as p.pen, q.pen, d.pen

cp r.pen.2 r.pen
@r pen

constants changed : IPS, NTST, ISW, NMX
a branch of period-doubled (and out-of-phase) rotations

Q@Qap pen append output-files tp p.pen, q.pen, d.pen

cp r.pen.3 r.pen | constants changed : IRS, ISP

@r pen a secondary bifurcating branch (without bifurcation detection)
Q@Qap pen append output-files to p.pen, q.pen, d.pen

cp r.pen.4 r.pen | constants changed : IRS

@r pen another secondary bifurcating branch (without bifurcation detection)
Q@Qap pen append output-files to p.pen, q.pen, d.pen

cp r.pen.5 r.pen | constants changed : IRS, ICP, ICP, ISW, NMX

Q@r pen generate starting data for period doubling continuation

Q@sv t save output-files as p.t, q.t, d.t

cp r.pen.6 r.pen | constants changed : IRS

@r pen t compute a locus of period doubling bifurcations; restart from q.t
@sv pd save output-files as p.pd, q.pd, d.pd

@pn pen run an animation program to view the solutions in q.pen

(on SGI machines only; see also the file auto/97/pendula/README).

Table 10.11: Commands for running demo pen.
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10.11 chu : A Non-Smooth System (Chua’s Circuit).

Chua’s circuit is one of the simplest electronic devices to exhibit complex behavior. For related

calculations see ( ) ). The equations modeling the circuit are
uyp =oafuz—h(w)],
U/2 = U] — U + U3 N (1013)
Ué = _B Uz,

where

1
h(z) = ax + 5 (a0 — a1) {|lz + 1| = o = 1]},

and where we take § = 14.3, ag = —1/7, a; = 2/7.

Note that h(z) is not a smooth function, and hence the solution to the equations may have
non-smooth derivatives. However, for the orthogonal collocation method to attain its optimal
accuracy, it is necessary that the solution be sufficiently smooth. Moreover, the adaptive mesh
selection strategy will fail if the solution or one of its lower order derivatives has discontinuities.
For these reasons we use the smooth approximation

|z| ~ % arctan(Kx),

which get better as K increases. In the numerical calculations below we use K = 10. The free
parameter is a.

COMMAND ACTION

mbkdir chu create an empty work directory

cd chu change directory

@dm chu copy the demo files to the work directory

cp r.chu.1 r.chu | get the first constants-file

@r chu 1st run; stationary solutions

@sv chu save output-files as p.chu, q.chu, d.chu

cp r.chu.2 r.chu | constants changed : IPS, IRS, ICP, ICP

@r chu 2nd run; periodic solutions, with detection of period-doubling
@ap chu append the output-files to p.chu, q.chu, d.chu

Table 10.12: Commands for running demo chu.
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10.12 phs : Effect of the Phase Condition.

This demo illustrates the effect of the phase condition on the computation of periodic solutions.
We consider the differential equation

up = Aup — ug,
Wy, = (1 —uy). (10.14)
This equation has a Hopf bifurcation from the trivial solution at A = 0. The bifurcating branch
of periodic solutions is vertical and along it the period increases monotonically. The branch
terminates in a homoclinic orbit containing the saddle point (uq,u2) = (1,0). Graphical inspection
of the computed periodic orbits, for example u; versus the scaled time variable ¢, shows how the
phase condition has the effect of keeping the “peak” in the solution in the same location.

COMMAND ACTION

mbkdir phs create an empty work directory

cd phs change directory

@dm phs copy the demo files to the work directory

cp r.phs.1 r.phs | get the first constants-file

@r phs detect Hopf bifurcation

@sv phs save output-files as p.phs, q.phs, d.phs

cp r.phs.2 r.phs | constants changed : IRS, IPS, NPR

@r phs compute periodic solutions

@ap phs append output-files to p.phs, q.phs, d.phs

Table 10.13: Commands for running demo phs.
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10.13 ivp : Time Integration with Euler’s Method.

This demo uses Euler’s method to locate a stationary solution of the following predator-prey
system with harvesting :

uy = paur(l —ur) —ugug — pi(1 — e 7)),

10.15
Uy = —Ug + pauuqUs, ( )

where all problem parameters have a fixed value. The equations are the same as those in demo
pp2. The continuation parameter is the independent time variable, namely PAR(14).

Note that Euler time integration is only first order accurate, so that the time step must
be sufficiently small to ensure correct results. Indeed, this option has been added only as a
convenience, and should generally be used only to locate stationary states. Note that the AUTO-
constants DS, DSMIN, and DSMAX control the step size in the space consisting of time, here PAR(14),
and the state vector, here (uy,us).

COMMAND ACTION

mbkdir ivp create an empty work directory

cd vp change directory

@dm ivp copy the demo files to the work directory
cp r.ivp.1 r.avp | get the constants-file

@r qvp time integration

@sv 1vp save output-files as p.ivp, q.ivp, d.ivp

Table 10.14: Commands for running demo ivp.
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Chapter 11

AUTO Demos : BVP.

11.1 exp : Bratu’s Equation.
This demo illustrates the computation of a solution branch to the boundary value problem

uy = ug,
b (11.1)

with boundary conditions u;(0) = 0, w;(1) = 0. This equation is also considered in (

, )-

COMMAND ACTION

mbkdir exp create an empty work directory

cd exp change directory

@dm exp copy the demo files to the work directory

cp r.exp.1 r.exp | get the first constants-file

@r exp 1st run; compute solution branch containing fold

@sv exp save output-files as p.exp, q.exp, d.exp

cp r.exp.2 r.exp | constants changed : IRS, NTST, Al, DSMAX

@r exp 2nd run; restart at a labeled solution, using increased accuracy
Q@Qap exp append output-files to p.exp, q.exp, d.exp

Table 11.1: Commands for running demo exp.
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11.2

int : Boundary and Integral Constraints.

This demo illustrates the computation of a solution branch to the equation

with a non-separated boundary condition and an integral constraint:

The solution branch contains a fold, which, in the second run, is continued in two equation

parameters.

u1(0) —uy(1) — pe =0, /0 u(t)dt — ps = 0.

COMMAND ACTION

mbkdir int create an empty work directory

cd int change directory

@dm int copy the demo files to the work directory

cp rant. 1 r.ant
@r int
@sv int

get the first constants-file
1st run; detection of a fold
save output-files as p.int, q.int, d.int

cp r.ant.2 r.int
@r int

constants changed : IRS, ISW
2nd run; generate starting data for a curve of folds

@sv t save the output-files as p.t, q.t, d.t

cp r.ant.3 r.nt | constants changed : IRS

@rint t 2nd run; compute a curve of folds; restart from q.t
@sv Ip save the output-files as p.1p, q.1lp, d.1lp

Table 11.2: Commands for running demo int.
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11.3 bvp : A Nonlinear ODE Eigenvalue Problem.

This demo illustrates the location of eigenvalues of a nonlinear ODE boundary value problem as
bifurcations from the trivial solution branch. The branch of solutions that bifurcates at the first
eigenvalue is computed in both directions. The equations are

[A—
Uy = U2,

11.3
Uy = —(p1W)2U1 + U%; ( )

with boundary conditions u,(0) =0, wuy(1) =0.

COMMAND ACTION

mkdir bup create an empty work directory

cd bup change directory

@dm bup copy the demo files to the work directory

cp r.bup.1 r.bup | get the first constants-file

@r bup compute the trivial solution branch and locate eigenvalues
@sv bup save output-files as p.bvp, q.bvp, d.bvp

cp r.bup.2 r.bup | constants changed : IRS, ISW, NPR, DSMAX

@r bup compute the first bifurcating branch

@ap bup append output-files to p.bvp, q.bvp, d.bvp

cp r.bup.3 r.bup | constants changed : DS

@r bup compute the first bifurcating branch in opposite direction
@ap bup append output-files to p.bvp, q.bvp, d.bvp

Table 11.3: Commands for running demo bvp.
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11.4 lin : A Linear ODE Eigenvalue Problem.

This demo illustrates the location of eigenvalues of a linear ODE boundary value problem as
bifurcations from the trivial solution branch. By means of branch switching an eigenfunction
is computed, as is illustrated for the first eigenvalue. This eigenvalue is then continued in two
parameters by fixing the Ls-norm of the first solution component. The eigenvalue problem is
given by the equations

uy = ug,
U’IQ - (plﬂ-)2u17

(11.4)

with boundary conditions u;(0) — ps = 0 and u1(1) = 0. We add the integral constraint

1
/ Ul(t)zdt — P3 = 0.
0

Then p3 is simply the Lo-norm of the first solution component. In the first two runs ps is fixed,
while p; and p3 are free. In the third run ps is fixed, while p; and py are free.

COMMAND | ACTION

mbkdir lin create an empty work directory

cd lin change directory

@dm lin copy the demo files to the work directory

cp r.lin.1 r.lin | get the first constants-file

Q@r lin 1st run; compute the trivial solution branch and locate eigenvalues
@sv lin save output-files as p.1lin, q.lin, d.lin

cp r.lin.2 r.lin | constants changed : IRS, ISW, DSMAX

Q@r lin 2nd run; compute a few steps along the bifurcating branch
@ap lin append output-files to p.1in, q.lin, d.lin

cp r.lin.3 r.lin | constants changed : IRS, ISW, ICP(2)

@r lin 3rd run; compute a two-parameter curve of eigenvalues
@sv 2p save the output-files as p.2p, q.2p, d.2p

Table 11.4: Commands for running demo 1lin.

78



11.5 non : A Non-Autonomous BVP.

This demo illustrates the continuation of solutions to the non-autonomous boundary value prob-
lem

/
Ul - /U/27
11.5
UIZ = _p16$31“7 ( )
with boundary conditions u1(0) =0, wu(1) = 0. Here z is the independent variable. This system
is first converted to the following equivalent autonomous system :

ul :u27
uh = —prets, (11.6)
w =1,

with boundary conditions u;(0) =0, wu;(1) =0, wu3(0) = 0. (For a periodically forced system
see demo frc).

COMMAND ACTION

mbkdir non create an empty work directory

cd non change directory

@dm non copy the demo files to the work directory
cp r.non.1 r.non | get the constants-file

@r non compute the solution branch

@sv non save output-files as p.non, q.non, d.non

Table 11.5: Commands for running demo non.
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11.6 kar : The Von Karman Swirling Flows.

The steady axi-symmetric flow of a viscous incompressible fluid above an infinite rotating disk

is modeled by the following ODE boundary value problem (Equation (11) in (

uy
!
Ug
!
Us
!
Uy
us

with left boundary conditions

= TUQ,

= TU3,

= T[—2vuy + u3 — 2uyuz — ujl,
= TU5,

= T[2yus + 2uguy — 2uyus),

and (asymptotic) right boundary conditions

[foo + alfoos 7)) wa(1) + us(1) = 1125 =0,
0l foor ) P2 up(1) + [ oo + a( foor 7)) a(1) + us(1) = 0,

ul(l) = f007

where

A foor7) = F5l(f4 + 4922 + 2],
b(foor 1) = D[(f& + 492 = f2]2.
Note that there are five differential equations and six boundary conditions. Correspondingly,

there are two free parameters in the computation of a solution branch, namely v and f,,. The
“period” T is fixed; T' = 500. The starting solution is u; =0,¢=1,---.5,at y=1, fo =0.

COMMAND ACTION

mkdir kar create an empty work directory

cd kar change directory

Q@dm kar copy the demo files to the work directory
cp r.kar.1 r.kar | get the constants-file

Qr kar computation of the solution branch

@sv kar save output-files as p.kar, q.kar, d.kar

Table 11.6: Commands for running demo kar.
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11.7 spb : A Singularly-Perturbed BVP.

This demo illustrates the use of continuation to compute solutions to the singularly perturbed
boundary value problem
uy = ug,

uhy, = %(ulug(u% —1) + uy), (11.10)

with boundary conditions u;(0) = 3/2, u1(1) = . The parameter A has been introduced into the
equations in order to allow a homotopy from a simple equation with known exact solution to the
actual equation. This is done in the first run. In the second run € is decreased by continuation.
In the third run € is fixed at ¢ = .001 and the solution is continued in . This run takes more
than 1500 continuation steps. For a detailed analysis of the solution behavior see ( , ).

COMMAND ACTION

mbkdir spb create an empty work directory

cd spb change directory

@dm spb copy the demo files to the work directory

cp r.spb.1 r.spb | get the first constants-file

@r spb 1st run; homotopy from A =0 to A =1

@sv 1 save output-files as p.1, q.1, d.1

cp r.spb.2 r.spb | constants changed : IRS, ICP(1), NTST, DS

@r spb 1 2nd run; let € tend to zero; restart from q.1

@sv 2 save the output-files as p.2, q.2, d.2

cp r.spb.3 r.spb | constants changed : IRS, ICP(1), RLO, ITNW, EPSL, EPSU, NUZR
@r spb 2 3rd run; continuation in vy; € = 0.001; restart from q.2
@sv 3 save the output-files as p.3, q.3, 4.3

Table 11.7: Commands for running demo spb.
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11.8 ezp : Complex Bifurcation in a BVP.

This demo illustrates the computation of a solution branch to the the complex boundary value
problem

L o (11.11)

with boundary conditions u;(0) = 0, uy(1) = 0. Here u; and us are allowed to be complex, while
the parameter p; can only take real values. In the real case, this is Bratu’s equation, whose
solution branch contains a fold; see the demo exp. It is known ( : )
that a simple quadratic fold gives rise to a pitch fork bifurcation in the complex equation. This
bifurcation is located in the first computation below. In the second and third run, both legs of
the bifurcating solution branch are computed. On it, both solution components u; and uy have
nontrivial imaginary part.

COMMAND ACTION

mkdir ezp create an empty work directory

cd ezp change directory

@dm ezp copy the demo files to the work directory

cp r.ezp.1 r.ezp | get the first constants-file

@r ezp 1st run; compute solution branch containing fold
@sv ezp save output-files as p.ezp, q.ezp, d.ezp

cp r.ezp.2 r.ezp | constants changed : IRS, ISW

@r ezp 2nd run; compute bifurcating complex solution branch
Q@Qap ezp append output-files to p.ezp, q.ezp, d.ezp

cp r.ezp.3 r.ezp | constant changed : DS

@r ezp 3rd run; compute 2nd leg of bifurcating branch
Q@Qap ezp append output-files to p.ezp, q.ezp, d.ezp

Table 11.8: Commands for running demo ezp.
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Chapter 12

AUTO Demos : Parabolic PDEs.

83



12.1 pdl : Stationary States (1D Problem).

