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Chapter 1

Introduction to Dynamical
Systems

p- 7,1 -13
Example 1.8 (Symbolic dynamics revisited)
p- 12, 1. 3
SNfS)=nun,
p. 28,1. 9

If no generalized eigenvectors are associated to ¢, then the monodromy matrix
M (T),) has a one-dimensional invariant subspace spanned by ¢ and a comple-
mentary invariant (n — 1)-dimensional subspace X : M(Tp)X = X. Take the
subspace ¥ as a cross-section to the cycle at o = 0. One can see that the
restriction of the linear transformation defined by M (Tp) to this invariant sub-
space ¥ is the linearization of the Poincaré map P defined by system (1.14) on
3. Therefore, their eigenvalues u1, o, . - ., fbn—1 coincide.

If generalized eigenvectors are associated to ¢, the theorem remains valid,
however, the proof becomes more involved and is omitted here. [



Chapter 2

Topological Equivalence,
Bifurcations, and Structural
Stability of Dynamical
Systems

p- 38,1. 9
One can write the last equation in a more compact form using the symbol of
map composition:

p. 59, L. -1
which would imply that the map (z,a) — (ho(z), p(a))



Chapter 3

One-Parameter Bifurcations
of Equilibria in
Continuous-Time
Dynamical Systems

p. 98, 1. -12
(Hint: Introduce y = —4 and rewrite the equation as a system of two differential
equations.)

p. 101,19

Fix « small but positive. Both systems (A.1) and (A.2) have a limit cycle
in some neighborhood of the origin. Assume that the time reparametrization
resulting in the constant return time 27 is performed in system (A.1) (see the
previous step). Consider a homeomorphism H that conjugates the Poincaré
map of (A.1) with that of (A.2) at this parameter value.

Define a map z +— Z by the following construction. Take a point z = 1 +1ixs
and find values (pg, 70), where 7o is the minimal time required for an orbit of
system (A.2) to approach the point z starting from the horizontal half-axis with
p = po. Now, take the point on this axis with p = H(pp) and construct an orbit
of system (A.1) on the time interval [0, 79] starting at this point.



p.101

(X1, X2) (X1, Xz)

Po H(Po)

Figure 3.14: Construction of the homeomorphism near the Hopf bifurcation.

p. 102, 1. 17

Phase-portrait bifurcations in a generic one-parameter system on the plane
near an equilibrium with purely imaginary eigenvalues were studied first by
Andronov & Leontovich [1939).



Chapter 4

One-Parameter Bifurcations
of Fixed Points in
Discrete-Time Dynamical
Systems

p.104, 1. -15
Remark:

This bifurcation is also referred to as a limit point, saddle-node bifurcation,
turning point, among other terms. ¢

p.109, 1. 13
where 1 3 = £/« (see Figure 4.4).

p- 111, top
4.5 Flip bifurcation theorem

[Moved from the original Proof]

By the Implicit Function Theorem, the system = + f(z,«) has a unique
fixed point zg(a) satisfying 2¢(0) = 0 in some neighborhood of the origin for
all sufficiently small |a| since f,(0,0) # 1. We can perform a coordinate shift
placing this fixed point at the origin. Therefore, we can assume without loss of
generality that = 0 is the fixed point of the system for |«| sufficiently small.

Theorem 4.3 Consider a one-dimensional system
z— f(z,a), R acR!

with smooth f satisfying f(0,«) =0, and let p = f(0,0) = —1. Assume that
the following nondegeneracy conditions are satisfied:



. 0,
(B2) fon(0,0) £ 0.

Then there are smooth invertible coordinate and parameter changes transforming
the system into

n—= —(1+B)m+n*+0(n").

