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Preface to the Third Edition

p- VIII, 1. -5:

Finally, may the constant support by my wife, Lioudmila, and my daugh-
ters, Elena and Ouliana, be acknowledged.
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Introduction to Dynamical Systems

p- 12, 1. -3:
SNnfS)=nuv,
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Topological Equivalence, Bifurcations, and
Structural Stability of Dynamical Systems

p- 63, 1. -11:
which would imply that the map (z,a) — (ho(z), p(a))
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One-Parameter Bifurcations of Equilibria in
Continuous-Time Dynamical Systems

0 0 z]
a > ap a < ag
Fig. 3.11. Hopf bifurcation in the predator-prey model.
p. 105, 1. -16
1 . 24 A°

i = — R 21) = —————5- <0

1= 53 e(igaog11 + wg1) 5A(1 + A7) <0,
p. 105, 1. -10
(Hint: Introduce y = —& and rewrite the equation as a system of two differential
equations.)
p. 108, 1. -21

Fix « small but positive. Both systems (A.1) and (A.2) have a limit cycle in some
neighborhood of the origin. Assume that the time reparametrization resulting in
the constant return time 27 is performed in system (A.1) (see the previous step).
Consider a homeomorphism H that conjugates the Poincaré map of (A.1) with that
of (A.2) at this parameter value.

Define a map z — Z by the following construction. Take a point z = x1 + ix2
and find values (po, 70), where ¢ is the minimal time required for an orbit of system
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(z1,19) (21, T2)

0 o

20 H{(po)

Fig. 3.14. Construction of the homeomorphism near the Hopf bifurcation.

(A.2) to approach the point z starting from the horizontal half-axis with p = po.
Now, take the point on this axis with p = H(po) and construct an orbit of system
(A.1) on the time interval [0, 7o] starting at this point. Denote the resulting point
by Z = Z1 + iZ2 (see Fig. 3.14). Set Z =0 for z = 0.

p. 110, bottom

(a2 + as)yi + (—2a1 + 2a3 + as5)y1y2 + (—as + a6)y3 )

Laf® —
(Laf™)(y) = wo (—a1 + as5)yi + (—az2 — 2a4 + 2a6)y1y2 + (—as — as)y3

p. 112, 1. -15

hi(y) =y ys? o yn ey, (B.11)
p. 112, 1. -10

Lah; = ((\,m) — \;)h;, (B.12)
p. 112, 1. -7

The equation (B.12) means that the vector-monomial h; defined by (B.11) is
the eigenvector of L4 corresponding to the eigenvalue

pi = (A m) — A;.

Thus, the null-space of L 4 is spanned in this case by vector-monomials h;, for which
nj =0, ie.,
Aj = (A, m). (B.13)

p. 113, 1. 2
For a fixed m and each j = 1,2,...,n, (B.13) implies a condition on the eigenvalues
of A (called the resonance condition or resonance).

If no resonances of order m exist, Theorem B.1 implies that all terms of order
m in (B.1) can be eliminated by a polynomial transformation. In the presence of
resonances, the resonant monomials satisfying (B.13) cannot be removed from the
j-component of the right-hand side of (B.1) by all such transformations.

(2) - <u?0 _go) <2) + flx), == <2) €R? (B.14)

p. 113, 1. -8
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where wo > 0. If we introduce a complex variable z = 21 + ix2, then (B.14) can be
written as one complex equation

) (o O 2 (olenz)) (B.15)
29 0 —iwo 22 g2(z1, 22)
in which the first equation is equivalent to (B.14)), if we substitute z1 = z and

z2 = Z. The system (B.15)) is called the complexification of (B.14)). Notice that
(B.15) has the diagonal linear part with A\; = iwo and A2 = —iwo.

p.114,1. 1
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One-Parameter Bifurcations of Fixed Points in
Discrete-Time Dynamical Systems

4.5 Generic flip bifurcation

[Moved from p. 128, 1l. 2-6]