This demo uses Euler’s method to locate a stationary solution of a nonlinear parabolic PDE,
followed by continuation of this stationary state in a free problem parameter. The equation is
2
%:D% + pru (1 —u),
on the space interval [0, L], where L = PAR(11) = 10 is fixed throughout, as is the diffusion
constant D = PAR(15) = 0.1. The boundary conditions are u(0) = u(L) = 0 for all time.

In the first run the continuation parameter is the independent time variable, namely PAR(14),
while p; = 1 is fixed. The AUTO-constants DS, DSMIN, and DSMAX then control the step size in
space-time, here consisting of PAR(14) and u(x). Initial data are u(z) = sin(rz/L) at time zero.
Note that in the subroutine STPNT the initial data must be scaled to the unit interval, and that
the scaled derivative must also be provided; see the equations-file pvl.f. In the second run the
continuation parameter is p;.

Euler time integration is only first order accurate, so that the time step must be sufficiently
small to ensure correct results. Indeed, this option has been added only as a convenience, and
should generally be used only to locate stationary states.

COMMAND ACTION

mkdir pd1 create an empty work directory

cd pdl change directory

@dm pdl copy the demo files to the work directory

cp r.pdl.1 r.pdl | get the first constants-file

@r pd1 time integration towards stationary state

@sv 1 save output-files as p.1, q.1, d.1

cp r.pdl.2 r.pdl | constants changed : IPS, IRS, ICP, etc.

@r pd1 1 continuation of stationary states; read restart data from q.1
@sv 2 save output-files as p.2, q.2, d.2

Table 12.1: Commands for running demo pd1.
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12.2 pd2 : Stationary States (2D Problem).

This demo uses Euler’'s method to locate a stationary solution of a nonlinear parabolic PDE,
followed by continuation of this stationary state in a free problem parameter. The equations are

Oui /0t = Dy u1/0x* + pru (1 —u) — ujus,

Ous /Ot = Dy O?us/0x* — uy + ujus, (12.1)

on the space interval [0, L], where L. = PAR(11) = 1 is fixed throughout, as are the diffusion
constants D; = PAR(15) = 1 and Dy = PAR(16) = 1. The boundary conditions are u;(0) =
ui(L) = 0 and u2(0) = us(L) = 1, for all time.

In the first run the continuation parameter is the independent time variable, namely PAR(14),
while p; = 12 is fixed. The AUTO-constants DS, DSMIN, and DSMAX then control the step size in
space-time, here consisting of PAR(14) and (u;(x), us(z)). Initial data at time zero are uy(x) =
sin(rz/L) and uy(x) = 1. Note that in the subroutine STPNT the initial data must be scaled to
the unit interval, and that the scaled derivatives must also be provided; see the equations-file
pv2.£f. In the second run the continuation parameter is p;. A branch point is located during this
run.

Euler time integration is only first order accurate, so that the time step must be sufficiently
small to ensure correct results. Indeed, this option has been added only as a convenience, and
should generally be used only to locate stationary states.

COMMAND ACTION

mkdir pd2 create an empty work directory

cd pd2 change directory

@dm pd?2 copy the demo files to the work directory

cp r.pd2.1 r.pd2 | get the first constants-file

@r pd?2 time integration towards stationary state

@sv 1 save output-files as p.1, q.1, d.1

cp r.pd2.2 r.pd2 | constants changed : IPS, IRS, ICP, etc.

@r pd2 1 continuation of stationary states; read restart data from q.1
Q@sv 2 save output-files as p.2, q.2, d.2

Table 12.2: Commands for running demo pd2.
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12.3 wav : Periodic Waves.

This demo illustrates the computation of various periodic wave solutions to a system of coupled
parabolic partial differential equations on the spatial interval [0,1]. The equations, that model
an enzyme catalyzed reaction ( ) ) are :

Quy /Ot = Pu1/0x* — pi[paR(uy, ug) — (p2 — 1)),
Qua /Ot = (0Puy/0x* — pr[paR(ur, uz) — pr(ps — ug)]-

All equation parameters, except ps, are fixed throughout.

COMMAND ACTION

mkdir wav create an empty work directory

cd wav change directory

@dm wav copy the demo files to the work directory

cp rowav.1 r.wav
Q@r wav

@sv ode

get the first constants-file
1st run; stationary solutions of the system without diffusion
save output-files as p.ode, q.ode, d.ode

cp rwav.2 r.wav
Q@r wav
@sv wav

constants changed : IPS
2nd run; detect bifurcations to wave train solutions
save output-files as p.wav, q.wav, d.wav

cp rwav.8 r.wav
Q@r wav
@ap wav

constants changed : IRS, IPS, NUZR, ILP
3rd run; wave train solutions of fixed wave speed
append output-files to p.wav, q.wav, d.wav

cp rWav.4 T.Wav
Q@r wav
@sv rng

constants changed : IRS, IPS, NMX, ICP, NUZR
4th run; wave train solutions of fixed wave length
save output-files as p.rng, q.rng, d.rng

cp rowav.d r.wav
@r wav
@sv tim

constants changed : IPS, NMX, NPR, ICP
5th run; time evolution computation
save output-files as p.tim, q.tim, d.tim

Table 12.3: Commands for running demo wav.
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12.4  brc : Chebyshev Collocation in Space.

This demo illustrates the computation of stationary solutions and periodic solutions to systems of
parabolic PDEs in one space variable, using Chebyshev collocation in space. More precisely, the
approximate solution is assumed of the form u(x,t) = S 77 ug(t)€e(z). Here u(t) corresponds
to u(zy,t) at the Chebyshev points {z)},_, with respect to the interval [0,1]. The polynomials
{Ek(x)}zg) are the Lagrange interpolating coefficients with respect to points {xk}Zié, where g = 0
and z,4+1 = 1. The number of Chebyshev points in [0, 1], as well as the number of equations in
the PDE system, can be set by the user in the file brc.inc.
As an illustrative application we consider the Brusselator ( ,
)
ug = Dy/L*Uyy +u*v — (B + 1)u + A,
v, = D,/L*v;, —u*v+ Bu,
with boundary conditions u(0,t) = u(1,t) = A and v(0,t) = v(1,t) = B/A.
Note that, given the non-adaptive spatial discretization, the computational procedure here is

not appropriate for PDEs with solutions that rapidly vary in space, and care must be taken to
recognize spurious solutions and bifurcations.

(12.3)

COMMAND ACTION

mbkdir bre create an empty work directory

cd bre change directory

@dm brc copy the demo files to the work directory

cp r.bre.1 r.bre | get the first constants-file

@r bre compute the stationary solution branch with Hopf bifurcations
@sv bre save output-files as p.brc, q.brc, d.brc

cp r.brc.2 r.bre | constants changed : IRS, IPS

@r bre compute a branch of periodic solutions from the first Hopf point
@ap bre append the output-files to p.brc, q.brc, d.brc

cp r.brc.3 r.bre | constants changed : IRS, ISW

@r bre compute a solution branch from a secondary periodic bifurcation
@ap bre append the output-files to p.brc, q.brc, d.brc

Table 12.4: Commands for running demo brec.
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12.5 brf: Finite Differences in Space.

This demo illustrates the computation of stationary solutions and periodic solutions to systems of
parabolic PDEs in one space variable. A fourth order accurate finite difference approximation is
used to approximate the second order space derivatives. This reduces the PDE to an autonomous
ODE of fixed dimension which AUTO is capable of treating. The spatial mesh is uniform; the
number of mesh intervals, as well as the number of equations in the PDE system, can be set by
the user in the file brf.inc.
As an illustrative application we consider the Brusselator ( ,
)
wy = Dy/L*uyy +u*v — (B + 1)u + A,
v, = Dy/L*v;, —u*v + Bu,
with boundary conditions u(0,t) = u(1,t) = A and v(0,t) = v(1,t) = B/A.
Note that, given the non-adaptive spatial discretization, the computational procedure here is

not appropriate for PDEs with solutions that rapidly vary in space, and care must be taken to
recognize spurious solutions and bifurcations.

(12.4)

COMMAND ACTION

mbkdir brf create an empty work directory

cd brf change directory

@dm brf copy the demo files to the work directory

cp r.brf.1 r.brf | get the first constants-file

@r brf compute the stationary solution branch with Hopf bifurcations
@sv brf save output-files as p.brf, q.brf, d.brf

cp r.brf.2 r.brf | constants changed : IRS, IPS

@r brf compute a branch of periodic solutions from the first Hopf point
@ap brf append the output-files to p.brf, q.brf, d.brf

cp r.brf.3 r.brf | constants changed : IRS, ISW

@r brf compute a solution branch from a secondary periodic bifurcation
@ap brf append the output-files to p.brf, q.brf, d.brf

Table 12.5: Commands for running demo brf.
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12.6 bru : Euler Time Integration (the Brusselator).

This demo illustrates the use of Euler’s method for time integration of a nonlinear parabolic PDE.
The example is the Brusselator ( , ), given by

ug = Dy/L*uyy +u?v — (B+ 1)u+ A,
9 9 (12.5)

v, =D,/L*v;, —u’v + Bu,

with boundary conditions u(0,t) = u(1,t) = A and v(0,t) = v(1,t) = B/A. All parameters are

given fixed values for which a stable periodic solution is known to exist.

The continuation parameter is the independent time variable, namely PAR(14). The AUTO-
constants DS, DSMIN, and DSMAX then control the step size in space-time, here consisting of PAR(14)
and (u(x),v(x)). Initial data at time zero are u(z) = A—0.5sin(7wz) and v(z) = B/A+0.7 sin(7z).
Note that in the subroutine STPNT the space derivatives of u and v must also be provided; see
the equations-file bru.f.

Euler time integration is only first order accurate, so that the time step must be sufficiently
small to ensure correct results. This option has been added only as a convenience, and should
generally be used only to locate stationary states. Indeed, in the case of the asymptotic periodic
state of this demo, the number of required steps is very large and use of a better time integrator
is advisable.

COMMAND ACTION

mbkdir bru create an empty work directory

cd bru change directory

@dm bru copy the demo files to the work directory
cp r.bru.1 r.bru | get the constants-file

Q@r bru time integration

@sv bru save output-files as p.bru, q.bru, d.bru

Table 12.6: Commands for running demo bru.
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Chapter 13

AUTO Demos : Optimization.
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13.1 opt : A Model Algebraic Optimization Problem.

This demo illustrates the method of successive continuation for constrained optimization problems
by applying it to the following simple problem : Find the maximum sum of coordinates on the
unit sphere in R®. Coordinate 1 is treated as the state variable. Coordinates 2-5 are treated as
control parameters. For details on the successive continuation procedure see (

, ) ( : )-

COMMAND ACTION

mbkdir opt create an empty work directory

cd opt change directory

@dm opt copy the demo files to the work directory

cp r.opt.1 r.opt | get the first constants-file

@r opt one free equation parameter

@sv 1 save output-files as p.1, q.1, d.1

cp r.opt.2 r.opt | constants changed : IRS

@r opt 1 two free equation parameters; read restart data from q.1
Q@sv 2 save output-files as p.2, q.2, d.2

cp r.opt.3 r.opt | constants changed : IRS

@r opt 2 three free equation parameters; read restart data from q.2
@sv 3 save output-files as p.3, q.3, d.3

cp r.opt.4 r.opt | constants changed : IRS

Q@r opt 3 four free equation parameters; read restart data from q.3
@sv 4 save output-files as p.4, q.4, d.4

Table 13.1: Commands for running demo opt.
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13.2 ops : Optimization of Periodic Solutions.

This demo illustrates the method of successive continuation for the optimization of periodic

solutions. For a detailed description of the basic method see ( , ).
The illustrative system of autonomous ODEs, taken from ( , ), is
a'(t) =[-M(2®/3—x)+ (2 —x)/ X2 — y] /M1,
y'(t) =x— A, (13.1)
() == =2)/A

with objective functional
1
u}:/' g(!ﬂ,y, Z, >\17>\27>\37>\4) dtv
0

where g(x,y, z; A1, A2, A3, As) = A3. Thus, in this application, a one-parameter extremum of g
corresponds to a fold with respect to the problem parameter A3, and multi-parameter extrema
correspond to generalized folds. Note that, in general, the objective functional is an integral along
the periodic orbit, so that a variety of optimization problems can be addressed.

For the case of periodic solutions, the extended optimality system can be generated automat-
ically, i.e., one need only define the vector field and the objective functional, as in done in the file
ops.f. For reference purpose it is convenient here to write down the full extended system in its
general form :

u'(t) =Tf(u(t),N), T € R (period), u(-), f(+,-) € R", X € R™,
w'(t) = =T fu(u(t), \) w(t) + kuy(t) + vgu(ut), N, w(-) € R", K,y € R,
u(1l) —u(0) =0, w(l) —w(0) =0,

[ty uh(t) dt =0,

13.2
J3w—g(u(t),\) dt =0, (13.2)

fol w(t)*wt) + k2 +92 —a dt =0, a € R,

S F ), N w(t) = ygr(u(t),\) =1 dt =0, 7 ER,

fOl Tf)\z(u(t)v )\)*w(t) - ’yg/\z(u<t)7 )\) — T dt = Oa T € R) 1= 17 s, M

Above ug is a reference solution, namely, the previous solution along a solution branch.
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In the computations below, the two preliminary runs, with IPS=1 and IPS=2, respectively,
locate periodic solutions. The subsequent runs are with IPS=15 and hence use the automatically
generated extended system.

- Run 1. Locate a Hopf bifurcation. The free system parameter is As.
- Run 2. Compute a branch of periodic solutions from the Hopf bifurcation.

- Run 3. This run retraces part of the periodic solution branch, using the full optimality
system, but with all adjoint variables, w(-), k, 7, and hence «, equal to zero. The optimality
parameters 7y and 73 are zero throughout. An extremum of the objective functional with
respect to A3 is located. Such a point corresponds to a branch point of the extended
system. Given the choice of objective functional in this demo, this extremum is also a fold
with respect to As.

- Run 4. Branch switching at the above-found branch point yields nonzero values of the
adjoint variables. Any point on the bifurcating branch away from the branch point can
serve as starting solution for the next run. In fact, the branch-switching can be viewed
as generating a nonzero eigenvector in an eigenvalue-eigenvector relation. Apart from the
adjoint variables, all other variables remain unchanged along the bifurcating branch.

- Run 5. The above-found starting solution is continued in two system parameters, here A3
and Ag; i.e., a two-parameter branch of extrema with respect to A3 is computed. Along this
branch the value of the optimality parameter 75 is monitored, i.e., the value of the functional
that vanishes at an extremum with respect to the system parameter A,. Such a zero of 7, is,
in fact, located, and hence an extremum of the objective functional with respect to both A,
and A3 has been found. Note that, in general, 7; is the value of the functional that vanishes
at an extremum with respect to the system parameter \;.

