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Introduction to Dynamical Systems

p-8, 1.6

Example 1.8 (Symbolic dynamics revisited)
p. 12, 1. -4

SNf(S)=ViuV,
p. 19, 1. -15
H(p,v) = ; — k?cosp. ©
p. 21, L 2
that is smooth in (t,xo),

p. 30, 1. 13

If no generalized eigenvectors are associated to ¢, then the monodromy
matrix M (Ty) has a one-dimensional invariant subspace spanned by ¢ and
a complementary invariant (n — 1)-dimensional subspace 3 : M (Tp)X = X.
Take the subspace X as a cross-section to the cycle at zog = 0. One can see
that the restriction of the linear transformation defined by M (T}) to this
invariant subspace X is the linearization of the Poincaré map P defined by
system (1.14) on X. Therefore, their eigenvalues pi, pa, . .., in—1 coincide.
If generalized eigenvectors are associated to ¢, the theorem remains valid,
however, the proof becomes more involved and is omitted here. O
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Topological Equivalence, Bifurcations,
and Structural Stability of Dynamical
Systems

p-41,1. 9
We can write the last equation in a more compact form using the symbol
of map composition:

p- 43, 1. 13
inV=hU)CR",

p. 64, 1. 19
which would imply that the map (z, @) — (ho(z),p(@))

p-77,1. 12
images of R~ and R™+ under injective immersion.
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One-Parameter Bifurcations of
Equilibria in Continuous-Time
Dynamical Systems

p- 97, 1. 11
Obviously, a composition of the transformations

p-98,1. 3
2.’ = ’lU —+ hg()’w’(b —+ hll(wlb =+ ’lf}'w) + hoglﬁ’lb,

p- 102, 1. -12
At a = ag, the nontrivial equilibrium Fy at-a—=-eaq has
p-104, top

Xz

a>0ag a<ag

FIGURE 3.11. Hopf bifurcation in the predator-prey model.
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p.106, 1. -10

c:=simplify(evalc(1l/conjugate(sl)));
pl1]:=simplify(evalc(c*P[1]));

pl[2] :=simplify(evalc(c*P[2]));
simplify(evalc(conjugate(p[1])*q[1]l+conjugate(p[2])*q[2]));

V V V VvV V

p. 107, 1. 13

\'4

gl[2,0] :=simplify(2*evalc(coeftayl(H, [z,21]=[0,0],[2,0]1)));
gl1,1] :=simplify(evalc(coeftayl(H, [z,z1]=[0,0],[1,11)));
gl2,1] :=simplify(2*evalc(coeftayl(H, [z,2z1]=[0,0],[2,1]1)));
>—xf2)=evate 2 +z+g 2 +2ztreconFugatetag2 )+

vV Vv

p. 107,1-13

> 1[1]:=factor(1/(2*xomega~2)*Re (I*g[2,0]*g[1,1]+omega*g[2,1]));

p. 107, 1. -11:

1 24 A2
Iy = =—Re(s 21) = — v < 0,
1= 53 e(ig20911 + wgo1) 2A(1 + A?)
p- 107, 1. -4:
(Hint: Introduce y = —& and rewrite the equation as a system of two
differential equations.)
p. 110, 1. -8:

Fix « small but positive. Both systems (A.1) and (A.2) have a limit cycle
in some neighborhood of the origin. Assume that the time reparametriza-
tion resulting in the constant return time 27 is performed in system (A.1)
(see the previous step). Consider a homeomorphism H that conjugates the
Poincaré map of (A.1) with that of (A.2) at this parameter value.

(X1, X2) (X1, X2)

Po H(po)

FIGURE 3.14. Construction of the homeomorphism near the Hopf bifurcation.

sl:=simplify(evalc(conjugate(P[1])*q[1]+conjugate(P[2]*q[2])));
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Define a map z — Z by the following construction. Take a point z =
21 + ixe and find values (pg, 7o), where 7 is the minimal time required
for an orbit of system (A.2) to approach the point z starting from the
horizontal half-axis with p = pg. Now, take the point on this axis with
p = H(pp) and construct an orbit of system (A.1) on the time interval
[0, T0] starting at this point.

p. 111, 1. -11:

Phase-portrait bifurcations in a generic one-parameter system on the
plane near an equilibrium with purely imaginary eigenvalues were studied
first by Andronov & Leontovich [1939].
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One-Parameter Bifurcations of Fixed
Points in Discrete-Time Dynamical
Systems

p-114, 1. -12:
Remark:

This bifurcation is also referred to as a limit point, saddle-node bifurca-
tion, turning point, among other terms. <$

p-119, 1. 19:
where 21 2 = £/a (see Figure 4.4).