Proof:
The map f can be written as follows:
fl@,0) = fila)r + fola)a? + fs(a)z® + O(a?), (4.1)
where f1(a) = —[1 + g(«)] for some smooth function g. Since ¢g(0) = 0 and

g/(O) = 7fma(070) 7& 07

p. 113, 1. 5
x— aze ¥ = F(z,a) (4.12)

p. 113, 1. -1
One can check that with f(z, ) = F(x1(ay + ) + 2,01 + ) — 21 (a1 + @)
one has

o0)= 5 >0, fral00)= 5 #0.

p. 115,1. 7

2a(a) 5 | |d@) "
(1+a) <1+ 1+ap2+(1+a)2 4>

L+ a+a(a)p® +O(p"),

11+ a+d(a)p?|

p.123,1. 1
The truncated composition of the transformations
p.123,1. 9
fi— 342 2 2
_ 92091;(# > 1) |9211| _ |9202| _ +9£7 (4.20)
2 —p)(p—1)  |pP—p 20 —p) 2
p. 126. 1. 10

(1) Prove that in a small neighborhood of x = 0 the number and stability of
fixed points and periodic orbits of the map (4.2) are independent of higher-order
terms, provided |« is sufficiently small.



p- 133, 1. 9
A contraction map in a complete metric space has a unique fixed point u(°°) € U:

p. 134, 1. -18

Y2 — Q1 @2 — @1+ a2 [Ko(u(p2), p2) —
yP2) —

Kao(u(e1), 1))
) — Kao(u(p1 |

o (u(
p. 134, 1. -11
— | Ka(u(p2), 02) — Ko (u(p1), 01)| = —2X(02 — ¢1),

p.- 134, 1. -2:
(p) = (1 = 20)u(@) + a** Ha(u($), §), (42.12)

p. 135, 1. 12

a(p1) —alp2)] < (1= 2a)|u(r) — u(@2)|

|
+ a®/2A[[u(p1) — u(@2)| + 61 — Gel]
< (1—2a+2X03/%)|@1 — o,

p. 135, 1. -14
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pp. 136, 1. 11
Using the estimates (A2.16) and (A2.17), we can conclude from (A2.13) that

1 — ol < ellur — uzl|,



Chapter 5

Bifurcations of Equilibria
and Periodic Orbits in
n-Dimensional Dynamical
Systems

p-150, top
LO LO Ll LO
a<0 a=0 a>0

Figure 5.14: Flip bifurcation of limit cycles.



p-150, bottom

Lo Lo

Lo
a<0 a=0 a>0
Figure 5.15: Neimark-Sacker bifurcation of a limit cycle.

p- 167,1. 1
giving rise to a unique saddle limit cycle for r<r; [Roschin 1978].



Chapter 6

Bifurcations of Orbits
Homoclinic and
Heteroclinic to Hyperbolic
Equilibria

p. 185, 1. -5
as a composition of a near-to-saddle map

p. 188, 1. -17
Step 4 (Analysis of the complosition)

p. 195,1. 1
The (nontrivial) multipliers of the cycle are pesitive—and inside the unit circle:

|/L1’2| < 1.
p- 199, 1. 1

a composition

P=QoA,



Chapter 7

Other One-Parameter
Bifurcations in
Continuous-Time
Dynamical Systems

p- 225, 1. 4
can be represented as the composition of a “local” map

p. 225, 1. 19
S USy = Q2 NI

p-240, bottom

P~

Figure 7.22: Invariant cycles: (a) F-cycle; (b) S-cycle.

10



p-247, top

Xt

|
Figure 7.27: Poincaré map for an S-cycle.

p- 249, 1. -19
Check that Rv = —v, where R is the involution that leaves Lorenz system (7.15) invariant, so
that case (ii) of Theorem 7.7 is applicable.

p. 250, 1. 11
There are three subcases: (A) b(0) < a(0); (B) b(0) > a(0),a(0) + b(0) < 0; (C) b(0) >
a(0),a(0) + b(0) > 0.

p. 250, 1. -19

{ Z1 = )\(04)2’1 +f1(21,21722,2270é)7 (7 22)

22 = M)z + fao(z1, 21, 22, 22, ),

11



Chapter 8

Two-Parameter
Bifurcations of Equilibria in
Continuous-Time
Dynamical Systems

p. 260, 1. -9
Finally, perform a linear scaling
n =&V le(u),
and introduce new parameters:
fr o= mle(p)l,
B2 = po.