- Run 6. In the final run, the above-found two-parameter extremum is continued in three
system parameters, here \;, Ay, and A3, toward \; = 0. Again, given the particular choice
of objective functional, this final continuation has an alternate significance here : it also
represents a three-parameter branch of transcritical secondary periodic bifurcations points.

Although not illustrated here, one can restart an ordinary continuation of periodic solutions,
using IPS=2 or IPS=3, from a labeled solution point on a branch computed with IPS=15.
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The free scalar variables specified in the AUTO constants-files for Run 3 and Run 4 are shown
in Table 13.2.

Index 311112 22| -22| -23 | -31
Variable /\3 T Q| Tg [)\2] [)\3] [T]

Table 13.2: Runs 3 and 4 (files r.ops.3 and r.ops.4).

The parameter «, which is the norm of the adjoint variables, becomes nonzero after branch
switching in Run 4. The negative indices (-22, -23, and -31) set the active optimality functionals,
namely for Ay, A3, and T', respectively, with corresponding variables 75, 73, and 7y, respectively.
These should be set in the first run with IPS=15 and remain unchanged in all subsequent runs.

Index 31 2|11 22 22| -23 | -31
Variable )\3 )\2 T T2 [)\2] [/\3] [T]

Table 13.3: Run 5 (file r.ops.5).

In Run 5 the parameter a, which has been replaced by Ay, remains fixed and nonzero. The
variable 7 monitors the value of the optimality functional associated with ;. The zero of 7
located in this run signals an extremum with respect to As.

Index 31 2] 111] -22| -23|-31
Variable )\3 )\2 )\1 T [)\2] [)\3] [T]

Table 13.4: Run 6 (file r.ops.6).

In Run 6 75, which has been replaced by A, remains zero.

Note that 7y and 73 are not used as variables in any of the runs; in fact, their values remain zero
throughout. Also note that the optimality functionals corresponding to 7y and 73 (or, equivalently,
to T and A3) are active in all runs. This set-up allows the detection of the extremum of the
objective functional, with 7" and A3 as scalar equation parameters, as a bifurcation in the third
run.

The parameter A4, and its corresponding optimality variable 74, are not used in this demo.
Also, A1 is used in the last run only, and its corresponding optimality variable 77 is never used.
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COMMAND

ACTION

mkdir ops create an empty work directory

cd ops change directory

@dm ops copy the demo files to the work directory

cp r.ops.1 r.ops | get the first constants-file

@r ops locate a Hopf bifurcation

@sv 0 save output-files as p.0, q.0, d.0

cp r.ops.2 r.ops | constants changed : IPS, IRS, NMX, NUZR

@r ops 0 compute a branch of periodic solutions; restart from q.0

Q@Qap 0 append the output-files to p.0, q.0, 4.0

cp r.ops.3 r.ops | constants changed : IPS, IRS, ICP, ---

@r ops 0 locate a 1-parameter extremum as a bifurcation; restart from q.0

@sv 1 save the output-files as p.1, q.1, d.1

cp r.ops.4 r.ops | constants changed : IRS, ISP, ISW, NMX

@r ops 1 switch branches to generate optimality starting data; restart from q.1
Q@Qap 1 append the output-files to p.1, q.1, d.1

cp r.ops.5 r.ops | constants changed : IRS, ISW, ICP, ISW, ---

@r ops 1 compute 2-parameter branch of 1-parameter extrema; restart from q.1
Q@sv 2 save the output-files as p.2, q.2, d.2

cp r.ops.6 r.ops | constants changed : IRS, ICP, EPSL, EPSU, NUZR

Q@r ops 2 compute 3-parameter branch of 2-parameter extrema; restart from q.2
@sv 3 save the output-files as p.3, q.3, d.3

Table 13.5: Commands for running demo ops.
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13.3 obv : Optimization for a BVP.

This demo illustrates use of the method of successive continuation for a boundary value opti-
mization problem. A detailed description of the basic method, as well as a discussion of the
specific application considered here, is given in ( , ). The required
extended system is fully programmed here in the user-supplied subroutines in obv.f. For the case
of periodic solutions the optimality system can be generated automatically; see the demo ops.
Consider the system
uh(t) = ua(t),
uéEt% — —2)(\1)67’(“1’)‘2’)‘3), (13'3>

where p(uy, Ao, A3) = ug + Aou? + Azui, with boundary conditions

(51 (O) = 0,

w(1) =0 (13.4)
The objective functional is
1 1 3
_ 2 2
w _/O (ur(t) — 1) dt + TOZAk.
k=1
The successive continuation equations are given by
ui(t) = us(t),
uh(t) = —Ajertes) (13.5)
wi(t) = AePA22)p oy (1) + 2y(uy (1) — 1), ’
wy(t) = —wi(t),
where
Puy = =1+ 2)\211,1 + 4)\311,?,
aul
with
u1<0) - 07 w1(0> - /31 - 07 wZ(O) = 07 (13 6)
ui(1) =0, wi(1) + B2 wy(1) = 0, ‘

Jo [—ertedadalu,y (t) — Ly ] dt =0,
o [ AP @222y, (82w, (t) — g — 7] dt = 0, (13.7)
o [ AeP 2229y, (4w, (t) — Iy g — 73] dt = 0.

In the first run the free equation parameter is A\;. All adjoint variables are zero. Three

extrema of the objective function are located. These correspond to branch points and, in the
second run, branch switching is done at one of these. Along the bifurcating branch the adjoint
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variables become nonzero, while state variables and A; remain constant. Any such non-trivial
solution point can be used for continuation in two equation parameters, after fixing the Lo-norm
of one of the adjoint variables. This is done in the third run. Along the resulting branch several
two-parameter extrema are located by monotoring certain inner products. One of these is further
continued in three equation parameters in the final run, where a three-parameter extremum is
located.

COMMAND ACTION

mkdir obv create an empty work directory

cd obv change directory

@dm obv copy the demo files to the work directory

cp r.obv.1 r.obv
@r obv

@sv obv

get the first constants-file
locate 1-parameter extrema as branch points
save output-files as p.obv, q.obv, d.obv

cp r.0bv.2 r.obv

Q@r obv

constants changed : IRS, ISW, NMX
compute a few step on the first bifurcating branch

@sv 1 save the output-files as p.1, q.1, d.1

cp r.0obv.3 r.obv | constants changed : IRS, ISW, NMX, ICP(3)
@r obv 1 locate 2-parameter extremum; restart from q.1
@sv 2 save the output-files as p.2, q.2, 4.2

cp r.obv.4 r.obv | constants changed : IRS, ICP(4)

@r obv 2 locate 3-parameter extremum; restart from q.2
Q@sv 3 save the output-files as p.3, q.3, d.3

Table 13.6: Commands for running demo obv.
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Chapter 14

AUTO Demos : Connecting orbits.
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14.1 fsh : A Saddle-Node Connection.

This demo illustrates the computation of travelling wave front solutions to the Fisher equation,

Wy = Wy + fw), —oco<r<oo, t>0,

fw) =w(l —w).

We look for solutions of the form w(z,t) = u(x + ct), where ¢ is the wave speed. This gives the
first order system

(14.1)

u(z) = us(2),

uy(z) = cug(z) — f(ui(z2)).
Its fixed point (0,0) has two positive eigenvalues when ¢ > 2. The other fixed point, (1,0), is a
saddle point. A branch of orbits connecting the two fixed points requires one free parameter; see
( , ). Here we take this parameter to be the wave speed c.

In the first run a starting connecting orbit is computed by continuation in the period T'. This
procedure can be used generally for time integration of an ODE with AUTO. Starting data in
STPNT correspond to a point on the approximate stable manifold of (1,0), with 7" small. In this
demo the “free” end point of the orbit necessary approaches the unstable fixed point (0,0). A
computed orbit with sufficiently large 7" is then chosen as restart orbit in the second run, where,
typically, one replaces T' by ¢ as continuation parameter. However, in the second run below, we
also add a phase condition, and both ¢ and T remain free.

(14.2)

COMMAND ACTION

mbkdir fsh create an empty work directory

cd fsh change directory

@dm fsh copy the demo files to the work directory

cp r.fsh.1 r.fsh | get the first constants-file

@r fsh continuation in the period T, with ¢ fixed; no phase condition
@sv 0 save output-files as p.0, gq.0, d.0

cp r.fsh.2 r.fsh | constants changed : IRS, ICP, NINT, DS

@r fsh 0 continuation in ¢ and 7', with active phase condition

@sv fsh save output-files as p.fsh, q.fsh, d.fsh

Table 14.1: Commands for running demo fsh.
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14.2 nag : A Saddle-Saddle Connection.

This demo illustrates the computation of traveling wave front solutions to Nagumo’s equation,

Wy = Wy + f(w,a), —co<x<oo, t>0, (14.3)
fw,a) =w(l —w)(w — a), 0<a<l. '
We look for solutions of the form w(z,t) = u(x + ct), where ¢ is the wave speed. This gives the
first order system

ui(2) = ug(2),

uy(2) = cug(z) — f(ur(2),a),

where z = x4+ ¢t, and ' = d/dz. If @ = 1/2 and ¢ = 0 then there are two analytically known
heteroclinic connections, one of which is given by

(14.4)

1
ezV?

uy(2) ug(z) = uy(z2), —00 < z < 00.

- 1 + 6% 2z’
The second heteroclinic connection is obtained by reflecting the phase plane representation of the
first with respect to the ui-axis. In fact, the two connections together constitute a heteroclinic
cycle. One of the exact solutions is used below as starting orbit. To start from the second exact
solution, change SIGN=-1 in the subroutine STPNT in nag.f and repeat the computations below;
see also ( ) ).

COMMAND ACTION

mkdir nag create an empty work directory

cd nag change directory

@dm nag copy the demo files to the work directory

cp r.nag.1 r.nag | get the first constants-file

@r nag compute part of first branch of heteroclinic orbits
@sv nag save output-files as p.nag, q.nag, d.nag

cp r.nag.2 r.nag | constants changed : DS

@r nag compute first branch in opposite direction

@ap nag append output-files to p.nag, q.nag, d.nag

Table 14.2: Commands for running demo nag.
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14.3 stw : Continuation of Sharp Traveling Waves.

This demo illustrates the computation of sharp traveling wave front solutions to nonlinear diffusion
problems of the form
wy = A(w)we, + B(w)w; + C(w),

with A(w) = ayw + agw?, B(w) = by + byw + byw?, and C(w) = ¢y + ciw + cow?. Such equations
can have sharp traveling wave fronts as solutions, i.e., solutions of the form w(z,t) = u(zx + ct)
for which there is a z such that u(z) = 0 for z > 2g, u(z) # 0 for z < zp, and u(z) — constant as
2z — —o0. These solutions are actually generalized solutions, since they need not be differentiable
at zg.

Specifically, in this demo a homotopy path will be computed from an analytically known exact
sharp traveling wave solution of

(1) Wy = 2WW,y + 2w + w(l —w),
to a corresponding sharp traveling wave of
(2) w; = (2w + W)Wy + ww? + w(l — w).

This problem is also considered in ( , ). For these two special
cases the functions A, B, C are defined by the coefficients in Table 14.3.

ay | ag | by | by | b2 | co|cr|co
Case (1) [2 [0 [2 [0 [0 |0 |1 [-1
Case (2) |2 |1 |0 |1 [0 |0 |1 |-1

Table 14.3: Problem coefficients in demo stw.

With w(z,t) = u(z + ct), 2 = x + ct, one obtains the reduced system

u)(2) = ug,

uh(2) = [cuy — Buy)uz — C(ur)]/A(uy). (14.5)

To remove the singularity when u; = 0, we apply a nonlinear transformation of the independent
variable (see : ), viz., d/dZ = A(uy)d/dz, which changes the above equation into

uy(2) = A(ur)us,

uh(2) = cug — B(ur)ui — C(w). (14.6)

Sharp traveling waves then correspond to heteroclinic connections in this transformed system.
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Finally, we map [0,7] — [0,1] by the transformation £ = Z/T. With this scaling of the
independent variable, the reduced system becomes

uy (&) = T A(ur)uz,

uh(€) = Tleuy — B(uy)ui — C(uy)). (14.7)

For Case 1 this equation has a known exact solution, namely,

1 _1

u(§) = HTP(TQ’ v(§) = WM.

This solution has wave speed ¢ = 1. In the limit as T" — oo its phase plane trajectory connects
the stationary points (1,0) and (0, —3).

The sharp traveling wave in Case 2 can now be obtained using the following homotopy. Let
(a1, a9,bo,b1,b2) = (1 —A)(2,0,2,0,0) + A(2,1,0,1,0). Then as A varies continuously from 0 to
1, the parameters (aq, as, bo, by, bg) vary continously from the values for Case 1 to the values for
Case 2.

COMMAND ACTION

mkdir stw create an empty work directory

cd stw change directory

@dm stw copy the demo files to the work directory
cp r.stw.1 r.stw | get the constants-file

@r stw continuation of the sharp traveling wave
@sv stw save output-files as p.stw, q.stw, d.stw

Table 14.4: Commands for running demo stw.
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Chapter 15

AUTO Demos : Miscellaneous.
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15.1 pvl: Use of the Subroutine PVLS.

Consider Bratu’s equation
/ _
Uy = u2,
/ .
uy = —pie,

(15.1)

with boundary conditions u1(0) = 0, u1(1) = 0. As in demo exp, a solution curve requires one
free parameter; here p;.

Note that additional parameters are specified in the user-supplied subroutine PVLS in file
pvls.f, namely, py (the Lo-norm of u;), p3 (the minimum of uy on the space-interval [0, 1] ),
p4 (the boundary value u3(0) ). These additional parameters should be considered as “solution
measures” for output purposes; they should not be treated as true continuation parameters.

Note also that four free parameters are specified in the AUTO-constants file r.pvl. 1, namely,
P1, P2, P3, and py. The first one in this list, pq, is the true continuation parameter. The parameters
P2, P3, and py are owverspecified so that their values will appear in the output. However, it is
essential that the true continuation parameter appear first. For example, it would be an error to
specify the parameters in the following order : ps, p1, p3, P4-

In general, true continuation parameters must appear first in the parameter-specification in
the AUTO constants-file. Overspecified parameters will be printed, and can be defined in PVLS,
but they are not part of the intrinsic continuation procedure.

As this demo also illustrates (see the UZR values in r.pvl.1), labeled solutions can also be
output at selected values of the overspecified parameters.

COMMAND ACTION

mkdir pvl create an empty work directory

cd pul change directory

@dm pvl copy the demo files to the work directory
cp r.pul.1 r.pvl | get the constants-file

@r pul compute a solution branch

@sv pvl save output-files as p.pvl, q.pvl, d.pvl

Table 15.1: Commands for running demo pvl.
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15.2 ext : Spurious Solutions to BVP.