4.5 Generic flip bifurcation

Moved from p. 121, 1. -9 — -5:

By the Implicit Function Theorem, the system = — f(x, «) has a unique
fixed point zo(a) satisfying x0(0) = 0 in some neighborhood of the origin
for all sufficiently small |«| since f;(0,0) # 1. We can perform a coordi-
nate shift placing this fixed point at the origin. Therefore, we can assume
without loss of generality that « = 0 is the fixed point of the system for |a/]
sufficiently small.

Theorem 4.3 Consider a one-dimensional system
r f(r,a), z€R', aecR

with smooth f satisfying f(0,a) = 0, and let p = f,(0,0) = —1. Assume
that the following nondegeneracy conditions are satisfied:

(B-1) 5(f22(0,0))% + § frza(0,0) # 0;
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(B2) f2a(0,0) 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

n —(1+B)n+n®+0(n).

Proof:
The map f can be written as follows:
fla,a) = fi(a)z + fola)2® + fa(a)a® + O(a?), (4.1)
where f1(a) = —[1 + g(a)] for some smooth function g. Since g(0) = 0 and
g/(O) = —f2a(0,0) # 0,
p. 123, 1. 13
x— are " = F(z,a) (4.17)
p. 123, 1. -4

One can check that with f(z,a) = F(z1 (o + )+, a1 + ) — 21 (a1 + @)
one has

c(0) = LS 0, fza(0,0)= —e% # 0.

6
p- 125, 1. -6
/2
2a(a) (o) \'
1 d 2 = (1 1 2 4
Latday? = (4o (12000 MO,
= l+a+ala)p® +0(p"),
p-133, 1. -10

The truncated composition of the transformations

p-133, bottom

_ 920911 (i — 3+ 2p) n lg11]° n |goz]? g1

“ 2(/1'2 - /i)(,l_i - ].) ‘M|2 — ﬂ 2(/1'2 _ ﬂ) + 77 (420)

134, 1. -8
4.5, 4.6, and 4.7,

136, 1. -16:

If we introduce vy = up_1, the equation can be rewritten as

ugr1 = rug(l —og),

Vg+1 = Uk,
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p. 138. 1. 2

(1) Prove that in a small neighborhood of # = 0 the number and stability
of fixed points and periodic orbits of the map (4.2) are independent of
higher-order terms, provided |«| is sufficiently small.

p- 145, 1. 11:
A contraction map in a complete metric space has a unique fixed point
u(>™) e U:

p. 146, 1. -13

B2 — 41 2 — 1 + a3/ [Ko(u(p2), p2) — Ka(u(pr1), 01)]
|

> n— o1 — 02 [Ku(u(pa), 02) — Ka(u(r), 01)
p. 146, 1. -6
K a(u(p2), 92) — Kalu(pr), 01)] > ~2A(02 — 1),
p- 147, 1. 5:
i) = (1 — 20)u(@) + a2 Ho(u($), §), (A2.12)
p- 147, 1. 14:

a(er) —a(e2)l < (1= 2a)[u(@r) — u(P2)|

IN
=
|
[\
£
=2
§>
|
=
%
V]

|
+ 32\ [|u(@r) — u(@a)] + |1 — @l
(1 — 20& —|— 2)\0&3/2”@1 — ¢2|,

IN

p. 147, 1. -6:

[u1(p) —u2(p)l < (1= 2a)[ur(p1) — uz(p2)]
+ a3/2|Ha(u1(¢1)»¢1)A— He (u2(42), ¢2)]

IN

(1 = 2a)[ur (1) — ua($2)]

+ a2\ [Jur(@1) — ua(@2)] + 161 — @,
(A2.13)

pp. 148, 1. 18:

Using the estimates (A2.16) and (A2.17), we can conclude from (A2.13)

that

[ty — G2 < ellur — ual],
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Bifurcations of Equilibria and Periodic
Orbits in n-Dimensional Dynamical
Systems

p-164, top

/
<

~

a<0 a=0 a>0

FIGURE 5.14. Flip bifurcation of limit cycles.