12



pP- 262, top

Figure 8.3: One-dimensional cusp bifurcation.

p. 262, 1. -16
T = {(B1, B2) : 4852753 = 0}

13



pP- 263, top

Figure 8.4: Equilibrium manifold near a cusp bifurcation.

p- 264, top

o

B

0 B,

Figure 8.5: Hysteresis near a cusp bifurcation.
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P- 265, top

0
B,

T, © T,
T, A ®
@ 0 Bl
Figure 8.6: Cusp bifurcation on the plane.
p. 267, 1. 4
dw . 6
— = (@) +i)w + di(@)w|w]* + dy(@)wlw]* + O(|wl"), (8:21)
p. 267, 1. 13
d .
d—zg = (v+i)w+ ((v+i)ey +dy)ww|® + (v +i)ez + erdi + da)w|w|* + O(|w|®).
p. 267 1. 17
dw . 2 4 6
i (v(a) + )w + I (0)w|w|* + l2(a)w|w|* + O(|w|®),
p. 268, 1. 2
Re ¢1(0 1 1
u0) =0, 1(0) = 2 = (e g (0) — L m(ama(0)gn 0)) <o
p. 269, 1. 7
Then, rescaling
1
W= —F——= U, UE C,
VIL2())|

15



and defining the parameters
Bl = M1,
B ! %
2 = e M2,
| L2 ()]

p. 274,1. 7
where ag; (@), b (o), and

p.- 276, 1. -5

foo(@) = hoo(e), fio(a) = hio(a) 4 2hgo(a)f(cv),

and
fzo(Ot) = hgo(a) =+ 4h10(0¢)9<0¢) + 2}100(04)92(()5),
p- 277, 1. 7
where
pi(a) = hoo(e), p2(a) = hio(a)—hoo(a)hoz(a),
and

(8.46)

A(O&) = % (hgo(a) — 2h10(0¢)h02(0¢)+;]7,00(()()]7,32((1)) s B(Oé) = hll(oz).

p. 201, 1. -1
OGzoo(O) e
Go11(0) ™

16

(8.47)



p. 296

@ N SE
W S, X
N7 ? 7

Al

Figure 8.14: Bifurcation diagram of the amplitude system (8.81) (s = —1, 6 <
0).
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p- 297, top
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Figure 8.16: Bifurcation diagram of the amplitude system (8.81) (s =1, § < 0).
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p- 297

@ ©

O 9
=
@////a ) ® Q

Figure 8.17: Bifurcation diagram of the amplitude system (8.81) (s = —1, 6 >
0).

p. 303, L -5
with O3, pUs(E, 02) = O(€2 + p7)2).
p. 310, 1. 7 )
Thus, G2111 = 0, Hi121 =0,
p. 314, 1. 3

(otherwise, reverse-time-and exchange the subscripts in (8.112)).

19



p. 315

@ T2 Ho @ T,
@ @ Ty @ @ Tz
© ©
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Figure 8.25: Parametric portraits of (8.111) (the “simple” case).

p. 317, 1. 4

B o\ _ 61  (-1)O+(-1A , 3
C= {( Lo ) o2 = 0_1M1 (9_1)3 ul+0(ul)
that should be considered when both iy > Qs and Sy > pso.
p. 317,1. 7

(PP.7) p22(0) # p12(0);
(PP.8) p21(0) # p11(0).

p. 317, 1. 12

sign Iy = sign {000 — 1)A +5(5 — 1)Q]}.