This demo illustrates the computation of spurious solutions to the boundary value problem

up —ug =0,
uhy + N2 sin(uy + uf +ud) =0, t €[0,1], (15.2)
Ul(O) = O, U1(1> =0.

Here the differential equation is discretized using a fixed uniform mesh. This results in spuri-
ous solutions that disappear when an adaptive mesh is used. See the AUTO-constant IAD in
Section 6.3. This example is also considered in ( : ) and (

: )-

COMMAND ACTION

mkdir ext create an empty work directory

cd ext change directory

@dm ext copy the demo files to the work directory

cp r.ext.1 r.ext | get the first constants-file

Qr ext detect bifurcations from the trivial solution branch

@sv ext save output-files as p.ext, q.ext, d.ext

cp r.ext.2 r.ext | constants changed : IRS, ISW, NUZR

Qr ext compute a bifurcating branch containing spurious bifurcations
Qap ext append output-files to p.ext, q.ext, d.ext

Table 15.2: Commands for running demo ext.
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15.3 tim : A Test Problem for Timing AUTO.

This demo is a boundary value problem with variable dimension NDIM. It can be used to time the
performance of AUTO for various choices of NDIM (which must be even), NTST, and NCOL. The

equations are
u

(%

= Uy,
= —p1 e(u),
i=1,---NDIM/2, with boundary conditions u;(0) = 0, u;(1) = 0. Here

/
i
/
)

(15.3)

n
uk

€<U> = y )
k=0 )

with n = 25. The computation requires 10 full LU-decompositions of the linearized system that
arises from Newton’s method for solving the collocation equations. The commands for running
the timing problem for a particular choice of NDIM, NTST, and NCOL are given below. (Note that
if NDIM is changed then NBC must be changed accordingly.)

COMMAND ACTION

mbkdir tim create an empty work directory

cd tim change directory

@dm tim copy the demo files to the work directory
cp r.tim.1 r.tim | get the first constants-file

Q@r tim Timing run

Q@sv tim save output-files as p.tim, q.tim, d.tim

Table 15.3: Commands for running demo tim.
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Chapter 16

HomCont.

16.1 Introduction.

HomCont is a collection of subroutines for the continuation of homoclinic solutions to ODEs in
two or more parameters. The accurate detection and multi-parameter continuation of certain
codimension-two singularities is allowed for, including all known cases that involve a unique
homoclinic orbit at the singular point. Homoclinic connections to hyperbolic and non-hyperbolic
equilibria are allowed as are certain heteroclinic orbits. Homoclinic orbits in reversible systems
can also be computed. The theory behind the methods used is explained in (
) )7 ( ? )7 ( ’ ) )7 (

, ) and references therein. The final cited paper contains a concise description
of the present version.

The current implementation of HomCont must be considered as experimental, and updates
are anticipated. The HomCont subroutines are in the file auto/97/src/autlib5.f. Expert users
wishing to modify the routines may look there. Note also that at present, HomCont can be run
only in AUTO Command Mode and not with the GUI.

16.2 HomCont Files and Subroutines.

In order to run HomCont one must prepare an equations file xxx.f, where xxx is the name of
the example, and two constants-files r.xxx and s.xxx. The first two of these files are in the
standard AUTO format, whereas the s.xxx file contains constants that are specific to homoclinic
continuation. The choice IPS=9 in r.xxx specifies the problem as being homoclinic continuation,
in which case s.xxx is required.

The equation-file kpr.f serves as a sample for new equation files. It contains the Fortran
subroutines FUNC, STPNT, PVLS, BCND, ICND and FOPT. The final three are dummy subroutines
which are never needed for homoclinic continuation. Note a minor difference in STPNT and PVLS
with other AUTO equation-files, in that the common block /BLHOM/ is required.

The constants-file r.xxx is identical in format to other AUTO constants-files. Note that the
values of the constants NBC and NINT are irrelevant, as these are set automatically by the choice
IPS=9. Also, the choice JAC=1 is strongly recommended, because the Jacobian is used extensively
for calculating the linearization at the equilibria and hence for evaluating boundary conditions
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and certain test functions. However, note that JAC=1 does not necessarily mean that auto will
use the analytically specified Jacobian for continuation.

16.3 HomCont-Constants.

An example for the additional file s.xxx is listed below:

12111 NUNSTAB,NSTAB, IEQUIB, ITWIST, ISTART
0 NREV, (/,I,IREV(I)),I=1,NREV)
1 NFIXED, (/,I,IFIXED(I)),I=1,NFIXED)
13
1 NPSI, (/,I,IPSI(I)),I=1,NPSI)
9 10 13

The constants specified in s.xxx have the following meaning.

16.3.1 NUNSTAB

Number of unstable eigenvalues of the left-hand equilibrium (the equilibrium approached by the
orbit as t — —o0).

16.3.2 NSTAB

Number of stable eigenvalues of the right-hand equilibrium (the equilibrium approached by the
orbit as t — +00).

16.3.3 IEQUIB

IEQUIB=0 : Homoclinic orbits to hyperbolic equilibria; the equilibrium is specified explicitly
in PVLS and stored in PAR(11+I), I=1,NDIM.

- IEQUIB=1 : Homoclinic orbits to hyperbolic equilibria; the equilibrium is solved for during
continuation. Initial values for the equilibrium are stored in PAR(11+I), I=1,NDIM in STPNT.

- IEQUIB=2 : Homoclinic orbits to a saddle-node; initial values for the equilibrium are stored
in PAR(11+I), I=1,NDIM in STPNT.

- IEQUIB=-1 : Heteroclinic orbits to hyperbolic equilibria; the equilibria are specified explic-
itly in PVLS and stored in PAR(11+I), I=1,NDIM (left-hand equilibrium) and PAR(11+I),
I=NDIM+1,2*NDIM (right-hand equilibrium).

- IEQUIB=-2: Heteroclinic orbits to hyperbolic equilibria; the equilibria are solved for during
continuation. Initial values are specified in STPNT and stored in PAR(11+I), I=1,NDIM (left-
hand equilibrium), PAR(11+I), I=NDIM+1,2*NDIM (right-hand equilibrium).

108



16.3.4 ITWIST

- ITWIST=0 : the orientation of the homoclinic orbit is not computed.

- ITWIST=1 : the orientation of the homoclinic orbit is computed. For this purpose, the
adjoint variational equation is solved for the unique bounded solution. If IRS = 0, an
initial solution to the adjoint equation must be specified as well. However, if IRS>0 and
ITWIST has just been increased from zero, then AUTO will automatically generate the
initial solution to the adjoint. In this case, a dummy Newton-step should be performed, see
Section 16.7 for more details.

16.3.5 TISTART

- ISTART=1 : This option is no obsolete in the current version. It may be used as a flag
that a solution is to be restarted from a previously computed point or from numerical data
converted into AUTO format using @fc. In this case IRS>0.

- ISTART=2 : If IRS=0, an explicit solution must be specified in the subroutine STPNT in the
usual format.

- ISTART=3: The “homotopy” approach is used for starting, see Section 16.7 for more details.
Note that this is not available with the choice IEQUIB=2.

16.3.6 NREV, IREV

If NREV=1 then it is assumed that the system is reversible under the transformation t — —t and
U(i) — —U(q) for all ¢ with IREV(1)>0. Then only half the homoclinic solution is solved for with
right-hand boundary conditions specifying that the solution is symmetric under the reversibility
(see ( , )). The number of free parameters is then reduced by one.
Otherwise IREV=0.

16.3.7 NFIXED, IFIXED

Number and labels of test functions that are held fixed. E.g., with NFIXED=1 one can compute a
locus in one extra parameter of a singularity defined by test function PSI (IFIXED(1))=0.

16.3.8 NPSI, IPSI

Number and labels of activated test functions for detecting homoclinic bifurcations, see Sec-
tion 16.6 for a list. If a test function is activated then the corresponding parameter (IPSI(I)+20)
must be added to the list of continuation parameters NICP, (ICP(I),I=1 NICP) and zero of this
parameter added to the list of user-defined output points NUZR, (/,I,PAR(I)),I=1, NUZR in
T .XXX.
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16.4 Restrictions on HomCont Constants.

Note that certain combinations of these constants are not allowed in the present implementation.
In particular,

- The computation of orientation ITWIST=1 is not implemented for IEQUIB<O (heteroclinic
orbits), IEQUIB=2 (saddle-node homoclinics), IREV=1 (reversible systems), ISTART=3 (ho-
motopy method for starting), or if the equilibrium contains complex eigenvalues in its lin-
earization.

- The homotopy method ISTART=3 is not fully implemented for heteroclinic connections
IEQUIB<O, saddle-node homoclinic orbits IEQUIB=2 or reversible systems IREV=1.

- Certain test functions are not valid for certain forms of continuation (see Section 16.6 below);
for example PSI(13) and PSI(14) only make sense if ITWIST=1 and PSI(15) and PSI(16)
only apply to IEQUIB=2.

16.5 Restrictions on the Use of PAR.

The parameters PAR(1) — PAR(9) can be used freely by the user. The other parameters are used
as follows :

- PAR(11) : The value of PAR(11) equals the length of the time interval over which a ho-
moclinic solution is computed. Also referred to as “period”. This must be specified in
STPNT.

- PAR(10) : If ITWIST=1 then PAR(10) is used internally as a dummy parameter so that the
adjoint equation is well-posed.

- PAR(12)-PAR(20) : These are used for specifying the equilibria and (if ISTART=3) the
artificial parameters of the homotopy method (see Section 16.7 below).

- PAR(21)-PAR(36) : These parameters are used for storing the test functions (see Sec-
tion 16.6).

The output is in an identical format to AUTO except that additional information at each
computed point is written in fort.9. This information comprises the eigenvalues of the (left-
hand) equilibrium, the values of each activated test function and, if ITWIST=1, whether the
saddle homoclinic loop is orientable or not. Note that the statement about orientability is only
meaningful if the leading eigenvalues are not complex and the homoclinic solution is not in a flip
configuration, that is, none of the test functions v; for i = 11,12, 13, 14 is zero (or close to zero),
see Section 16.6. Finally, the values of the NPSI activated test functions are written.
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16.6 Test Functions.

Codimension-two homoclinic orbits are detected along branches of codim 1 homoclinics by lo-
cating zeroes of certain test functions ;. The test functions that are “switched on” during
any continuation are given by the choice of the labels i, and are specified by the parameters
NPSI, (/,I,IPSI(I)),I=1,NPSI) in s.xxx. Here NPSI gives the number of activated test func-
tions and IPSI(1),...,IPSI(NPSI) give the labels of the test functions (numbers between 1 and
16). A zero of each labeled test function defines a certain codimension-two homoclinic singular-
ity, specified as follows. The notation used for eigenvalues is the same as that in (

, 1994) or ( , 1996).

- i=1: Resonant eigenvalues (neutral saddle); u; = —\;.
- 1i=2: Double real leading stable eigenvalues (saddle to saddle-focus transition); 1 = po.

- i=3: Double real leading unstable eigenvalues (saddle to saddle-focus transition);
)\1 = )\2.

- i=4 : Neutral saddle, saddle-focus or bi-focus (includes i=1); Re(p1) = —Re(A;).

- i=5 : Neutrally-divergent saddle-focus (stable eigenvalues complex);
Re(A1) = —Re(p1) — Re(pa).

- 1=6 : Neutrally-divergent saddle-focus (unstable eigenvalues complex);
Re(u1) = —Re(A1) — Re(\2).

- 1=7 : Three leading eigenvalues (stable); Re(A;) = —Re(u1) — Re(ps).
- 1=8 : Three leading eigenvalues (unstable); Re(u1) = —Re(A1) — Re(Aq).

- i=9 : Local bifurcation (zero eigenvalue or Hopf): number of stable eigenvalues decreases;

Re(p1) = 0.

- 1=10 : Local bifurcation (zero eigenvalue or Hopf): number of unstable eigenvalues de-
creases; Re(A\) = 0.

- i=11: Orbit flip with respect to leading stable direction (e.g., 1D unstable manifold).
- 1=12 : Orbit flip with respect to leading unstable direction, (e.g., 1D stable manifold).
- i=13: Inclination flip with respect to stable manifold (e.g., 1D unstable manifold).

- i=14 : Inclination flip with respect to unstable manifold (e.g., 1D stable manifold).

- 1=15 : Non-central homoclinic to saddle-node (in stable manifold).

- 1=16 : Non-central homoclinic to saddle-node (in unstable manifold).

111



Expert users may wish to add their own test functions by editing the function PSIHO in
autlibb.f.

It is important to remember that, in order to specify activated test functions, it is required
to also add the corresponding label +20 to the list of continuation parameters and a zero of this
parameter to the list of user-defined output points. Having done this, the corresponding parameters
are output to the screen and zeros are accurately located.

16.7 Starting Strategies.

There are four possible starting procedures for continuation.

(1)

(ii)

(iii)

(iv)

Data can be read from a previously-obtained output point from AUTO (e.g., from contin-
uation of a periodic orbit up to large period; note that the end-point of the data stored
must be close to the equilibrium). These data can be read from fort.8 (saved to q.xxx) by
making IRS correspond to the label of the data point in question.

Data from numerical integration (e.g., computation of a stable periodic orbit, or an approx-
imate homoclinic obtained by shooting) can be read in from a data file using the general
AUTO utility @fc (see earlier in the manual). The numerical data should be stored in a file
xxx.dat, in multi-column format according to the read statement

READ(...,*) T(J),(U(I,J),I=1,NDIM)

where T runs in the interval [0,1]. After running @fc the restart data is stored in the
format of a previously computed solution in q.dat. When starting from this solution IRS
should be set to 1 and the value of ISTART is irrelevant.

By setting ISTART=2, an explicit homoclinic solution can be specified in the routine STPNT
in the usual AUTO format, that is U=. .. (T) where T is scaled to lie in the interval [0,1].

The choice ISTART=3, allows for a homotopy method to be used to approach a homoclinic
orbit starting from a small approximation to a solution to the linear problem in the unstable
manifold ( , ). For details of implementation, the reader is
referred to Section 5.1.2. of ( , ), under the simplification that
we do not solve for the adjoint u(¢) here. The basic idea is to start with a small solution in the
unstable manifold, and perform continuation in PAR(11)=27" and dummy initial-condition
parameters &; in order to satisfy the correct right-hand boundary conditions, which are
defined by zeros of other dummy parameters w;. More precisely, the left-hand end point is
placed in the tangent space to the unstable manifold of the saddle and is characterized by
NUNSTAB coordinates &; satisfying the condition

G+&+...+ 5§IUNSTAB =€,

where € is a user-defined small number. At the right-hand end point, NUNSTUB values w;
measure the deviation of this point from the tangent space to the stable manifold of the
saddle.