5. Bifurcations of Equilibria and Periodic Orbits in n-Dimensional Dynamical Systems

p-164, bottom

Lo Lo

Lo

a<0 a=0 a>0

FIGURE 5.15. Neimark-Sacker bifurcation of a limit cycle.

p. 187, 1. -13

giving rise to a unique saddle limit cycle for r<r; [Roschin 1978].

p. 188, 1. -11

where X = X(r,t), Y = Y(r,t); r € [0,7]; t > 0; A, B,d,0 > 0 (see
Chapter 1 and Lefever & Prigogine [1968]. Consider the case when X and
Y are kept constant at their equilibrium values at the end points:

B

X(0,) = X(r,0)=C, Y(0,0) = Y(r,0) = 7.
Fix 1
00:17 d0:27 90255

9
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Bifurcations of Orbits Homoclinic and
Heteroclinic to Hyperbolic Equilibria

p.- 203, 1. 1
as a composition of a near-to-saddle map

p- 206, 1. 6
Step 4 (Analysis of the complosition)

p. 212, 1. -10

(i.e., glueing points (£,1) and (2,¢) for [£] < 1).

p. 214, 1. -5

The (nontrivial) multipliers of the cycle are pesitive—and inside the unit
circle: |p1,2] < 1.

p. 218, 1. -24
Sketch of the proof of Theorems 6.3 and 6.5

p- 218, 1. -13
composition

P=QoA

p. 220, 1. -11
Sketch of the proof of Theorems 6.4 and 6.6

p. 220, L. -7
and represent the Poincaré map P : ¥t — ¥ as a composition

p. 232, 1. -9
M, (0) = /S(div 9)(x) dxidzy. &
)
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p. 240, 1. 13
(10) (Proofs of Theorems 6.3—6.6 revisited)

p. 240, 1. 21
(¢) Compute a composition of the maps
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Other One-Parameter Bifurcations in
Continuous-Time Dynamical Systems

p- 260, 1. - 5
can be represented as the composition of a “local” map

p. 261, 1. - 14
QpX NII; (see Figure 7.10(a))

p. 289, 1. 16

Check that Rv = —v, where R is the involution that leaves Lorenz system (7.15)
invariant, so that case (ii) of Theorem 7.7 is applicable.
p- 290, 1. 6

There are three subcases: (i) b(0) < a(0); (ii) b(0) > a(0),a(0) + b(0) < 0; (iii)
b(0) > a(0),a(0) + b(0) > 0.

p. 290, 1. 17
Z Ma)zr + fi(21, 21, 22, 22, @), (7.23)
%9 M)z + fa(z1, 21, 22, 22, @), '

This is page 12
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Two-Parameter Bifurcations of
Equilibria in Continuous-Time
Dynamical Systems

p. 302, 1. - 15
Finally, perform a linear scaling

n=&V|c(p),

and introduce new parameters:

B = v/ le(p)l,s
B2 = po.

p. 309, 1. 1

(571: = (W(a) + i)w + di (@)wlw|* + dz(@)wlw|* + O(jwl"), (8.21)

p. 309, 1. 10

d . ;
d—? = (v+i)w+((v+i)er +di)w|w]? + ((v+i)ea+erdy +do)w|w|* +O(|w|®).

p. 309, 1. 14

% = ((a) + dw + h(a)w|w]* + L (e)ww|* + O(jwl®),

p. 310, 1. 2

= Re c1(0) = 21 (Re g21(0) — ;Im(gzo(o)gu(o)o =0,

wo wo

w(0) =0, 11(0)

This is page 13
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8. Two-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems

p. 311,17

Then, rescaling

1
w=——-u, ucC!,

VL)

and defining the parameters

fr = i,
p ! Iz
2 = = 2,
| La(p)]
p. 316, 1. 11
where ag; (@), by («), and
p. 319, 1. 5

Joo(a) = hoo(a), fro(a) = hio(a) + 2hgo(a)0(c),

and
fgo(a) = hgo(a) + 4h10(a)9(a) + 2h()()<(l>92 (()4)7

p. 319, 1. -11
where

pi(er) = hoo(a), p2(a) = hio(er)—hoo(@)hoz(a), (8.46)
and

A(Oé) = % <h20(0&) — 2h10(a)h02(a)+;hoo(a)h%Q((y)) , B(Oé) = hll(Oé).
(8.47)
p. 335, 1. 10
T i G200(0)

e b)
G011(0) 2

14
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p. 340

O

YA )

W \5@ Pl

© s.

WA @@S' DX

FIGURE 8.14. Bifurcation diagram of the amplitude system (8.81)
(s=-1, 6 <0).