By the Implicit Function Theorem, the system = — f(z,«) has a unique
fixed point xg(«) satisfying 2(0) = 0 in some neighborhood of the origin for
all sufficiently small || since f,(0,0) # 1. We can perform a coordinate shift
placing this fixed point at the origin. Therefore, we can assume without loss
of generality that = 0 is the fixed point of the system for |«| sufficiently
small.

p- 127, bottom
Theorem 4.3 Consider a one-dimensional system
r f(z,a), r€R acRY
with smooth f satisfying f(0,«) =0, and let p = f,(0,0) = —1. Assume that

the following nondegeneracy conditions are satisfied:

(B1) 2 (S (0,0))% + 1 fra(0,0) # 0;
(B2) f1u(0,0) 0,

Then there are smooth invertible coordinate and parameter changes transform-
ing the system into
ne =L+ BmEn* +00h).

p- 128, top
Proof:
The map f can be written as follows:

flz,a) = fi(la)z + fQ(Oé)$2 + fg(a)xB + O(x4), (4.1)

where fi(a) = —[1 + g(a)] for some smooth function g. Since g(0) = 0 and
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g/(O) = _flu(070) 7é 0,

p. 129, 1. -3

T — axe ©

= F(z,aq) (4.17)
p. 130, 1. -11

One can check that with f(z,a) = F(z1 (a1 + o) + 2,01 + o) — 21 (a1 + @)
one has

o0)= 5 >0, fral00)= 5 #0.

p. 140, 1. -13

ii—3 + 2 2 2
_ 920911 (# 1) + |11 + |go2] + 921

202 —m(—1) uP—n 2w -p) 2

p. 142, 1. -10 If we introduce vy = up_1, the equation can be rewritten as

U1 = rug(l — vg),
Uk‘+1 = Uk,

C1 (425)

p. 144, 1. -14

(1) Prove that in a small neighborhood of = 0 the number and stability of fixed
points and periodic orbits of the map (4.7) are independent of higher-order terms,
provided |a] is sufficiently small.

p. 151, 1. 2
A contraction map in a complete metric space has a unique fixed point u(*) € U:
Fu®) = o>,
p- 151, bottom
B2 — 41 = @2 — o1+ [Ka(u(p2), ¢2) — Kalu(e1), ¢1)]
> @2 — o1 — &7 |[Ka(u(p2), 02) — Kal(u(e1),¢1)] .
p- 152, 1. 5 (after Fig. 4.17)

—[Ka(u(p2), p2) — Ka(u(p1), p1)| > —2X(p2 — 1),
p. 152, 1. -11
i(p) = (1 — 22)u(@) + o> Ha(u($), ), (B.12)
p. 153, top

i(p1) — @(p2)] < (1= 20)|u(P1) — u(
+ a2 Ho (u($1), ¢1) — Ha(u($p2), ¢2)]
< (1 —2a)|u(@1) — u(2)]
+ oA [Ju(@1) — u(@2)| + 161 — o]
< (1—2a+2Xa%/?)|p1 — @al,

p. 153, 1. 14
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|1 (p) — t2(p)| < (1 —2a)|ui(P1) — ua(Pp2)]
+ &®?|Ho (ur($1), $1) — Ha(u2(2), $2)|
< (1 = 2a)|ui(p1) — ua(p2)]

+ a2\ [Jur(@1) — u2(@2)| + |1 — G2l

(B.13)

pp. 153-154, bottom-top
Using the estimates (B.16) and (B.17), we can conclude from (B.13) that

llar — a2 < ellur — uall,
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Bifurcations of Equilibria and Periodic Orbits
in n-Dimensional Dynamical Systems

p- 172
Ly Lo
a<0 a=0 a>0
Fig. 5.17. Neimark-Sacker bifurcation of a limit cycle.
p. 189, 1. 4

(b) Prove that this Hopf bifurcation is subcritical and, therefore, gives rise to a
unique saddle limit cycle for r < 7.

p. 190, 1. -20

where X = X(r,t), Y =Y (r,t); r € [0,7]; t > 0; A, B,d,0 > 0 (see Chapter 1 and
Lefever & Prigogine [1968]. Consider the case when X and Y are kept constant at
their equilibrium values at the end points:

X(0,t) = X(m,t)=C, Y(0,t) =Y(m,t) =

Qlw

Fix
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00:17 dO:27 90:%7
and show that at
By = 1+C§+d0(1+90) =5
p- 193, 1. -14

1

l1(0) = %Re [<p7 C(Q7 q, Q)>+2<p7 B((L wll)) + <p7 B((jy 'LUQU)” ) (Ag)
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Bifurcations of Orbits Homoclinic and
Heteroclinic to Hyperbolic Equilibria

p. 212, 1. -17
(i.e., glueing points (&, 1) and (2,¢) for |¢] < 1).
p. 214, 1. -7

The (nontrivial) multipliers of the cycle are pesitive-and inside the unit circle:
|/L1,2| <1

p. 232, 1. 4
M, (0) = / (div g)(x) deidas. &
7

p. 239, 1. 23
(c¢) Compute a composition

p.- 239, 1. -4
How many periodic orbits one expects near the bifurcation?

p. 240, 1. 1

(13) (Melnikov integral) Prove that the Melnikov integral (6.25) is nonzero for
the homoclinic orbit I'g in the system (6.8) from Example 6.1. (Hint: Find t+ = t+(x)
along the upper and lower halfs of I'g by integrating the first equation of (6.8). Then
transform the integral (6.25) into the sum of two integrals over z € [0, 1].)

p. 246, 1. 18
In this text, however, redundant genericity conditions are often assumed
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Other One-Parameter Bifurcations in
Continuous-Time Dynamical Systems

p. 261, 1. 1 (after Fig. 7.10)
QX NIl

p. 291, 1. -11
Check that Rv = —wv, where R is the involution that leaves Lorenz system (7.21)
invariant, so that case (ii) of Theorem 7.7 is applicable.

p. 292, 1. 17

There are three subcases: (i) b(0) < a(0); (ii) b(0) > a(0),a(0) + b(0) < 0; (iii)
b(0) > a(0),a(0) + b(0) > 0.

p. 292, 1. -17

{?31 = MNa)z1 + f1(z1, 21, 22, 22, @), (7.29)

1 = Ma)z2 + fa(21, 21, 22, 22, @),
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Two-Parameter Bifurcations of Equilibria in
Continuous-Time Dynamical Systems

p. 304, 1. 3
Finally, perform a linear scaling
n =&V lc(p)l,
and introduce new parameters:
Br = v/ e(p),
B2 = pa.

p. 310, 1. -7

d ) 6

# = (v(a) + )w + di (@)w|w]?® + da(@)w|w|* + O(jw|®), (8.21)
p. 311, 1 3

d . . . 5
d% = Ww+iw+ (v +i)er + di)wlw> + (v +i)ez + erds + d2)w|w|* + O(w|®).

p. 311,17

dw ) 2 4 6

o = W@ +)w+h(Qulw|” + L(@wlw]” + O(jw]"),
p. 311, 1. -7

_ _Reci(0) 1 1 B
p0) =0, 10) = 220 — (e g 0) = L (g 00910 ) =0,
p. 312, 1. -4
Then, rescaling
w = _ u, uecC

VI L2()]

and defining the parameters
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B = pa,
1
ﬁZ = 2,

|L2(1)|
p. 321,11
foo(@) = hoo(@), fio(a) = hio(@) + 2heo(a)0(a),
and
foo(a) = hao(@) + 4hio(@)0(a) + 2hoo()0” (@),
p. 321, 1. 12
where
(@) = hoo(),  p2(a) = hio(a) — hoo(c)hoz(e), (8.46)
and
A(a) = % (hgo(a) — tho(a)hoz(a) + %hoo(&)hﬁg(@)) s B(a) = hu(Oc).
p. 340
i
@ @ /3)2 @
/ H Sy \\/
@ \}_/
@ @ 0 Bi
~ ., — g S_

Fig. 8.13. Bifurcation diagram of the amplitude system (8.82) (s =1, 6 > 0).
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p. 341

WA A

Fig. 8.14. Bifurcation diagram of the amplitude system (8.82) (s = —1, 6 < 0).