Suppose that IEQUIB=0,1 and set IP=12+IEQUIB*NDIM. Then
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PAR(IP) D €0
PAR(IP+i) . &4, 1=1,2,...,NUNSTAB
PAR(IP+NUNSTAB+1i) : wiq, i=1,2,...,NUNSTAB

Note that to avoid interference with the test functions (i.e. PAR(21)-PAR(36)), one must
have IP+2*NUNSTAB < 21.

If an w; is vanished, it can be frozen while another dummy or system parameter is allowed
to vary in order to make consequently all w; = 0. The resulting final solution gives the
initial homoclinic orbit provided the right-hand end point is sufficiently close to the saddle.
See Chapter 19 for an example, however, we recommend the homotopy method only for
“expert users”.

To compute the orientation of a homoclinic orbit (in order to detect inclination-flip bifur-
cations) it is necessary to compute, in tandem, a solution to the modified adjoint variational
equation, by setting ITWIST=1. In order to obtain starting data for such a computation when
restarting from a point where just the homoclinic is computed, upon increasing ITWIST to 1,
AUTO generates trivial data for the adjoint. Because the adjoint equations are linear, only a
single step of Newton’s method is required to enable these trivial data to converge to the correct
unique bounded solution. This can be achieved by making a single continuation step in a trivial
parameter (i.e. a parameter that does not appear in the problem).

Decreasing ITWIST to 0 automatically deletes the data for the adjoint from the continuation
problem.

16.8 Notes on Running HomCont Demos.

HomCont demos are given in the following chapters. To copy all files of a demo xxx (for example,
san), move to a clean directory and type @dm zzz. Simply typing make or make all will then
automatically execute all runs of the demo. To automatically run a demo in “step-by-step” mode,
type make first, make second, etc., to run each separate computation of the demo. At each step,
the user is encouraged to plot the data saved by using the command @p (e.g., @p I plots the
data saved in p.1 and q.1).

Of course, in a real application, the runs will not have been prepared in advance, and AUTO-
commands must be used. Such commands can be found in a table at the end of each chapter.
Note that the sequence of detailed AUTO-commands given in these tables can be abbreviated,
as illustrated in Table 16.1 and Table 16.2 for two representative runs of HomCont demo san.

The user is encouraged to copy the format of one of these demos when constructing new
examples.

The output of the HomCont demos reproduced in the following chapters is somewhat machine
dependent, as already noted in Section 8.4. In exceptional circumstances, AUTO may reach its
maximum number of steps NMX before a certain output point, or the label of an output point may
change. In such case the user may have to make appropriate changes in the AUTO constants-files.
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COMMAND ACTION

cp r.san.1 r.san | get the AUTO constants-file
cp s.san.1 s.san | get the HomCont constants-file

@h san run AUTO/HomCont
@sv 6 save output-files as p.6, q.6, d.6
@H san 1
@sv 6
Table 16.1: These two sets of AUTO-Commands are equivalent.

COMMAND

ACTION

cp r.san.9 r.san
cp s.san.9 s.san

get the AUTO constants-file
get the HomCont constants-file

@h san 6 run AUTO/HomCont; restart solution read from q.6
Q@Qap 6 append output-files to p.6, q.6, d.6

@H san 9 6

Q@Qap 6

Table 16.2: These two sets of AUTO-Commands are equivalent.
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Chapter 17

HomCont Demo : san.

17.1 Sandstede’s Model.

Consider the system ( ; )

T = ar+by—ar?+ (i—az)z(2—3z)
y = br+tay—3ba?—3azy— (i—az)2y (17.1)
2 = cztpr+yry+af@?(l—2a)—y?)

as given in the file san.f. Choosing the constants appearing in (17.1) appropriately allows for
computing inclination and orbit flips as well as non-orientable resonant bifurcations, see (

, ) for details and proofs. The starting point for all calculations is @ = 0, b = 1 where
there exists an explicit solution given by

(1), y(t), 2(t)) = (1 _ (%) ,4etﬁ,0> .

This solution is specified in the routine STPNT.

17.2 Inclination Flip.

We start by copying the demo to the current work directory and running the first step

@dm san
make first

This computation starts from the analytic solution above witha =0,6=1,c= -2, a=0,8=1
and v = = g = 0. The homoclinic solution is followed in the parameters (a, 1) =(PAR(1),
PAR(8)) up to a = 0.25. The output is summarised on the screen as

BR PT TY LAB PAR(1) L2-NORM PAR(8)

1 1 EP 1 0.000000E+00 4.000000E-01 ... 0.000000E+00
1 5 UZ 2 2.500000E-01 4.030545E-01 ... -3.620329E-11
1 10 EP 3 7.384434E-01 4.339575E-01 ... -9.038826E-09
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and saved in more detail as p.1, q.1 and d.1.

Next we want to add a solution to the adjoint equation to the solution obtained at a = 0.25.
This is achieved by making the change ITWIST = 1 saved in s.san.2, and IRS = 2, NMX = 2
and ICP(1) = 9 saved in r.san.2. We also disable any user-defined functions NUZR=0. The
computation so-defined is a single step in a trivial parameter PAR(9) (namely a parameter that
does not appear in the problem). The effect is to perform a Newton step to enable AUTO to
converge to a solution of the adjoint equation.

make second

The output is stored in p.2, q.2 and d.2.

We can now continue the homoclinic plus adjoint in (a, i) =(PAR(4), PAR(8)) by changing
the constants (stored in r.san.3) to read IRS = 4, NMX = 50 and ICP(1) = 4. We also add
PAR(10) to the list of continuation parameters NICP, (ICP(I),I=1 NICP). Here PAR(10) is a
dummy parameter used in order to make the continuation of the adjoint well posed. Theoretically,
it should be zero if the computation of the adjoint is successful ( , ). The test
functions for detecting resonant bifurcations (ISPI(1)=1) and inclination flips (ISPI(1)=13) are
also activated. Recall that this should be specified in three ways. First we add PAR(21) and
PAR(33) to the list of continuation parameters in r.san.3, second we set up user defined output
at zeros of these parameters in the same file, and finally we set NPSI=2 (IPSI(1),IPSI(2))=1,13
in s.san.3. We also add to r.san. 3 another user zero for detecting when PAR(4)=1.0. Running

make third

reads starting data from q.2 and outputs to the screen

BR PT TY LAB PAR(4) . PAR(8) PAR(10) o PAR(33)
1 20 5 7.847219E-01 ... -3.001440E-11 -4.268884E-09 ... -1.441124E+01
1 27 UZ 6 1.000000E+00 ... -3.844872E-11 -4.460769E-09 ... -5.701675E+00
1 35 UZ 7 1.230857E+00 ... -5.833977E-11 -4.530541E-09 ... 9.434843E-06
1 40 8 1.383969E+00 ... -8.133899E-11 -4.671817E-09 ... 1.348810E+00
1 50 EP 9 1.695209E+00 ... -1.386324E-10 -5.098460E-09 ... 5.311065E-01

Full output is stored in p.3, q.3 and d.3. Note that the artificial parameter ¢ =PAR(10) is zero
within the allowed tolerance. At label 7, a zero of test function )13 has been detected which
corresponds to an inclination flip with respect to the stable manifold. That the orientation of the
homoclinic loop changes as the branch passes through this point can be read from the information
in d.3. However in d.3, the line

ORIENTABLE ( 0.2982090775D-03)

at PT=35 would seems to contradict the detection of the inclination flip at this point. Nonetheless,
the important fact is the zero of the test function; and note that the value of the variable indicating
the orientation is small compared to its value at the other regular points. Data for the adjoint
equation at LAB= 5, 7 and 9 at and on either side of the inclination flip are presented in Fig.
17.1. The switching of the solution between components of the leading unstable left eigenvector is
apparent. Finally, we remark that the Newton step in the dummy parameter PAR(20) performed
above is crucial to obtain convergence. Indeed, if instead we try to continue the homoclinic orbit
and the solution of the adjoint equation directly by setting
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ITWIST = 1 IRS =2 NMX = 50 ICP(1) = 4 NPUSZR = 0
(as saved in r.san.4) and running
make fourth

we obtain a no convergence error.

17.3 Non-orientable Resonant Eigenvalues.

Inspecting the output saved in the third run, we observe the existence of a non-orientable homo-
clinic orbit at label 7 corresponding to N=40. We restart at this label, with the first continuation
parameter being once again a =PAR(1), by changing constants and storing them in r.san.5
according to

IRS =7 DS = -0.05D0 NMX = 20 ICP(1) =1
Running,

make fifth
the output at label 10

BR PT TY LAB PAR(1) PAR(8) PAR(10) PAR(21)
1 8 UZ 10 -1.304570E-07 ... 3.874816E-12 -1.468457E-09 -2.609139E-07

indicates that AUTO has detected a zero of PAR(21), implying that a non-orientable resonant
bifurcation occurred at that point.

17.4 Orbit Flip.

In this section we compute an orbit flip. To this end we restart from the original explicit so-
lution, without computing the orientation. We begin by separately performing continuation in
(o, 1), (B,f1), (a,fr), (b,i1) and (i, 1) in order to reach the parameter values (a,b,«, 3, 1) =
(0.5,3,1,0,0.25). The sequence of continuations up to the desired parameter values are run via

make sizth
make seventh
make eighth
make ninth

make tenth

with appropriate continuation parameters and user output values set in the corresponding files
r.san.xx. All the output is saved to q.86.

The final saved point LAB=10 contains a homoclinic solution at the desired parameter values.
From here we perform continuation in the negative direction of (u, i) = (PAR(7),PAR(8)) with
the test function 111 for orbit flips with respect to the stable manifold activated.
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make eleventh
The output detects an inclination flip (by a zero of PAR(31)) at PAR(7)=0

BR PT TY LAB PAR(T7) . PAR(8) PAR(31)
1 5 UZ 12 2.394737E-07 ... 6.434492E-08 -4.133994E-06

at which parameter value the homoclinic orbit is contained in the (z,y)-plane (see Fig. 17.2).
Finally, we demonstrate that the orbit flip can be continued as three parameters (PAR(6),
PAR(7), PAR(8)) are varied.

make twelfth

BR PT TY LAB PAR(7) o PAR(8) PAR(6)
1 5 14 -5.374538E-19 ... -1.831991E-10 -3.250000E-01
1 10 15 -6.145911E-19 ... -2.628607E-10 -8.250001E-01
1 15 16 -4.947133E-19 ... -2.361151E-10 -1.325000E+00
1 20 EP 17 -5.792940E-19 ... -3.075527E-10 -1.825000E+00

The orbit flip continues to be defined by a planar homoclinic orbit at PAR(7)=PAR(8)=0.

118



Detailed AUTO-Commands.

COMMAND ACTION

mkdir san create an empty work directory

cd san change directory

@dm san copy the demo files to the work directory

cp r.san.1 r.san
cp s.san.1 s.san
@h san

@sv 1

get the AUTO constants-file

get the HomCont constants-file
continuation in PAR(1)

save output-files as p.1, q.1, d.1

cp r.san.2 r.san
cp s.san.2 s.san
@h san 1

@sv 2

get the AUTO constants-file

get the HomCont constants-file

generate adjoint variables; restart from q.1
save output-files as p.2, q.2, d.2

cp r.san.3 r.san
cp s.san.3 s.san
@h san 2

Qsv 3

get the AUTO constants-file

get the HomCont constants-file

continue homoclinic orbit and adjoint; restart from q.2
save output-files as p.3, q.3, d.3

cp r.san.4 r.san
Cp S.8aM.4 S.san
@h san 1

@sv 4

get the AUTO constants-file

get the HomCont constants-file

no convergence without dummy step; restart from q.1
save output-files as p.4, q.4, d.4

cp r.san.d r.san
cp s.san.5 s.san
@h san 3

Qsv 5

get the AUTO constants-file

get the HomCont constants-file

continue non-orientable orbit; restart from q.3
save output-files as p.5, q.5, d.5

Table 17.1: Detailed AUTO-Commands for running demo san.
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COMMAND

ACTION

cp r.san.6 r.san
cp s.san.6 s.san
@h san

@sv 6

get the AUTO constants-file

get the HomCont constants-file
restart and homotopy to PAR(4)=1.0
save output-files as p.6, q.6, d.6

cp r.san.7 r.san
cp s.san.7 s.san
@h san 6

Q@Qap 6

get the AUTO constants-file

get the HomCont constants-file

homotopy to PAR(5)=0.0; restart from q.6
append output-files to p.6, q.6, d.6

cp r.san.8 r.san
cp s.san.8 s.san
@h san 6

@ap 6

get the AUTO constants-file

get the HomCont constants-file

homotopy to PAR(1)=0.5; restart from q.6
append output-files to p.6, q.6, d.6

cp r.san.9 r.san
cp s.san.9 s.san
@h san 6

Q@Qap 6

get the AUTO constants-file

get the HomCont constants-file

homotopy to PAR(2)=3.0; restart from q.6
append output-files to p.6, q.6, d.6

cp r.san.10 r.san
cp s.san.10 s.san
@h san 6

@Qap 6

get the AUTO constants-file

get the HomCont constants-file

homotopy to PAR(7)=0.25; restart from q.6
append output-files to p.6, q.6, d.6

cp r.san.11 r.san
cp s.san.11 s.san
@h san 6

@sv 11

get the AUTO constants-file

get the HomCont constants-file

continue in PAR(7) to detect orbit flip; restart from q.6
save output-files as p.11, q.11, d.11

cp r.san.12 r.san
cp s.san.12 s.san
@h san 11

@sv 12

get the AUTO constants-file

get the HomCont constants-file

three-parameter continuation of orbit flip; restart from q.11
save output-files as p.12, q.12, d.12

Table 17.2: Detailed AUTO-Commands for running demo san.
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u6b

Figure 17.1: Second versus third component of the solution to the adjoint equation at labels 5,
7 and 9

Figure 17.2: Orbits on either side of the orbit flip bifurcation. The critical orbit is contained in
the (x,y)-plane
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Chapter 18

HomCont Demo : mtn.

18.1 A Predator-Prey Model with Immigration.

Consider the following system of two equations ( , )
. X A XY
X = RX(1-2 ) - 25— + DK
B A XY DY A ZY? :
- "B+ x 7Y BIyv?

The values of all parameters except (K, Z) are set as follows :
R=05, Ay =04, By =06, Dy=0.01, £, =0.6, Ay, =1.0, B, =0.5, D; =0.15.