15
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p. 341

y o AL
VAN U

H4 B
©) @
NS+ @/\
{( :ji T @ 7 T~
® 0 B
P /"\ P” (5 s S.
FA N SO0

N QU

FIGURE 8.16. Bifurcation diagram of the amplitude system (8.81)
(s=1,0<0).

16
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p. 342

0
S,

©

N
[
V=

FIGURE 8.17. Bifurcation diagram of the amplitude system (8.81)
(s=-1, 6 >0).

p. 347, 1. -8
with Op, p'Ws(€, p?) = O((€* + p*)?).

p. 354, 1 -14
Thus, G111 =0, Hy121 =0,

p. 358, 1. -9
(otherwise, reversetime-and exchange the subscripts in (8.112)).
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p- 359
I Ho T. I Ho T
@/ @
@ @ T @ @ T2
© ©
H2 My H2 Yy
@ @ @ @
Hl Hl
i Hy . IVT ly
@/ ! !
) ® NS
H, ! H, ®
@ |\© @,
o\, :
Hl 2 H]_
V W,
T
B @
H2 My
©)
@\ T,
Hl

FIGURE 8.25. Parametric portraits of (8.111) (the “simple” case).
p. 362, 1. 4

<?={<Z;>:uz=—g:iurfd_%?+f;_UAu?+0mﬂ}

that should be considered when both pq > Qs and oy > po.

p. 362, 1.7

(HH.7) p22(0) # p12(0);
(HH.8) p21(0) # p11(0).

p. 362, 1. 12

sign I} =sign{—0[0(0 —1)A + (6 —1)O]}.

18
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23/eit

©)

VR D
7

\
ENRYIONS)

FIGURE 8.29. Generic phase portraits of (8.114).

p. 365, 1. 16

B o s—1 (0-1)3%A+ (6 —1)%0 , .
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p. 365, 1. -3

Recalling the interpretation of equilibria and cycles of the amplitude system
(8.110) in the four-dimensional ¢runcated normal form (8.108), we can es-
tablish a relationship between bifurcations in these two systems. The curves
Hj 5 at which the trivial equilibria appear in (8.110) obviously correspond
to Hopf bifurcation curves in (8.108). These are the two “independent”
Hopf bifurcations caused by the two distinct pairs of eigenvalues passing
through the imaginary axis. Crossing a bifurcation curve T; (or T3) re-
sults in the branching of a two-dimensional torus from a cycle. Therefore,
the curves T7 2 correspond to Neimark-Sacker bifurcations in (8.108). On
the curve C, system (8.108) exhibits a bifurcation that we have not yet
encountered, namely, branching of a three-dimensional torus from the two-
dimensional torus. The curves J describe blow-ups of three-dimensional
tori, while the curve Y implies the presence of a heteroclinic coincidence
of the three-dimensional stable and unstable invariant manifolds of a cycle
and a three-torus.

p. 369, 1. -5

(2) (Lemma 8.2) Probve that a smooth system

p. 370, 1. 3
Show that this curve is well-defined near the origin and can be locally parametrized
by z.

p- 371, 1. -7
1 = —axe+xi(l— 2 — x%),
2 = onzy +z2(l — 27 —23) — a9,
p. 374, 1. 12
A1 = 0, )\2’3 = ﬂ:iu)o
p- 376, 1. 6
q

§=da, p=1dy, dt =%,
p- 380, top
> [z,z1,u,ul],4);
> WW:=mtaylor (sum(sum(sum(sum(
> Wlj,k,1,m]l*z"j*z1 k*u"l*ul m,
> j=0..3),k=0..3),1=0..3),m=0..3),
> [z,z1,u,ul] ,4);
> VV1:=mtaylor (sum(sum(sum(sum(
> Vi[j,k,1,m]*z1"j*z "k*ul 1l*u"m,
> j=0..3),k=0..3),1=0..3),m=0..3),
> [z,z1,u,ul],4);
> WW1l:=mtaylor (sum(sum(sum(sum(
> Wilj,k,1,m]*z1"j*z k*ul " 1l*u"m,
> j=0..3),k=0..3),1=0..3),m=0..3),
> [z,z1,u,ul]l,4);
> for j from O to 1 do
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for k from 0 to 1 do
for 1 from O to 1 do
for m from 0 to 1 do
if j+k+1l+m < 2 then
V[j,k,1,m]:=0; Vi[j,k,1,m]:=0;
Wlj,k,1,m]:=0; Wi[j,k,1,m]:=0;
fi;
od;
od;
od;
od;
v[1,0,0,0]:=1; V[2,1,0,0]:=0; V[1,0,1,1]:=0;
w[0,0,1,0]:=1; W[1,1,1,0]:=0; W[0,0,2,1]:=0;
v1[1,0,0,0]:=1; V1[2,1,0,0]:=0; V1i[1,0,1,1]:=0;
w1[0,0,1,0]:=1; Wi[1,1,1,0]:=0; W1[0,0,2,1]:=0;