p. 342

s ML S,

A FE
7N DU

Fig. 8.16. Bifurcation diagram of the amplitude system (8.82)

)(s=1, 6 <0).
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p.343
Sy 0
@o\ Yo
°\
Sy
3, H NS ©)
e
@ @ ,61 ,,/
H_ ®
@ S J
@ ®

Fig. 8.17. Bifurcation diagram of the amplitude system (8.82) (s = —1, 6 > 0).

p. 349, 1. -12
with Og, p*Ug(E, p2) = O((€2 + p*)?).
p. 356, L. -16 )

Thus, G2111 = 0, Hi121 = 0,

p. 360, 1. -13
(otherwise, reverse-time-and exchange the subscripts in (8.112)).
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p. 361
I II
H2 @ T2 H2 @ Tl
@ @ T @ @ T
©) ©)
H, 1 H, H1
® | @ © ©)
Hl H1
I 1 o . IVTl i
&
a ©) ®
Hy H H, @ 1
® |\ ® | @>n
Hl T2 Hl
T M H2
Bl
14
Hy H1
®
H] T2
Fig. 8.25. Parametric portraits of (8.112) (the “simple” case).
p. 363, 1. 11
_ M1\ _ 6—=1  (0-1)0+(0-1A , 3
C—{<H2>-uz— g1 @=1) p1 + O(ur)

that should be considered when both g1 > Oue and dur > pe.
p- 363, 1. -18

(HH.7) p22(0) # p12(0);
(HH.8) p21(0) # p11(0).

p. 363, 1. -13
sign I; = sign {—0[0(0 — 1)A +6(6 — 1)O]}.

p. 364, 1. -6

6-1 (60 —1)%A 4+ (5 —1)%00 ,

Y:{(uuuz)Im: g1t (250 =5 —0)(§ = 1)? M1+O(M§)}a

23
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p- 365, 1. -5

Recalling the interpretation of equilibria and cycles of the amplitude system (8.111)
in the four-dimensional truncated normal form (8.109), we can establish a relation-
ship between bifurcations in these two systems. The curves Hi 2 at which the triv-
ial equilibria appear in (8.109) obviously correspond to Hopf bifurcation curves in
(8.109). These are the two “independent” Hopf bifurcations caused by the two dis-
tinct pairs of eigenvalues passing through the imaginary axis. Crossing a bifurcation
curve T1 (or T2) results in the branching of a two-dimensional torus from a cycle.
Therefore, the curves Ti 2 correspond to Neimark-Sacker bifurcations in (8.109). On
the curve C, system (8.109) exhibits a bifurcation that we have not yet encountered,
namely, branching of a three-dimensional torus from the two-dimensional torus. The
curves J describe blow-ups of three-dimensional tori, while the curve Y implies the
presence of a heteroclinic coincidence of the three-dimensional stable and unstable
invariant manifolds of a cycle and a three-torus.

p. 366

®

. p@ @
®@
L1\

.
P.Je

.

®
®
®

Q)

®

©)

R@)w \@

Fig. 8.29. Generic phase portraits of (8.115).
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p. 380, 1. -9
The vectors in C3
p. 384, 1. 3

The resulting formulas are lengthy and can be found elsewhere (see references in
Appendix 2).

p. 384, 1. -19
Show that this curve is well-defined near the origin and can be locally parametrized
by x.

p. 386, 1. 3
i = —aiwa + 21 (1 — 27 — 23),
d2 = anxr +x2(l — 23 — 23) — g,
p. 388, 1. 18
A1 =0, A2 3 = Fiwg
p. 396, 1. 4
_m M2 T
(1_ v’ 42_1/3/27 = e (Ag)
This rescaling reduces (A.2) to
p. 396, 1. -11
This system is a Hamiltonian system,
: _ OH(Q)
Cl - 8 ’
(2
; OH
¢\ - _OHE

a¢

p. 402, 1. 14
(i.e., all extrema are minimum points).

p. 403, 1. 1
By the Inverse Function Theorem, these equations define a smooth function (7).