The parametric portrait of the system (18.1) on the (Z, K)-plane is presented in Figure 18.1. It
contains fold (#12) and Hopf (H) bifurcation curves, as well as a homoclinic bifurcation curve
P. The fold curves meet at a cusp singular point C, while the Hopf and the homoclinic curves
originate at a Bogdanov-Takens point B7T. Only the homoclinic curve P will be considered
here, the other bifurcation curves can be computed using AUTO or, for example, locbif (

, 1993).

18.2 Continuation of Central Saddle-Node Homoclinics.

Local bifurcation analysis shows that at K = 6.0, Z = 0.06729762 . . ., the system has a saddle-
node equilibrium
(X% YY) = (5.738626...,0.5108401 .. .),

with one zero and one negative eigenvalue. Direct simulations reveal a homoclinic orbit to this

saddle-node, departing and returning along its central direction (i.e., tangent to the null-vector).
Starting from this solution, stored in the file mtn.dat, we continue the saddle-node central

homoclinic orbit with respect to the parameters K and Z by copying the demo and running it

@dm mtn
make first
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The file mtn.f contains approximate parameter values
K =PAR(1) = 6.0, Z =PAR(2) = 0.06729762,
as well as the coordinates of the saddle-node
X% =PAR(12) = 5.738626, Y° = PAR(13) = 0.5108401,
and the length of the truncated time-interval
To = PAR(11) = 1046.178 .
Since a homoclinic orbit to a saddle-node is being followed, we have also made the choices
IEQUIB = 2 NUNSTAB =0 NSTAB = 1

in s.mtn.1. The two test-functions, 115 and 114, to detect non-central saddle-node homoclinic
orbits are also activated, which must be specified in three ways. Firstly, in s.mtn.1, NPSI is
set to 2 and the active test functions IPSI(I),I=1,2 are chosen as 15 and 16. This sets up the
monitoring of these test functions. Secondly, in r.mtn.1 user-defined functions (NUZR=2) are set
up to look for zeros of the parameters corresponding to these test functions. Recall that the
parameters to be zeroed are always the test functions plus 20. Finally, these parameters are
included in the list of continuation parameters (NICP, (ICP(I),I=1 NICP)).
Among the output there is a line

BR PT TY LAB PAR(1) PAR(2) PAR(35) PAR(36)
1 27 UZ 5 6.10437E+00 ... 6.932475E-02 -6.782898E-07 8.203437E-02

indicating that a zero of the test function IPSI(1)=15 This means that at

Dy = (K, Z") = (6.6104...,0.069325. . .)

the homoclinic orbit to the saddle-node becomes non-central, namely, it returns to the equilibrium
along the stable eigenvector, forming a non-smooth loop. The output is saved in p.1, q.1 and
d.1. Repeating computations in the opposite direction along the curve, IRS=1, DS=-0.01 in
r.mtn.2,

make second
one obtains

BR PT TY LAB PAR(1) PAR(2) PAR(35) PAR(36)
1 34 UZ 9 b5.180323E+00 ... 6.385506E-02 3.349720E-09 9.361957E-02

which means another non-central saddle-node homoclinic bifurcation occurs at
Dy, = (K? 7% = (5.1803...,0.063855. . .).

Note that these data were obtained using a smaller value of NTST than the original computation
(compare r.mtn.1 with r.mtn.2). The high original value of NTST was only necessary for the
first few steps because the original solution is specified on a uniform mesh.
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18.3 Switching between Saddle-Node and Saddle Homo-
clinic Orbits.

Now we can switch to continuation of saddle homoclinic orbits at the located codim 2 points D
and Dg.

make third
starts from D;. Note that now
NUNSTAB = 1 IEQUIB = 1

has been specified in s.mtn.3. Also, test functions 19 and 1)1y have been activated in order to
monitor for non-hyperbolic equilibria along the homoclinic locus. We get the following output

BR PT TY LAB PAR(1) PAR(2) PAR(29) PAR(30)
1 10 11 7.114523E+00 ... 7.081751E-02 -4.649861E-01 3.183429E-03
1 20 12 9.176810E+00 ... 7.678731E-02 -4.684912E-01 1.609294E-02
1 30 13 1.210834E+01 ... 8.543468E-02 -4.718871E-01 3.069638E-02
1 40 EP 14 1.503788E+01 ... 9.428036E-02 -4.743794E-01 4.144558E-02

The fact that PAR(29) and PAR(30) do not change sign indicates that there are no further
non-hyperbolic equilibria along this branch. Note that restarting in the opposite direction with
IRS=11, DS=-0.02

make fourth

will detect the same codim 2 point D; but now as a zero of the test-function

BR PT TY LAB
1 10 UZ

PAR(1)
15 6.610459E+00

PAR(2) PAR(29)
6.932482E-02 -4.636603E-01

PAR(30)
1.725013E-09

Note that the values of PAR(1) and PAR(2) differ from that at label 4 only in the sixth significant
figure.

Actually, the program runs further and eventually computes the point Dy and the whole lower
branch of P emanating from it, however, the solutions between D; and Ds should be considered
as spurious', therefore we do not save these data. The reliable way to compute the lower branch

of P is to restart computation of saddle homoclinic orbits in the other direction from the point
D,

make fifth

This gives the lower branch of P approaching the BT point (see Figure 18.1)

! The program actually computes the saddle-saddle heteroclinic orbit bifurcating from the non-central saddle-
node homoclinic at the point Dy, see ( , , Fig. 2), and continues it to the
one emanating from D.
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BR PT TY LAB PAR(1) ce PAR(2) PAR(29) PAR(30)

1 10 15 4.966429E+00 ... 6.298418E-02 -4.382426E-01 4.946824E-03
1 20 16 4.925379E+00 ... 7.961214E-02 -3.399102E-01 3.288447E-02
1 30 17 7.092267E+00 ... 1.587114E-01 -1.692842E-01 3.876291E-02
1 40 EP 18 1.101819E+01 ... 2.809825E-01 -3.482651E-02 2.104384E-02

The data are appended to the stored results in p.1, q.1 and d.1. One could now display all data
using the AUTO command @p 1 to reproduce the curve P shown in Figure 18.1.

It is worthwhile to compare the homoclinic curves computed above with a curve Ty = const
along which the system has a limit cycle of constant large period Ty = 1046.178, which can
easily be computed using AUTO or lochif. Such a curve is plotted in Figure 18.2. It obviously
approximates well the saddle homoclinic loci of P, but demonstrates much bigger deviation from
the saddle-node homoclinic segment D Ds. This happens because the period of the limit cycle
grows to infinity while approaching both types of homoclinic orbit, but with different asymptotics:
as —In || — ||, in the saddle homoclinic case, and as ||a — a*||7! in the saddle-node case.

18.4 Three-Parameter Continuation.

Finally, we can follow the curve of non-central saddle-node homoclinic orbits in three parame-
ters. The extra continuation parameter is Dy=PAR(3). To achieve this we restart at label 4,
corresponding to the codim 2 point D;. We return to continuation of saddle-node homoclinics,
NUNSTAB=0,IEQUIB=2, but append the defining equation 115 = 0 to the continuation problem (via
NFIXED=1, IFIXED(1)=15). The new continuation problem is specified in r.mtn.6 and s.mtn.6.

make sizth

Notice that we set ILP=1 and choose PAR(3) as the first continuation parameter so that AUTO
can detect limit points with respect to this parameter. We also make a user-defined function
(NUZR=1) to detect intersections with the plane Dy = 0.01. We get among other output

BR PT TY LAB PAR(3) L2-NORM ce PAR(1) PAR(2)
1 22 LP 19 1.081212E-02 5.325894E+00 ... b5.673631E+00 6.608184E-02
1 31 UZ 20 1.000000E-02 4.819681E+00 ... ©5.180317E+00 6.385503E-02

the first line of which represents the Dy value at which the homoclinic curve P has a tangency
with the branch ¢, of fold bifurcations. Beyond this value of Dy, P consists entirely of saddle
homoclinic orbits. The data at label 20 reproduce the coordinates of the point D,. The results of
this computation and a similar one starting from D; in the opposite direction (with DS=-0.01)
are displayed in Figure 18.3.
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18.5

Detailed AUTO-Commands.

COMMAND ACTION

mbkdir min create an empty work directory

cd min change directory

@dm mtn copy the demo files to the work directory

cp r.min.1 r.min
cp s.min.1 s.min
@fc mtn

@h mitn dat

@sv 1

get the AUTO constants-file

get the HomCont constants-file

use the starting data in mtn.dat to create q.dat
continue saddle-node homoclinic orbit

save output-files as p.1, q.1, d.1

cp r.min.2 r.mitn
cp s.min.2 s.min
@h mtn 1

@Qap 1

get the AUTO constants-file

get the HomCont constants-file

continue in opposite direction; restart from q.1
append output-files to p.1, q.1, d.1

cp r.min.3 r.min
cp s.min.3 s.min
@h mitn 1

@ap 1

get the AUTO constants-file

get the HomCont constants-file

switch to saddle homoclinic orbit ; restart from q.1
append output-files to p.1, q.1, d.1

cp r.min.4 r.min
cp s.mitn.4 s.min
@h mtn 1

@sv 4

get the AUTO constants-file

get the HomCont constants-file

continue in reverse direction; restart from q.1
save output-files as p.4, q.4, d.4

cp r.min.5 r.min
cp s.min.5 s.min
@h mitn 1

@ap 1

get the AUTO constants-file

get the HomCont constants-file

other saddle homoclinic orbit branch; restart from q.1
append output-files to p., q.1, d.1

cp r.min.6 r.min
cp s.min.6 s.min
@h mitn 1

@sv 6

get the AUTO constants-file

get the HomCont constants-file

3-parameter non-central saddle-node homoclinic.
save output-files as p.6, q.6, d.6

Table 18.1: Detailed AUTO-Commands for running demo mtn.
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Figure 18.1: Parametric portrait of the predator-prey system
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Figure 18.2: Approximation by a large-period cycle
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do
0.012

0.008|

0. 005 |

0.003

0. 000

Figure 18.3: Projection onto the (K, Dy)-plane of the three-parameter curve of non-central saddle-
node homoclinic orbit
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Chapter 19

HomCont Demo : kpr.

19.1 Koper’s Extended Van der Pol Model.

The equation-file kpr.f contains the equations

i = ' (ky—a®+31x—))
gy = x—2y+=z (19.1)
z = Eg(y—Z),

with ¢, = 0.1 and e =1 ( : ).
To copy across the demo kpr and compile we type

Q@dm kpr

19.2 The Primary Branch of Homoclinics.

First, we locate a homoclinic orbit using the homotopy method. The file kpr.f already con-
tains approximate parameter values for a homoclinic orbit, namely A =PAR(1)=-1.851185,
k =PAR(2)=-0.15. The files r.kpr.1 and s.kpr.1 specify the appropriate constants for con-
tinuation in 27'=PAR(11) (also referred to as PERIOD) and the dummy parameter w;=PAR(17)
starting from a small solution in the local unstable manifold;

make first
Among the output there is the line
BR PT TY LAB PERIOD L2-NORM e PAR(17)
1 29 UZ 2 1.900184E+01 1.693817E+00 ... 4.433433E-09 ...

which indicates that a zero of the artificial parameter w; has been located. This means that the
right-hand end point of the solution belongs to the plane that is tangent to the stable manifold
at the saddle. The output is stored in files p.1, gq.1, d.1. Upon plotting the data at label 2
(see Figure 19.1) it can be noted that although the right-hand projection boundary condition is
satisfied, the solution is still quite away from the equilibrium.
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Figure 19.1: Projection on the (z,y)-plane of solutions of the boundary value problem with
2T = 19.08778.
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Figure 19.2: Projection on the (z,y)-plane of solutions of the boundary value problem with
2T = 60.0.
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The right-hand endpoint can be made to approach the equilibrium by performing a further
continuation in 7" with the right-hand projection condition satisfied (PAR(17) fixed) but with A
allowed to vary.

make second
the output at label 4, stored in kpr.?2,

BR PT TY LAB PERIOD L2-NORM o PAR(1)
1 35 UZ 4 6.000000E+01 1.672806E+00 ... -1.851185E+00 ...

provides a good approximation to a homoclinic solution (see Figure 19.2).

The second stage to obtain a starting solution is to add a solution to the modified adjoint
variational equation. This is achieved by setting both ITWIST and ISTART to 1 (in s.kpr.3), which
generates a trivial guess for the adjoint equations. Because the adjoint equations are linear, only
a single Newton step (by continuation in a trivial parameter) is required to provide a solution.
Rather than choose a parameter that might be used internally by AUTO, in r.kpr.3 we take the
continuation parameter to be PAR(11), which is not quite a trivial parameter but whose affect
upon the solution is mild.

make third

The output at the second point (label 6) contains the converged homoclinic solution (variables
(U(1), U(2), U(3)) and the adjoint (U(4), U(5), U(6))). We now have a starting solution
and are ready to perform two-parameter continuation.

The fourth run

make fourth

continues the homoclinic orbit in PAR(1) and PAR(2). Note that several other parameters appear
in the output. PAR(10) is a dummy parameter that should be zero when the adjoint is being
computed correctly; PAR(29), PAR(30), PAR(33) correspond to the test functions 9,119 and ;3.
That these test functions were activated is specified in three places in r.kpr.4 and s.kpr.4 as
described in Section 16.6.

Note that at the end-point of the branch (reached when after NMX=50 steps) PAR(29) is approx-
imately zero which corresponds to a zero of 19, a non-central saddle-node homoclinic orbit. We
shall return to the computation of this codimension-two point later. Before reaching this point,
among the output we find two zeroes of PAR(33) (test function v43) which gives the accurate
location of two inclination-flip bifurcations,

BR PT TY LAB PAR(1) PAR(2) PAR(10) PAR(33)
1 6 UZ 10 -1.801662E+00 ... -2.002660E-01 -7.255434E-07 ... -1.425714E-04
1 12 UZ 11 -1.568756E+00 ... -4.395468E-01 -2.156353E-07 ... 4.514073E-07

That the test function really does have a regular zero at this point can be checked from the
data saved in p.3, plotting PAR(33) as a function of PAR(1) or PAR(2). Figure 19.3 presents
solutions ¢(t) of the modified adjoint variational equation (for details see

, ) at parameter values on the homoclinic branch before and after the first
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Figure 19.3: Projection on the (x, y)-plane of solutions ¢(t) at 1 (A = —1.825470, k = —0.1760749)
and 2 (A = —1.686154, k = —0.3183548).