VVVVVVVVVVVYVYVVYV

By these commands the transformation (and its conjugate) that bring the
system into the normal form is defined. Its coefficients have to be found.

> V_z:=diff (VV,z); V_zl:=diff(VV,z1);
> V_u:=diff (VV,u); V_ul:=diff(VV,ul);
> W_z:=diff (WW,z); W_zl:=diff (WW,z1);
> W_u:=diff (WW,u); W_ul:=diff(WW,ul);

p. 382, L. -1
_ M n2 _ T

Cl - 77 C m7 ]/1/2 (A 3)
p- 383,11
This rescaling reduces (A.2) to
p. 389, 1. -9
(i-e., all extrema are minimum points).
p. 390, 1. 15

By the Inverse Function Theorem, these equations define a smooth function 3(7).

p. 390, 1. -11
The homoclinic curve P given by (A.13) is mapped by (A.20) into the curve

21
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Two-Parameter Bifurcations of Fixed
Points in Discrete-Time Dynamical
Systems

p-399, top

FIGURE 9.2. Bifurcation diagram of the normal form (9.11).

p. 402, 1. 5

n— gs(n) = —(1+ B1)n+ Ban’ + 1.
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p. 402

@ @
Ny, N,
No B N Mo~

O

@ @
@ B1

/\ T(Z)
W N\ T@ "3 |FY T

ﬂw N4 E]O

FIGURE 9.3. Bifurcation diagram of the normal form (9.17).

p. 402, 1. -1
at the half-parabola:

7@ — {(ﬁl,ﬂg) 1B = *353752 < 0}7

p. 405, 1. -11

o OByt (B DBl + (Da(3) + BBl (g )
+ Ug(w,w), ’

p. 405, 1. -4

wi €O (14 B1 + (B2 +iD1(B))|w]* + (Da(B) + iBa(B))Jw[H)w.  (9.22)

p.406, 1. 7
(CH.2) L(0) = %[Im d1(0)]*+Re d2(0) # 0.
p.406, 1. -16

T. = {(51,62) B = ﬁ(o)ﬂé +0(B2), B2 > o} !
p. 408, 1. -6

i=F@)=Az+FP@)+FP@)+---, z eR", (9.25)

23
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p. 409, 1. 16
o'@) =+ 9P (@) + gD (@) +...+ 9" (@) + O(fl=)*). (9-27)
p. 411, L. 1
eigenvectors wo,1 € R? of
p. 413, 1. -6
(Rl‘l) azo(O) + b11(0) — bzo(O) 7& 0;
p. 415, 1. -5
eigenvectors wo,1 € R? of
p. 418, 1. -7
& = —&G+&+ Y e +oe,
2<j+k<3
& = —&+ Y oude+oEl,
2<j+k<3
p. 419, 1. -6
3 0 0 0 -1 0 30
-3 2 0 0 0 -1 P21
1 -1 1 0 0 0 P12 _
0O 0 0 -1 0 0 b | = Blo:hl,
0 0 0 -3 2 0 P21
0 0 0 1 -1 1 P12
p. 426, 1. -16
4
P = {(81,82) T g = 561 +0(81), g1 > O},
p. 429, 1. 12
Cla) = g20(@)g11 () (2u() + fi(a) — 3) n 11 ()| . 921(04). (9.72)
2(p(e) = 1) (p2 () — p() () [? = p(e)
p. 440, 1. 2 _
P i
— = A(B) +e %,
7 (B)
p. 451, 1. -9
D:(0) <0, C1(0) > 0,
p. 457,1. 9

computed in Exercise 8 in Chapter 5.)