p. 403, 1. 8
The homoclinic curve P given by (A.13) is mapped by (A.20) into the curve

p. 403, 1. -19
the second Lyapunov coefficient
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Two-Parameter Bifurcations of Fixed Points in
Discrete-Time Dynamical Systems

p. 413
Fig. 9.2. Bifurcation diagram of the normal form (9.11).
p. 423, 1. 15
p'(@) =e'w+ gD (@) + g% @) +... + g% (@) + Oz, (9.27)
p. 426, 1. 11

—1 )\ 1
P (a)L(a)P(a)z(a(a) A+ez(a)>’
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p. 426, 1. 16

e1(a) = bio(a) + ao1(a)bio(e) — aro(a)boi (@), e2(a) = aro(e) + bo1(c).
goo(a) ) _ -1 aoo ()
(et ) = 7@ (et

€@ (1) = &1+ & + $a208l +anéil + Fanés
& 4 1b20€7 + b11&1&o + $b0263 ’

p. 426, 1. -3

p. 430, 1. -10

p. 432, 1. 3
Aqo10&1v1 + Aor10&21 + Aroo1&ave + Aopr01€2v2
Ya(X) = Bio10&1v1 + Boi1o&2v1 -(l)— Bioo1&1v2 + Bo1o1&212

0

1 A2000€7 + A1100€162 + 1 Ao20085
1 B2000é? + Biioo€1€2 + £ Bo200&3
0
0

We leave the reader to complete the proof by computing

1
XO(1) = 'X +/ /DY, (XD (r))dr
0

p. 436, 1. 4
9y, @) = (po, F(y1q0 + y2q1, @), h(y, ) = (p1,F (y1q0 + y2q1,®)),

p. 436, 1. 16

v1(a) = bio(a) + ao1(a)bio(a) — aro(a)boi (), va(a) = aro(a) + boi(a).

p. 437, 1. -7
G=-&+&+ D vl +o(lE,
~ 2§j+kS3v
=&+ Y opdd&+o(El"),
2<j+k<3
p. 438, 1. -7
30 0 0-1 0 b30
-3 2 0 0 0-1 b1
1-1 1 0 0 0 b2 |
00 0-1 0 0]/ w0 = Rlg, hl,
0 0 0-3 2 0 P21
0 0 0 1-1 1 P12
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p. 444
@
&2

Ja0

C o @ | @, HY
HO 0 €1
@ fal
©)

Fig. 9.9. Bifurcation diagram of the approximating system (9.75) for s = 1.

p. 445, 1. 4 (after Fig. 9.10)

4
P= {(51,62) ;g2 = —e1+o0(e1), €1 > 0},

5
p. 448, 1. 8
o) = geo(a)gi1(a)(2u(a) + f(a) — 3) g1 ()| g21(0)
= 2(a(a) = 1)(u2 (@) — p(ex) P —pa) T 2 (9.81)
p. 449, 1. 9

Formula (9.83) can be obtained by merely substituting goo = 0 into (4.26) from
Chapter 4.

p. 458, 1. -6 _
(o4

= A(B) + 4%,

02
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@ Fﬁ

p. 478

S ol : Do
3

MM@ P& )\./4

>\</,/<

Fig. 9.27. Case 3: ap > 0,bo < 0.

Fig. 9.28. Case 4: ap < 0,by < 0.
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p. 485, 1. 13
As in Section 8.7.4 of Chapter 8, we make the third system solvable by selecting
a proper solution hao of the first system.

p. 488,1. 9
1 .
H(w) = wiq1 + w2q2 + Z Tk,,hjkw{wg +O([Jw[|").
o<irr<a’

p. 489, 1. 5

cs = (p2,C(q1,q1,q2) + B(g2, hao) + 2B(q1, ha1)),

p. 499,1. 7
(Hint: Find a common point of the flip and the Neimark-Sacker bifurcation lines
computed in Exercise 10 in Chapter 5.)
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Numerical Analysis of Bifurcations

p. 541, 1. -8

(B(QLQZ)) N <J(0)> (0) = A(0)ga. (10.64)

it (0)g2 ai

p. 580, 1. -12
along the saddle-node bifurcation curve (see Fig. 10.24).
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