20



p. 318, 1. -21

- -1 (0-1)%A+(5-1)%00 , ,
Y—{(M1>H2)~ M2__9—].'u1+ (250—6—9)(9—1)2 M1+O(M1) ;

p. 318, 1. -11

Recalling the interpretation of equilibria and cycles of the amplitude system
(8.110) in the four-dimensional truncated normal form (8.108), we can establish
a relationship between bifurcations in these two systems. The curves H; o at
which the trivial equilibria appear in (8.110) obviously correspond to Hopf bi-
furcation curves in (8.108). These are the two “independent” Hopf bifurcations
caused by the two distinct pairs of eigenvalues passing through the imaginary
axis. Crossing a bifurcation curve T; (or T3) results in the branching of a
two-dimensional torus from a cycle. Therefore, the curves 77 2 correspond to
Neimark-Sacker bifurcations in (8.108). On the curve C, system (8.108) ex-
hibits a bifurcation that we have not yet encountered, namely, branching of a
three-dimensional torus from the two-dimensional torus. The curves J describe
blow-ups of three-dimensional tori, while the curve Y implies the presence of a
heteroclinic coincidence of the three-dimensional stable and unstable invariant
manifolds of a cycle and a three-torus.

21



p. 320

R
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Figure 8.29: Generic phase portraits of (8.114).

p. 324, 1. -19

(2) (Lemma 8.2) Proof that a smooth system

p. 324, 1. -11

Show that this curve is well-defined near the origin and can be locally parametrized by x.

p. 326, 1. 18

—arzg + w1 (1 — af —a3),

2 2

arz1 +w2(1 —xf — x5) — g,

22



p- 329,1. 3
Al = 0, )\273 = *iwg
p- 330, 1. -4
yd
€:6x7 P:(S% dt:??
p. 334, bottom

> VV1:=mtaylor (sum(sum(sum(sum(
> V1[j,k,1,m]l*z1"j*z k*ul"1*u"m,

> j=0..3),k=0..3),1=0..3),m=0..3),

> [z,z1,u,ul],4);

> WWi:=mtaylor (sum(sum(sum(sum(

> Wilj,k,1,m]*z1"j*z"k*ul~1l*u"m,

> j=0..3),k=0..3),1=0..3),m=0..3),

> [z,z1,u,ul],4);

> for j from O to 1 do

> for k from 0 to 1 do

> for 1 from 0 to 1 do

> for m from 0 to 1 do

> if j+k+l+m < 2 then

> V[(j,k,1,m]:=0; Vi[j,k,1,m]:=0;
> Wlj,k,1,m]:=0; Wi[j,k,1,m]:=0;
p. 335, 1. 10

By these commands the transformation (and its conjugate) that bring the system into the
normal form is defined. Its coefficients have to be found.

> V_z:=diff(VV,z); V_zl:=diff(VV,z1);
> V_u:=diff(VV,u); V_ul:=diff(VV,ul);
> W_z:=diff (WW,z); W_zl:=diff(WW,z1);
> W_u:=diff(WW,u); W_ul:=diff(WW,ul);

p. 337, 1. -18
n "2 T
G=—, C= a2 L= (4.3)

v

This rescaling reduces (A.2) to

p. 344,1. 4
(i.e., all extrema are minimum points).

p. 344, 1. -6
By the Inverse Function Theorem, these equations define a smooth function

B(7).

p. 345, 1. 2
The homoclinic curve P given by (A.13) is mapped by (A.20) into the curve

23



Chapter 9

Two-Parameter
Bifurcations of Fixed Points
in Discrete-Time Dynamical
Systems

p-353, top

Figure 9.2: Bifurcation diagram of the normal form (9.11).
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p- 356, top
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Figure 9.3: Bifurcation diagram of the normal form (9.17).

p. 356, 1. -12
at the half-parabola:

T = {(51752) (P = *iﬂ%» P2 < 0}’

p. 359, 1. 13

w = @O(L 4 By + (B2 +iD1(B))[w]* + (D2(8) +iBa(B)) lw]*)w

+ Vg (w,w),

p. 359, 1. -14

w ew(ﬂ)(l + 681+ (B + iDl(ﬁ))WF + (D2(8) + iEZ(ﬁ))|w‘4)w'

p.359, 1. -4
(Ch.2)

p.360, 1. -12

T. = {(51,52) B

p. 362, 1. -17

i=F(z)=Az+FO@)+ F®(z)+ -

4L

1
2(0)

25

Ly(0) = %[hn d1(0)]*+Re d2(0) # 0.