p. 457,1. 9
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Numerical Analysis of Bifurcations

p. 475, 1. -12
method is equivalent to the representation of the Poincaré map P : ¥ — Yo by
a composition of N — 1 maps

p. 489, 1. 8

(b Blas0)) = 15 [0 S0+ ha, ) + (b, £(a° = ha, )] + O,

p. 490, 1. 16
B(v,v) = % [(2° + ho, %) + f(2° — hv,a®)] + O(h?)
for (10.52), and
Clo,v,v) = 87]113 [(z° + 3hv,0°) — 3£(2° + ho, o)
+  3f(a” — hw,a’) — f(2° — 3k, a”)] + O(h?)
p. 499, 1. -3
( ].;(TE?Z(’)SISZ ) + ( Jq(l;)) )u(o) = 70)ge. (10.64)

p. 538, 1. -10

& Wang [1997]
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Appendix A

Basic Notions from Algebra, Analysis,
and Geometry

p. 542, 1. 8

det A = Z (—1)5(i1’i2"“’i”)ai11(11'22"'az‘nm

(i1,i2,...,in)ESn

p. 547,1. 3

their composition h = fog

p. 547,1. 6

evaluated at a point y € R™:

p. 547,1. 8

where i =1,2,...,k, j=1,2,...,m.

p. 547, 1. -15
Consider a map

(z,y) = F(z,y),
where

F:R*xR™ 5 R™,

is a smooth map defined in a neighborhood of (z,y) = (0,0) and such that
F(0,0) = 0. Let F,(0,0) denote the matrix of first partial derivatives of F with
respect to y evaluated at (0,0):

F,(0,0) = <M>

dy;

(z,y)=(0,0)
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Theorem A.3 (Implicit Function Theorem) If the matriz F,(0,0) is non-
singular, then there is a smooth locally defined function y = f(x),

F:R™ 5 R™,

such that
F(z, f(x)) =0,

for all = in some neighborhood of the origin of R™. Moreover,

f2(0) = —=[F,(0,0)] "' F.(0,0). O



This is page 28
Printer: Opaque this

Bibliography

Allgower, E. & Gregor, K. [1993], ‘Continuation and path following, in
‘Acta Numerica’, Cambridge University Press, Cambridge, pp. 1-64.

Belyakov, L. [1974], ‘A case of the generation of a periodic motion with
homoclinic curves’, Mat. Notes 15, 336—341.

Belyakov, L. [1980], ‘The bifurcation set in a system with a homoclinic
saddle curve’, Mat. Notes 36, 838—843.

Beyn, W.-J. [1990b], ‘The numerical computation of connecting orbits in
dynamical systems’, IMA J. Numer. Anal. 10, 379-405.

Chenciner, A. [1983a], ‘Bifurcations de diffeomorphisnes de R? au voisi-
nage d’un point fixe elliptique, in G. Iooss, R. Hellman & R. Stora,
eds, ‘Chaotic Behavior of Deterministic Systems (Les Houches,1981)’,
North-Holland, Amsterdam, pp. 273-348.

Deng, B [1993b], ‘On Silnikov’s homoclinic-saddle-focus theorem’, J. Dif-
ferential Equations 102, 305-329.

Doedel, E., Champneys, A., Fairgrieve, T., Kuznetsov, Y., Sandstede, B. &
Wang, X.-J. [1997]. AUTO97: Continuation and bifurcation software
for ordinary differential equations (with HomCont), Computer Science,
Concordia University, Montreal, Canada.

Feudel, U. & Jansen, W. [1992], ‘CANDYS/QA — A software system for
qualitative analysis of nonlinear dynamical systems’, Internat. J. Bi.-
fur. Chaos Appl. Sci. Engrg. 2, 773-794.

Gambaudo, J. [1985], ‘Perturbation of a Hopf bifurcation by an external
time-periodic forcing’, J. Differential Equations. 67, 172-199.

Gaspard, P., Kapral, R. & Nicolis, G. [1984], ‘Bifurcation phenomena
near homoclinic systems: a two-parameter analysis’, J. Statist. Phys.
35, 697-727.



Appendix A. Basic Notions from Algebra, Analysis, and Geometry

Kubicek, M. [1985], ‘Algorithm 502. Dependence of solutions of nonlinear
systems on a parameter’, ACM Trans. Math. Software 2, 98-107

Kuznetsov, Y. [1991], ‘Numerical analysis of the orientability of homoclinic
trajectories’, Internat. Ser. Numer. Math. 97, 337-242.

Nozdrachova, V. [1982], ‘Bifurcation of a noncoarse separatrix loop’, Dif-
ferential Equations’ 18, 1098—-1104.

29