Figure 19.4: Three-dimensional blow-up of the solution curves ¢(t) at labels 1 (dotted) and 2
(solid line) from Figure 3.8.
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Figure 19.5: Computed homoclinic orbits approaching the BT point

detected inclination flip. Note that these solutions were obtained by choosing a smaller step DS
and more output (smaller NPR) in r.kpr.4. A blow-up of the region close to the origin of this
figure is shown in Figure 19.4. It illustrates the flip of the solutions of the adjoint equation while
moving through the bifurcation point. Note that the data in this figure were plotted after first
performing an additional continuation of the solutions with respect to PAR(11).

Continuing in the other direction

make fifth
we approach a Bogdanov-Takens point
BR PT TY LAB PAR(1) PAR(10) PAR(33)
1 50 EP 13 -1.938276E+00 ... -7.523344E+00 ... 6.310810E+01

Note that the numerical approximation has ceased to become reliable, since PAR(10) has now
become large. Phase portraits of homoclinic orbits between the BT point and the first inclination
flip are depicted in Figure 19.5. Note how the computed homoclinic orbits approaching the BT
point have their endpoints well away from the equilibrium. To follow the homoclinic orbit to the
BT point with more precision, we would need to first perform continuation in 7" (PAR(11)) to
obtain a more accurate homoclinic solution.

19.3 More Accuracy and Saddle-Node Homoclinic Orbits.

Continuation in 7" in order to obtain an approximation of the homoclinic orbit over a longer
interval is necessary for parameter values near a non-hyperbolic equilibrium (either a saddle-node
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or BT) where the convergence to the equilibrium is slower. First, we start from the original
homoclinic orbit computed via the homotopy method, label 4, which is well away from the non-
hyperbolic equilibrium. Also, we shall no longer be interested in in inclination flips so we set
ITWIST=0 in r.kpr.6, and in order to compute up to PAR(11)=1000, we set up a user-defined
function for this. Running AUTO with PAR(11) and PAR(2) as free parameters

make sixth
we obtain among the output
BR PT TY LAB PERIOD L2-NORM c. PAR(2)
1 35 UZ 6 1.000000E+03 1.661910E+00 ... -1.500000E-01

We can now repeat the computation of the branch of saddle homoclinic orbits in PAR(1) and
PAR(2) from this point with the test functions 19 and ;o for non-central saddle-node homoclinic
orbits activated

make seventh
The saddle-node point is now detected at

BR PT TY LAB PAR(1) ces PAR(2) PAR(29) PAR(30)
1 30 UZ 8 1.765003E-01 ... -2.405345E+00 2.743361E-06 2.309317E+01

which is stored in q.7. That PAR(29) (v)9) is zeroed shows that this is a non-central saddle-
node connecting the centre manifold to the strong stable manifold. Note that all output beyond
this point, although a well-posed solution to the boundary-value problem, is spurious in that
it no longer represents a homoclinic orbit to a saddle equilibrium (see
, ). If we had chosen to, we could continue in the other direction in order to

approach the BT point more accurately by reversing the sign of DS in r.kpr.7.

The files r.kpr.9 and s.kpr.9 contain the constants necessary for switching to continuation
of the central saddle-node homoclinic curve in two parameters starting from the non-central
saddle-node homoclinic orbit stored as label 8 in q.7.

make eighth

In this run we have activated the test functions for saddle to saddle-node transition points along
curves of saddle homoclinic orbits (115 and 115). Among the output we find

BR PT TY LAB PAR(1) PAR(2) PAR(35) PAR(36)
1 38 UZ 13 1.765274E-01 ... -2.405284E+00 9.705426E-03 -5.464784E-07

which corresponds to the branch of homoclinic orbits leaving the locus of saddle-nodes in a second
non-central saddle-node homoclinic bifurcation (a zero of 1g).

Note that the parameter values do not vary much between the two codimension-two non-
central saddle-node points (labels 8 and 13). However, Figure 19.6 shows clearly that between
the two codimension-two points the homoclinic orbit rotates between the two components of the
1D stable manifold, i.e. between the two boundaries of the center-stable manifold of the saddle
node. The overall effect of this process is the transformation of a nearby “small” saddle homoclinic
orbit to a “big” saddle homoclinic orbit (i.e. with two extra turning points in phase space).

Finally, we can switch to continuation of the big saddle homoclinic orbit from the new codim
2 point at label 13.
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Figure 19.6: Two non-central saddle-node homoclinic orbits, 1 and 3; and, 2, a central saddle-node
homoclinic orbit between these two points
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Figure 19.7: The big homoclinic orbit approaching a figure-of-eight
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make ninth

Note that AUTO takes a large number of steps near the line PAR(1)=0, while PAR(2) approaches
—2.189... (which is why we chose such a large value NMX=500 in r.kpr.9). This particular
computation ends at

BR PT TY LAB PAR(1) L2-NORM .. PAR(2)
1 500 EP 24 -1.218988E-05 2.181205E-01 ... -2.189666E+00

By plotting phase portraits of orbits approaching this end point (see Figure 19.7) we see a “canard-
like” like transformation of the big homoclinic orbit to a pair of homoclinic orbits in a figure-of-
eight configuration. That we get a figure-of-eight is not a surprise because PAR(1)=0 corresponds
to a symmetry in the differential equations ( , ); note also that the equilibrium, stored as
(PAR(12), PAR(13), PAR(14)) in d.9, approaches the origin as we approach the figure-of-eight
homoclinic.

19.4 Three-Parameter Continuation.

We now consider curves in three parameters of each of the codimension-two points encountered
in this model, by freeing the parameter ¢ = PAR(3). First we continue the first inclination flip
stored at label 7 in q.3

make tenth

Note that ITWIST=1 in s.kpr.10, so that the adjoint is also continued, and there is one fixed
condition IFIXED(1)=13 so that test function 13 has been frozen. Among the output there is a
codimension-three point (zero of 1)9) where the neutrally twisted homoclinic orbit collides with
the saddle-node curve

BR PT TY LAB PAR(1) ... PAR(2) PAR(3) PAR(29)
1 28 UZ 14 1.282702E-01 ... -2.519325E+00 5.744770E-01 -4.347113E-09 ...

The other detected inclination flip (at label 8 in q.3) is continued similarly
make eleventh
giving among its output another codim 3 saddle-node inclination-flip point

BR PT TY LAB PAR(1) PAR(2) PAR(3) PAR(29)
1 27 UZ 14 1.535420E-01 ... -2.458100E+00 1.171705E+00 -1.933188E-07 ...

Output beyond both of these codim 3 points is spurious and both computations end in an MX
point (no convergence).

To continue the non-central saddle-node homoclinic orbits it is necessary to work on the data
without the solution ¢(t). We restart from the data saved at LAB=8 and LAB=13 in q.7 and
q.8 respectively. We could continue these codim 2 points in two ways, either by appending the
defining condition ;5 = 0 to the continuation of saddle-node homoclinic orbits (with IEQUIB=2,
etc.), or by appending 19 = 0 to the continuation of a saddle homoclinic orbit (with IEQUIB=1.
The first approach is used in the example mtn, for contrast we shall adopt the second approach
here.
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make twelfth
make thirteenth

The projection onto the (e, k)-plane of all four of these codimension-two curves is given in Figure
19.8. The intersection of the inclination-flip lines with one of the non-central saddle-node homo-
clinic lines is apparent. Note that the two non-central saddle-node homoclinic orbit curves are
almost overlaid, but that as in Figure 19.6 the orbits look quite distinct in phase space.

19.5 Detailed AUTO-Commands.

COMMAND ACTION

mbkdir kpr create an empty work directory

cd kpr change directory

Q@dm kpr copy the demo files to the work directory

cp r.kpr.1 r.kpr
cp s.kpr.1 s.kpr
@h kpr

@sv 1

get the AUTO constants-file

get the HomCont constants-file

continuation in the time-length parameter PAR(11)
save output-files as p.1, q.1, d.1

cp r.kpr.2 r.kpr
cp s.kpr.2 s.kpr
@h kpr 1

@sv 2

get the AUTO constants-file

get the HomCont constants-file

locate the homoclinic orbit; restart from q.1
save output-files as p.2, q.2, d.2

cp r.kpr.3 r.kpr
cp s.kpr.3 s.kpr
@h kpr 2

Qsv 3

get the AUTO constants-file

get the HomCont constants-file

generate adjoint variables ; restart from q.2
save output-files as p.3, q.3, d.3

cp r.kpr.4 r.kpr
cp s.kpr.4 s.kpr
@h kpr 8

@Qap 3

get the AUTO constants-file

get the HomCont constants-file

continue the homoclinic orbit; restart from q.3
append output-files to p.3, q.3, d.3

cp r.kpr.5 r.kpr
cp s.kpr.5 s.kpr
@h kpr 3

Q@Qap 3

get the AUTO constants-file

get the HomCont constants-file

continue in reverse direction; restart from q.3
append output-files to p.3, q.3, d.3

cp r.kpr.6 r.kpr
cp s.kpr.6 s.kpr
@h kpr 2

Q@Qsv 6

get the AUTO constants-file

get the HomCont constants-file
increase the period; restart from q.2
save output-files as p.6, q.6, 4.6

Table 19.1: Detailed AUTO-Commands for running demo kpr.
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COMMAND

ACTION

cp r.kpr.7 r.kpr
cp s.kpr.7 s.kpr
@h kpr 6

@sv 7

get the AUTO constants-file

get the HomCont constants-file

recompute the branch of homoclinic orbits; restart from q.6
save output-files as p.7, q.7, 4.7

cp r.kpr.8 r.kpr
cp s.kpr.8 s.kpr
@h kpr 7

@sv 8

get the AUTO constants-file

get the HomCont constants-file

continue central saddle-node homoclinics; restart from q.7
save output-files as p.8, q.8, d.8

cp r.kpr.9 r.kpr
cp s.kpr.9 s.kpr
@h kpr 8

@sv 9

get the AUTO constants-file

get the HomCont constants-file

continue homoclinics from codim-2 point; restart from q.8
save output-files as p.9, q.9, d.9

cp r.kpr.10 r.kpr
cp s.kpr.10 s.kpr
@h kpr 3

@sv 10

get the AUTO constants-file

get the HomCont constants-file

3-parameter curve of inclination-flips; restart from q.3
save output-files as p.10, q.10, d.10

cp r.kpr.11 r.kpr
cp s.kpr.11 s.kpr
@h kpr 3

@sv 11

get the AUTO constants-file

get the HomCont constants-file

another curve of inclination-flips; restart from q.3
save output-files as p.11, q.11, d.11

cp r.kpr.12 r.kpr
cp s.kpr.12 s.kpr
@h kpr 7

@sv 12

get the AUTO constants-file

get the HomCont constants-file

continue non-central saddle-node homoclinics; restart from q.7
save output-files as p.12, q.12, d.12

cp r.kpr.13 r.kpr
cp s.kpr.13 s.kpr
@h kpr 8

@ap 12

get the AUTO constants-file

get the HomCont constants-file

continue non-central saddle-node homoclinics; restart from q.8
append output-files to p.12, q.12, d.12

Table 19.2: Detailed AUTO-Commands for running demo kpr.
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Figure 19.8: Projection onto the (PAR(3),PAR(2))-plane of the non-central saddle-node homo-
clinic orbit curves (labeled 1 and 2) and the inclination-flip curves (labeled 3 and 4)
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Chapter 20

HomCont Demo : cir.

20.1 Electronic Circuit of Freire et al.

Consider the following model of a three-variable electronic circuit (

, 1993)

i = [=(B4+v)z+ By —asx® +bs(y —x)°] /r,
g = Bx—(B+7)y—z—b3(y—1x)3, (20.1)
z o= .

These autonomous equations are also considered in the AUTO demo tor.
First, we copy the demo into a new directory and compile

Q@Qdm cir

The system is contained in the equation-file cir.f and the initial run-time constants are stored
inr.cir.1 and s.cir.1. We begin by starting from the data from cir.dat for a saddle-focus
homoclinic orbit at v = —0.721309, 8 = 0.6, v = 0, r = 0.6, A3 = 0.328578 and B3 = 0.933578,
which was obtained by shooting over the time interval 27" =PAR(11)= 36.13. We wish to follow
the branch in the (3, v)-plane, but first we perform continuation in (7',r) to obtain a better
approximation to a homoclinic orbit.

make first
yields the output
BR PT TY LAB PERIOD L2-NORM . PAR(1)
1 21 UZ 2 1.000000E+02 1.286637E-01 ... -7.213093E-01
1 42 UZ 3 2.000000E+02 9.097899E-02 ... -7.213093E-01
1 50 EP 4 2.400000E+02 8.305208E-02 ... -7.213093E-01

Note that ¥ =PAR(1) remains constant during the continuation as the parameter values do not
change, only the the length of the interval over which the approximate homoclinic solution is
computed. Note from the eigenvalues, stored in d.1 that this is a homoclinic orbit to a saddle-
focus with a one-dimensional unstable manifold.

We now restart at LAB=3, corresponding to a time interval 27" = 200, and change the principal
continuation parameters to be (v, 3). The new constants defining the continuation are given in
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r.cir.2 and s.cir.2. We also activate the test functions pertinent to codimension-two singular-
ities which may be encountered along a branch of saddle-focus homoclinic orbits, viz. 1o, 14, V5,
19 and 1019. This must be specified in three ways: by choosing NPSI=5 and appropriate IPSI(I)
in s.cir.2, by adding the corresponding parameter labels to the list of continuation parame-
ters ICP(I) in r.cir.2 (recall that these parameter indices are 20 more than the corresponding
¢ indices), and finally adding USZR functions defining zeros of these parameters in r.cir.?2.
Running

make second

results in

BR PT TY LAB PAR(1) . PAR(2) . PAR(25) PAR(29)

1 17 UZ 5 -7.256925E-01 ... 4.535645E-01 ... -1.765251E-05 -2.888436E-01
1 75 UZ 6 -1.014704E+00 ... 9.998966E-03 ... 1.664509E+00 -5.035997E-03
1 78 UZ 7 -1.026445E+00 ... -2.330391E-05 ... 1.710804E+00 1.165176E-05
1 81 UZ 8 -1.038012E+00 ... -1.000144E-02 ... 1.756690E+00 4.964621E-03
1 100 EP 9 -1.164160E+00 ... -1.087732E-01 ... 2.230329E+00 5.042736E-02

with results saved in p.2, q.2, d.2. Upon inspection of the output, note that label 5, where
PAR(25)~ 0, corresponds to a neutrally-divergent saddle-focus, 15 = 0. Label 7, where PAR(29) ~
0 corresponds to a local bifurcation, 19 = 0, which we note from the eigenvalues stored in d.2
corresponds to a Shil’nikov-Hopf bifurcation. Note that PAR(2) is also approximately zero at
label 7, which accords with the analytical observation that the origin of (20.1) undergoes a Hopf
bifurcation when = 0. Labels 6 and 8 are the user-defined output points, the solutions at which
are plotted in Fig. 20.1. Note that solutions beyond label 7 (e.g., the plotted solution at label 8)
do not correspond to homoclinic orbits, but to point-to-cycle heteroclinic orbits (c.f. Section 2.2.1
of ( , 1996)).