ﬂ%+o<ﬂ§>,52>o} ,

, x € R",

(9,21)

(9.22)

(9.25)



p. 363, 1. 4

ot (x) = etz + 9P (@) + g® (@) + ... +9P® () + O(|=| ). (9.27)
p. 364, 1. -15
eigenvectors w1 € R? of the transposed
p. 367, 1. 12
(Rll) (120(0) + bll(O) — bgo(O) 75 0;
p. 369, L. -10
eigenvectors w1 € R? of the transposed
p.- 372, 1. 7
&G = —“a+&+ Y, wtdd+o(lgl,
2<j+k<3
& = —b+ Y, opdd+o(El",
2<j+k<3
p. 373, 1. 2
30 0 0 -1 0 b30
-3 2 0 0 0 -1 P21
1 -1 1 0 0 0 d1o |
0O 0 0 -1 0 0 V30 = Rlg, 1],
0 0 0 -3 2 0 a1
o 0 0 1 -1 1 Wi
p. 379, 1. -7
4
P={(e1,62): €9 = 351 +o(e1),e1 >0,
p. 382, 1. -14
Cla) = g20(@)g11 (@) (2pu() + fi(a) — 3) lgu (@) gala) (9.72)
2(a(a) — 1) (p2 () — p(e) (a)|? — f(e) 2
p. 393, 1. 2
eia oy
— g =AW+,
p. 397, 1. 18

inside, on, or outside a “big” cycle if it exists when the bifurcation takes

p. 398,1. 5

V(a,b) : Hy —Tin — Cp — Cs — Hy — T
VI : Hy— T, —Cf —F— Cs — Hy — T}
vil : Hy— Ty — H —L—Cp — Csg— Hy — 1T}
Vil : Hy—TwHy —L—Ch —F—Cs— Hy—T.

26
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Figure 9.22: Bifurcation sequence in region VIII.




Chapter 10

Numerical Analysis of
Bifurcations

p. 425, 1. -8
the representation of the Poincaré map P : ¥y — Yo by a composition of N —1
maps

p. 447, 1. -3
B(q1,42) JO) \ oy s
( i 00 > - ( i )U(O) = A0)g. (10.65)

28



Appendix A

Basic Notions from
Algebra, Analysis, and
Geometry

p- 478,1. 5

det A = Z (—1)5(i1’i2 """ i")aillaizg S,
(41,2, -yin) ESn
p. 483, 1. 3
their composition h = fog
p. 482,1. 5
evaluated at a point y € R™:
p. 482,1. 7
where i =1,2,...,k, j=1,2,...,m.

p. 482, 1. -15
Consider a map
(z,y) = F(z,y),
where
F:R"xR™ —R™,

is a smooth map defined in a neighborhood of (z,y) = (0,0) and such that
F(0,0) = 0. Let F,(0,0) denote the matrix of first partial derivatives of F’ with
respect to y evaluated at (0,0):

R0 = (P50

(’9yj

(z,y)=(0,0)

29



Theorem A.3 (Implicit Function Theorem) If the matriz F,(0,0) is non-
singular, then there is a smooth locally defined function y = f(x),

f:R* 5 R™,

such that
F(z, f(x)) =0,

for all x in some neighborhood of the origin of R™. Moreover,

fo(0) = =[F,(0,0)] 7' . (0,0). O

30
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