/* __gh.c Generalized Hopf curve October 2, 1998 */ #include "common.h" #include "corefunc.h" #include "stagen.h" #include "_util.h" #include "_linalg.h" #include "__gh.h" #include "_conti.h" /* continuer's (i.e. generator's) data */ /* Numbers of visible name classes; the order must be the same as in /names section */ #define CL_TIME 1 #define CL_PHASE 2 #define CL_PAR 3 #define CL_EIGV 4 #define CL_TEST 5 #define CL_UTEST 6 #define _eps staData->eps #define _dx staData->dx #define _branch staData->branch #define PI 4.0*atan(1.0) #define PID2 2.0*atan(1.0) Local(StagenDataPtr) stagenData=NULL; /* global copy of Starter's parameter passed by content */ Local(__gh_DataPtr) staData=NULL; /* global copy of our own data area */ Local(StdLinAlgDataPtr) staFunc=NULL; /* global copy of pointer standard linear algebra struct */ Local(UtilitiesDataPtr) staUtil=NULL; /* global copy of pointer to utility functions struct */ Local(Int2Ptr) active=NULL; /* index of active parameter(s) */ Local(Int2) nappend; /* number of appended user functions */ Local(Int2) npar,nphase; /* dims of par and phase spaces */ Local(Vector) x0=NULL; /* approximate first point */ Local(Vector) x1=NULL; /* current point */ Local(Vector) v0=NULL; /* approximate tangent vector at first point */ Local(FloatHiPtr) X=NULL; /* current set of phases used by Decoder */ Local(FloatHiPtr) P=NULL; /* current set of params used by Decoder */ Local(FloatHiPtr) E=NULL; /* current set of eigenvalues */ Local(VAR) zero=0; #include "_symdiff.c" /* Working space for defining and test functions */ Local(Matrix) A,B,C,C1,C2,AA,AT,BB,BP,BT,BP1,BT1; Local(Vector) vn,xp,xp1,V,W,F,Vp,L,VV,VB,Q,Qr,Qi,PP1,PP2,Pr,Pi,aa,bb,cc,dd,rr; Local(Vector) VB1,VB2,V1,W1,V2,W2,OLD,RL,K1,K2,K3,OK1,OK2; Local(Vector) Re=NULL,Im=NULL; Local(VAR) test[1],dx,ddx,dddx; #define BifVector stagenData->BifDataOutPtr #define ActiveUTestFuns staData->ActiveUserTest #define nUTest stagenData->udFuncNum /* Initialize function common for Starter and Decoder */ Local(Int2) Init(StagenDataPtr stagenptr) { Int2 i,m; /* Set local pointers to data area and functions array */ stagenData=stagenptr; staData=(__gh_DataPtr)stagenptr->StaPtr; /* Use standard linear algebra */ staFunc=(StdLinAlgDataPtr)stagenptr->StdLinAlg; staUtil=(UtilitiesDataPtr)stagenptr->Utilities; /* Get dimensions of Phase and Par spaces */ npar=*stagenptr->ClassDim[CL_PAR]; nphase=*stagenptr->ClassDim[CL_PHASE]; /* Call udf SetInitPoint function, if any */ if (!stagenData->ContDataGenLen && FuncParActive(staData->SetInitPoint)) { /* there is UDF to set InitPoint */ Int2 Index_X,Index_P; Index_X=stagenptr->ParIndex(staData,X); Index_P=stagenptr->ParIndex(staData,P); FuncParCall(staData->SetInitPoint)(staData); stagenptr->UpdatePar(Index_X); stagenptr->UpdatePar(Index_P); } /* Do all the checks related to active parameters and find them */ for (i=0,nappend=0; iCheckParameters(staData->Active,npar,active,3+nappend)) { active=MemFree(active); return 1; } /* Checks related to analytical/numerical differentiation of RHS */ if (!stagenData->Der1 && staData->dx <= 0) { staUtil->ErrMessage("Analytical Jacoby matrix is undefined.