We now continue in the other direction along the branch. It turns out that starting from the
initial point in the other direction results in missing a codim 2 point which is close to the starting
point. Instead we start from the first saved point from the previous computation (label 5 in q.2):

make third
The output
BR PT TY LAB PAR(1) e PAR(2) PAR(22) PAR(24)
1 9 UZ 10 -7.204001E-01 ... b5.912315E-01 -1.725669E+00 -3.295862E-05
1 18 UZ 11 -7.590583E-01 ... 7.428734E-01 3.432139E-05 -2.822988E-01
1 26 UZ 12 -7.746686E-01 ... 7.746147E-01 ©5.833163E-01 1.637611E-07
1 28 EP 13 -7.746628E-01 ... 7.746453E-01 ©5.908902E-01 1.426214E-04

contains a neutral saddle-focus (a Belyakov transition) at LAB=10 (¢4 = 0), a double real leading
eigenvalue (saddle-focus to saddle transition) at LAB =11 (12 = 0) and a neutral saddle at LAB=12
(¢4 = 0). Data at several points on the complete branch are plotted in Fig. 20.2. If we had
continued further (by increasing NMX), the computation would end at a no convergence error TY=MX
owing to the homoclinic branch approaching a Bogdanov-Takens singularity at small amplitude.
To compute further towards the BT point we would first need to continue to a higher value of
PAR(11).
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Figure 20.1: Solutions of the boundary value problem at labels 6 and 8, either side of the
Shil’nikov-Hopf bifurcation

Figure 20.2: Phase portraits of three homoclinic orbits on the branch, showing the saddle-focus
to saddle transition
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20.2

Detailed AUTO-Commands.

COMMAND ACTION

mbkdir cir create an empty work directory

cd cir change directory

Q@dm cir copy the demo files to the work directory

cp r.cir.1 r.cir
cp s.cir.1 s.cir
@fc cir

@h cir dat
@sv 1

get the AUTO constants-file

get the HomCont constants-file

use the starting data in cir.dat to create q.dat
increase the truncation interval; restart from q.dat
save output-files as p.1, q.1, d.1

cp r.cir.2 r.cir
cp s.cir.2 s.cir
@h cir 1

@sv 2

get the AUTO constants-file
get the HomCont constants-file

continue saddle-focus homoclinic orbit; restart from q.1

save output-files as p.2, q.2, d.2

cp r.cir.3 r.cir
cp s.cir.3 s.cir

get the AUTO constants-file
get the HomCont constants-file

@h cir 2 generate adjoint variables ; restart from q.2
Q@Qap 2 append output-files as p.2, q.2, d.2
Table 20.1: Detailed AUTO-Commands for running demo cir.
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Chapter 21

HomCont Demo : she.

21.1 A Heteroclinic Example.
The following system of five equations ( , )
= ur+ry-—zu,
-y - "L‘27

= (dozxu+t+dopz—90z+4rxu+4pz)/4(1+ o)
= —ou/4 —oQu/4r? + 3(1 + 0)xz/do
= (u/4—Cv/4

has been used to describe shearing instabilities in fluid convection. The equations possess a rich
structure of local and global bifurcations. Here we shall reproduce a single curve in the (o, p)-
plane of codimension-one heteroclinic orbits connecting a non-trivial equilibrium to the origin
for Q = 0 and ¢ = 4. The defining problem is contained in equation-file she.f', and starting
data for the orbit at (o, ) = (0.5,0.163875) are stored in she.dat, with a truncation interval of
PAR(11)=85.07.

We begin by computing towards g = 0 with the option IEQUIB=-2 which means that both
equilibria are solved for as part of the continuation process.

(21.1)

S 2N &

@dm she
make first
This yields the output
BR PT TY LAB PAR(3) L2-NORM PAR(1)

1 5 2 4.528332E-01 3.726787E-01 ... 1.364973E-01
1 10 3 3.943370E-01 3.303798E-01 ... 1.044119E-01
1 15 4 3.358942E-01 2.873213E-01 ... 7.515570E-02
1 20 5 2.772726E-01 2.433403E-01 ... 4.952636E-02
1 25 6 2.181955E-01 1.981358E-01 ... 2.845849E-02
1 30 EP 7 1.581633E-01 1.512340E-01 ... 1.292975E-02

!The last parameter used to store the equilibria (PAR(21)) is overlaped here with the first test-function. In
this example, it is harmless since the test functions are irrelevant for heteroclinic continuation.
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Alternatively, for this problem there exists an analytic expression for the two equilibria. This is
specified in the subroutine PVLS of she.f. Re-running with IEQUIB=-1

make second

we obtain the output

BR PT TY LAB PAR(3) L2-NORM PAR(1)
1 5 2 4.432015E-01 3.657716E-01 ... 1.310559E-01
1 10 3 3.723085E-01 3.142439E-01 ... 9.300982E-02
1 15 4 3.008842E-01 2.611556E-01 ... 5.933966E-02
1 20 5 2.286652E-01 2.062194E-01 ... 3.179939E-02
1 25 6 1.555409E-01 1.491652E-01 ... 1.239897E-02
1 30 EP 7 8.107462E-02 9.143108E-02 ... 2.386616E-03

This output is similar to that above, but note that it is obtained slightly more efficiently because
the extra parameters PAR(12-21) representing the coordinates of the equilibria are no longer part
of the continuation problem. Also note that AUTO has chosen to take slightly larger steps along
the branch. Finally, we can continue in the opposite direction along the branch from the original
starting point (again with IEQUIB=-1).

make third
BR PT TY LAB PAR(3) L2-NORM PAR(1)
1 5 8 4.997590E-01 4.060153E-01 ... 1.637322E-01
1 10 9 b5.705299E-01 4.551872E-01 ... 2.065264E-01
1 15 10 6.416439E-01 5.031844E-01 ... 2.507829E-01
1 20 11 7.133301E-01 5.500668E-01 ... 2.959336E-01
1 25 12 7.857688E-01 5.958712E-01 ... 3.415492E-01
1 30 13 8.590970E-01 6.406182E-01 ... 3.872997E-01
1 35 EP 14 9.334159E-01 6.843173E-01 ... 4.329270E-01

The results of both computations are presented in Figure 21.1, from which we see that the orbit

shrinks to zero as PAR(1)=p — 0.
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Detailed AUTO-Commands.

COMMAND ACTION

mkdir she create an empty work directory

cd she change directory

@dm she copy the demo files to the work directory

cp r.she.1 r.she
cp s.she.1 s.she
@fc she

@h she dat
@sv 1

get the AUTO constants-file

get the HomCont constants-file

use the starting data in she.dat to create q.dat
continue heteroclinic orbit; restart from q.dat
save output-files as p.1, q.1, d.1

cp r.she.2 r.she
cp s.she.2 s.she
@h she dat
@sv 2

get the AUTO constants-file

get the HomCont constants-file
repeat with IEQUIB=-1

save output-files as p.2, q.2, d.2

cp r.she.3 r.she
cp s.she.3 s.she
@h she 2

@ap 2

get the AUTO constants-file

get the HomCont constants-file

continue in reverse direction ; restart from q.2
append output-files to p.2, q.2, d.2

Table 21.1: Detailed AUTO-Commands for running demo she.
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Figure 21.1: Projections into (z,y, z)-space of the family of heteroclinic orbits.
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Chapter 22

HomCont Demo : rev.

22.1 A Reversible System.

The fourth-order differential equation
u////+Pu1/ o — u3 =0

arises in a number of contexts, e.g., as the travelling-wave equation for a nonlinear-Schrédinger

equation with fourth-order dissipation ( , ) and as a model of a strut on
a symmetric nonlinear elastic foundation ( , ). It may be expressed
as a system
Ul = U2
vz (22.1)
Uz = Uy
iy = —Pug—uy +ud
Note that (22.1) is invariant under two separate reversibilities
Rl : (Ul, Uz, U3, Ug, t) = (ula —Ug2, U3, —U4, _t) (222>
and
R2 . (Ul, U2, U3, Uy, t) — (—ul, U2, —U3, Uy, —t) (223)

First, we copy the demo into a new directory
@dm rev

For this example, we shall make two separate starts from data stored in equation and data files
rev.f.1, rev.dat.1l and rev.f.3, rev.dat.3 respectively. The first of these contains initial
data for a solution that is reversible under R; and the second for data that is reversible under

Ry.

22.2 An R;-Reversible Homoclinic Solution.

The first run

148



make first

starts by copying the files rev.f.1 and rev.dat.1 to rev.f and rev.dat. The orbit contained
in the data file is a “primary” homoclinic solution for P = 1.6, with truncation (half-)interval
PAR(11) = 39.0448429. which is reversible under R;. Note that this reversibility is specified in
s.rev.1 via NREV=1, (IREV(I), I=1,NDIM) = 0 1 0 1. Note also, from r.rev.1 that we only
have one free parameter PAR(1) because symmetric homoclinic orbits in reversible systems are
generic rather than of codimension one. The first run results in the output

BR PT TY LAB PAR(1) L2-NORM MAX U(1)
1 7 UZ 2 1.700002E+00 2.633353E-01 4.179794E-01
1 12 UZ 3 1.800000E+00 2.682659E-01 4.806063E-01
1 15 UZ 4 1.900006E+00 2.493415E-01 4.429364E-01
1 20 EP b5 1.996247E+00 1.111306E-01 1.007111E-01

which is consistent with the theoretical result that the solution tends uniformly to zero as P — 0.
Note, by plotting the data saved in q.1 that only “half” of the homoclinic orbit is computed up
to its point of symmetry. See Figure 22.1.

The second run continues in the other direction of PAR(1), with the test function 15 activated
for the detection of saddle to saddle-focus transition points

make second

The output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) PAR(22)
1 11 UZ 6 1.000005E+00 2.555446E-01 1.767149E-01 ... -3.000005E+00
1 22 UZ 7 —-1.198325E-07 2.625491E-01 4.697314E-02 ... -2.000000E+00
1 33 UZ 8 -1.000000E+00 2.741483E-01 4.316007E-03 ... -1.000000E+00
1 44 UZ 9 -2.000000E+00 2.873838E-01 1.245735E-11 ... 2.318248E-08
1 55 EP 10 -3.099341E+00 3.020172E-01 -2.749454E-11 ... 1.099341E+00

shows a saddle to saddle-focus transition (indicated by a zero of PAR(22)) at PAR(1)=-2. Beyond
that label the first component of the solution is negative and (up to the point of symmetry)
monotone decreasing. See Figure 22.2.

22.3 An Rs-Reversible Homoclinic Solution.
make third

Copies the files rev.f .3 and rev.dat.3 to rev.f and rev.dat, and runs them with the constants
stored in r.rev.3 and s.rev.3. The orbit contained in the data file is a “multi-pulse” homoclinic
solution for P = 1.6, with truncation (half-)interval PAR(11) = 47.4464189. which is reversible
under Ry. This reversibility is specified in s.rev.1 via NREV=1, (IREV(I), I=1,NDIM) = 1 0 1
0. The output
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Figure 22.1: R;-Reversible homoclinic solutions on the half-interval /T € [0,1] where T =
39.0448429 for P approaching 2 (solutions with labels 1-5 respectively have decreasing amplitude)
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Figure 22.2: R;-reversible homoclinic orbits with oscillatory decay as © — —oo (corresponding
to label 6) and monotone decay (at label 10)
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BR PT TY LAB PAR(1) L2-NORM MAX U(1)

1 15 UZ 2 1.700000E+00 3.836401E-01 4.890015E-01
1 16 LP 3 1.711574E+00 3.922135E-01 ©5.442385E-01
1 19 UZ 4 1.600000E+00 4.329404E-01 7.769491E-01
1 31 UZ 5 1.000000E+00 4.808488E-01 1.083298E+00
1 86 UZ 6 -9.664802E-10 5.158463E-01 1.258650E+00

contains the label of a limit point (ILP was set to 1 in r.rev.3, which corresponds to a “coa-
lescence” of two reversible homoclinic orbits. The two solutions on either side of this limit point
are displayed in Figure 22.3. The computation ends in a no-convergence point. The solution here
is depicted in Figure 22.4. The lack of convergence is due to the large peak and trough of the
solution rapidly moving to the left as P — —2 (cf. , ).

Continuing from the initial solution in the other parameter direction

make fourth
we obtain the output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) ..
1 7 UZ 8 1.600000E+00 3.701709E-01 3.836833E-01
1 33 UZ 9 9.999980E-01 3.614405E-01 1.775035E-01
1 93 UZ 10 -7.819855E-06 3.713007E-01 4.698309E-02

which again ends at a no convergence error for similar reasons.
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Figure 22.3: Two Rs-reversible homoclinic orbits at P = 1.6 corresponding to labels 1 (smaller
amplitude) and 5 (larger amplitude)
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Figure 22.4: An Rs-reversible homoclinic orbit at label 8
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Detailed AUTO-Commands.

COMMAND ACTION

mbkdir rev create an empty work directory

cd rev change directory

@dm rev copy the demo files to the work directory

cp rev.f.1 rev.f

cp rev.dat.1 rev.dat
cp r.rev. 1 r.rev

cp s.rev.1 s.rev
@fc rev

@h rev dat

@sv 1

get equations file to rev.f

get the starting data to rev.dat

get the AUTO constants-file

get the HomCont constants-file

use the starting data in rev.dat to create q.dat
increase PAR(1)

save output-files as p.1, q.1, d.1

cp r.rev.2 r.rev
cp s.rev.2 s.rev
@h rev 1

@Qap 1

get the AUTO constants-file

get the HomCont constants-file

continue in reverse direction; restart from q.1
append output-files top.1, q.1, d.1

cp rev.f.3 rev.f

cp rev.dat.3 rev.dat
cp r.rev.d r.rev

cp s.1ev.3 s.rev

@fc rev

@h rev dat

@sv 3

get equations file with new value of PAR(11)

get starting data with different reversibility

get the AUTO constants-file

get the HomCont constants-file

use the starting data in rev.dat to create q.dat
restart with different reversibility

save output-files as p.3, q.3, d.3

Cp T.TeV.4 T.7ev
cp S.rev.4 S.rev
@h rev 3

Qap 3

get the AUTO constants-file

get the HomCont constants-file

continue in reverse direction; restart from q.3
append output-files to p.3, q.3, d.3

Table 22.1: Detailed AUTO-Commands for running demo rev.
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