\nRecompile system or set positive 'Increment'"); active=MemFree(active); return 2; } if ((staData->ActiveSing[0] || staData->ActiveSing[1] || staData->ActiveSing[2]) && !stagenData->Der2 && staData->dx <= 0) { staUtil->ErrMessage("Analytical Hessian matrix is undefined.\nRecompile system or set positive 'Increment'"); active=MemFree(active); return 3; } /* Create a copy parameters */ m=nphase*(nphase-1)/2; if (!P) { P=MemNew(sizeof(FloatHi)*npar); MemCopy(P,staData->P,sizeof(FloatHi)*npar); /* Allocate memory for copy of phase vars used by Decoder */ X=MemNew(sizeof(FloatHi)*nphase); /* Allocate memory for eigenvalues */ E=MemNew(sizeof(FloatHi)*2*nphase); Re=staFunc->CreateVector(nphase); Im=staFunc->CreateVector(nphase); /* Allocate memory for working space used in defining and test functions */ A=staFunc->CreateMatrix(nphase,nphase); B=staFunc->CreateMatrix(nphase,nphase); BP=staFunc->CreateMatrix(m+2,m+2); BT=staFunc->CreateMatrix(m+2,m+2); BP1=staFunc->CreateMatrix(m+1,m+1); BT1=staFunc->CreateMatrix(m+1,m+1); V1=staFunc->CreateVector(m+2); W1=staFunc->CreateVector(m+2); V2=staFunc->CreateVector(m+2); W2=staFunc->CreateVector(m+2); VB=staFunc->CreateVector(m+2); VB1=staFunc->CreateVector(m+2); VB2=staFunc->CreateVector(m+2); VV=staFunc->CreateVector(2*nphase); Q=staFunc->CreateVector(m); PP1=staFunc->CreateVector(m+2); PP2=staFunc->CreateVector(m+2); OLD=staFunc->CreateVector(m+1); RL=staFunc->CreateVector(m+1); K1=staFunc->CreateVector(m+2); K2=staFunc->CreateVector(m+2); K3=staFunc->CreateVector(m+2); OK1=staFunc->CreateVector(m+2); OK2=staFunc->CreateVector(m+2); AA=staFunc->CreateMatrix(nphase,nphase); BB=staFunc->CreateMatrix(2*nphase,2*nphase); C=staFunc->CreateMatrix(nphase+nappend,nphase+3+nappend); C1=staFunc->CreateMatrix(nphase,nphase+3+nappend); C2=staFunc->CreateMatrix(2,nphase+3+nappend); AT=staFunc->CreateMatrix(nphase,nphase); Qr=staFunc->CreateVector(nphase); Qi=staFunc->CreateVector(nphase); Pr=staFunc->CreateVector(nphase); Pi=staFunc->CreateVector(nphase); aa=staFunc->CreateVector(nphase); bb=staFunc->CreateVector(nphase); cc=staFunc->CreateVector(nphase); dd=staFunc->CreateVector(nphase); rr=staFunc->CreateVector(nphase); x0=staFunc->CreateVector(nphase+3+nappend); x1=staFunc->CreateVector(nphase+3+nappend); v0=staFunc->CreateVector(nphase+3+nappend); vn=staFunc->CreateVector(nphase); xp=staFunc->CreateVector(nphase+3+nappend); xp1=staFunc->CreateVector(nphase+3+nappend); V=staFunc->CreateVector(nphase); W=staFunc->CreateVector(nphase); F=staFunc->CreateVector(nphase); L=staFunc->CreateVector(nphase); Vp=staFunc->CreateVector(nphase+3+nappend); BifVector=MemNew(sizeof(FloatHi)*(4*nphase+2)); } Der2num=ind2_(nphase+npar-1,nphase+npar-1)+1; Der3num=ind3_(nphase+npar-1,nphase+npar-1,nphase+npar-1)+1; dx=_dx; ddx=pow(dx,3.0/4.0); dddx=pow(dx,3.0/6.0); ((ContDataPtr)stagenptr->GenPtr)->ActiveSing=staData->ActiveSing; ((ContDataPtr)stagenptr->GenPtr)->ActiveUserTest=staData->ActiveUserTest; ((ContDataPtr)stagenptr->GenPtr)->TypeTestFuns=staData->TypeTestFunc; ((ContDataPtr)stagenptr->GenPtr)->ZeroTestFuns=staData->ZeroTestFunc; return 0; } Local(Int2) JacRHS (Vector x, Matrix J); Local(void) Term (Boolean OK) { Int2 m; Int2 i,j,imax,jmax; VAR max1,max2,d,a11,a12,a21,a22; stagenData->BifDataOutLen=0; m=nphase*(nphase-1)/2; if (OK&&P&&(stagenData->Reason==RF_CLEAN)) { /* saving global vectors V12,V22,W12 and W22 used in defining functions */ stagenData->ContDataStaLen=4*(m+2)*sizeof(FloatHi); stagenData->ContDataStaPtr=MemNew(stagenData->ContDataStaLen); MemCopy(stagenData->ContDataStaPtr,V1,(m+2)*sizeof(FloatHi)); MemCopy(stagenData->ContDataStaPtr+(m+2),W1,(m+2)*sizeof(FloatHi)); MemCopy(stagenData->ContDataStaPtr+2*(m+2),V2,(m+2)*sizeof(FloatHi)); MemCopy(stagenData->ContDataStaPtr+3*(m+2),W2,(m+2)*sizeof(FloatHi)); /* reevaluate Jacobian */ JacRHS (x1,C1); staFunc->CopyMatrixBlock(C1,0,0,A,0,0,nphase,nphase); /* find pair in (g11,g12), (g21,g22) with max absolute value */ max1=(fabs(VB1[m])>fabs(VB2[m]))?VB1[m]:VB2[m]; max2=(fabs(VB1[m+1])>fabs(VB2[m+1]))?VB1[m+1]:VB2[m+1]; if (fabs(max1)>fabs(max2)) imax=m; else imax=m+1; for(i=0;id) { imax=i; jmax=j; d=fabs(Q[i*(i-1)/2+j]); } } } d=Q[imax*(imax-1)/2+jmax]; /* compute eigenvectors */ staFunc->ClearVector(V); staFunc->ClearVector(W); for (i=0; iimax) V[i]=-Q[i*(i-1)/2+imax]/d; if (ijmax) W[i]=Q[i*(i-1)/2+jmax]/d; } /* compute -lambda*lambda */ staFunc->MultiplyMatrixVector(A,V,F); /* F=A*V */ a11=staFunc->ScalProd(V,F); a12=staFunc->ScalProd(W,F); staFunc->MultiplyMatrixVector(A,W,F); /* F=A*W */ a21=staFunc->ScalProd(W,F); a22=staFunc->ScalProd(V,F); d=staFunc->ScalProd(V,V)*staFunc->ScalProd(W,W) -staFunc->ScalProd(V,W)*staFunc->ScalProd(V,W); /* orthogonalize and normalize eigenvectors */ staFunc->NormalizeVector(V); staFunc->AddScaledVector(W,V,-staFunc->ScalProd(V,W),L); staFunc->NormalizeVector(L); stagenData->BifDataOutLen=sizeof(FloatHi)*(2*nphase+1); MemCopy(BifVector,V,sizeof(FloatHi)*nphase); MemCopy(BifVector+nphase,L,sizeof(FloatHi)*nphase); BifVector[2*nphase]=(a11*a21-a22*a12)/d; stagenData->ProcessPoint(stagenData->ProcFuncNum, x1, "Last point"); } else { stagenData->ContDataStaLen=0; stagenData->BifDataOutLen=0; } x0=staFunc->DestroyVector(x0); x1=staFunc->DestroyVector(x1); v0=staFunc->DestroyVector(v0); active=MemFree(active); if (P) { P=MemFree(P); X=MemFree(X); E=MemFree(E); Re=staFunc->DestroyVector(Re); Im=staFunc->DestroyVector(Im); A=staFunc->DestroyMatrix(A); B=staFunc->DestroyMatrix(B); BP=staFunc->DestroyMatrix(BP); BT=staFunc->DestroyMatrix(BT); BP1=staFunc->DestroyMatrix(BP1); BT1=staFunc->DestroyMatrix(BT1); V1=staFunc->DestroyVector(V1); W1=staFunc->DestroyVector(W1); V2=staFunc->DestroyVector(V2); W2=staFunc->DestroyVector(W2); Q=staFunc->DestroyVector(Q); PP1=staFunc->DestroyVector(PP1); PP2=staFunc->DestroyVector(PP2); AA=staFunc->DestroyMatrix(AA); BB=staFunc->DestroyMatrix(BB); VV=staFunc->DestroyVector(VV); VB=staFunc->DestroyVector(VB); VB1=staFunc->DestroyVector(VB1); VB2=staFunc->DestroyVector(VB2); OLD=staFunc->DestroyVector(OLD); RL=staFunc->DestroyVector(RL); K1=staFunc->DestroyVector(K1); K2=staFunc->DestroyVector(K2); K3=staFunc->DestroyVector(K3); OK1=staFunc->DestroyVector(OK1); OK2=staFunc->DestroyVector(OK2); C=staFunc->DestroyMatrix(C); C1=staFunc->DestroyMatrix(C1); C2=staFunc->DestroyMatrix(C2); AT=staFunc->DestroyMatrix(AT); Qr=staFunc->DestroyVector(Qr); Qi=staFunc->DestroyVector(Qi); Pr=staFunc->DestroyVector(Pr); Pi=staFunc->DestroyVector(Pi); aa=staFunc->DestroyVector(aa); bb=staFunc->DestroyVector(bb); cc=staFunc->DestroyVector(cc); dd=staFunc->DestroyVector(dd); rr=staFunc->DestroyVector(rr); vn=staFunc->DestroyVector(vn); xp=staFunc->DestroyVector(xp); xp1=staFunc->DestroyVector(xp1); V=staFunc->DestroyVector(V); W=staFunc->DestroyVector(W); F=staFunc->DestroyVector(F); Vp=staFunc->DestroyVector(Vp); L=staFunc->DestroyVector(L); BifVector=MemFree(BifVector); } } Local(Int2) JacDefEquilib (Vector x, Matrix J); Entry(Int2) gh_JacDefGeneralizedHopf (Vector x, Matrix J); Entry(Int2) gh_DefGeneralizedHopf (Vector x, Vector J); /************/ /* Starters */ /* gh -> gh Starter */ Entry(Int2) gh_Starter(StagenDataPtr stagenptr) { Int2 i,j,k,kp1,Ret,m,p,q,r,s; Vector v1,v2; Matrix D,DE,G; VAR max1,max2, alpha, beta, t; if (!stagenptr) { /* this is request to terminate */ Term(TRUE); return 0; } if (Init(stagenptr)) return 1; /* initialize local variables */ m=nphase*(nphase-1)/2; /* Create the first point for generator */ if (stagenptr->ContDataGenLen) { /* "Extention" */ MemCopy(V1,stagenptr->ContDataStaPtr,sizeof(FloatHi)*(m+2)); MemCopy(W1,stagenptr->ContDataStaPtr+(m+2),sizeof(FloatHi)*(m+2)); MemCopy(V2,stagenptr->ContDataStaPtr+2*(m+2),sizeof(FloatHi)*(m+2)); MemCopy(W2,stagenptr->ContDataStaPtr+3*(m+2),sizeof(FloatHi)*(m+2)); MemFree(stagenptr->ContDataStaPtr); stagenptr->ContDataStaLen=0; MemCopy(x0,staData->X,sizeof(FloatHi)*nphase); for (i=0; i<3+nappend; i++) x0[nphase+i]=staData->P[active[i]]; } else { v1=staFunc->CreateVector(nphase+3+nappend); v2=staFunc->CreateVector(nphase+3+nappend); D=staFunc->CreateMatrix(nphase+2+nappend,nphase+3+nappend); DE=staFunc->CreateMatrix(nphase+3+nappend,nphase+3+nappend); MemCopy(x0,staData->X,sizeof(FloatHi)*nphase); for (i=0; i<3+nappend; i++) x0[nphase+i]=staData->P[active[i]]; JacRHS(x0,C1); if (stagenData->BifDataInOk) { /* Message(MSG_OK,"Eigenvectors exist"); */ /* bifurcation data exist */ /* BifVector[0] to [nphase-1]: Hopf continuation vector */ /* BifVector[nphase] to [2*nphase-1]: global vector L */ /* BifVector[2*nphase]: -lambda*lambda */ MemCopy(V,stagenData->BifDataInPtr,sizeof(FloatHi)*nphase); MemCopy(L,stagenData->BifDataInPtr+nphase,sizeof(FloatHi)*nphase); } else { Ret=0; {int i,j,imin,jmin; double r,s,d,phi,beta,gamma,lambda,omega; staFunc->CopyMatrixBlock(C1,0,0,AA,0,0,nphase,nphase); staFunc->EigenValues(AA,Re,Im); /* find the pair of eigenvalues with zero sum */ s=fabs(Re[0]+Re[1])+fabs(Im[0]+Im[1]); imin=0; jmin=1; for (i=0; iCopyMatrixBlock(C1,0,0,AA,0,0,nphase,nphase); for (i=0; iSngSolve(AA,_eps,V) != nphase-1) { staUtil->ErrMessage("Unable to find (+)eigenvector at the initial point"); Ret=1; goto polufinal; } staFunc->CopyMatrixBlock(C1,0,0,AA,0,0,nphase,nphase); for (i=0; iSngSolve(AA,_eps,W) != nphase-1) { staUtil->ErrMessage("Unable to find (-)eigenvector at the initial point"); Ret=1; goto polufinal; } staFunc->NormalizeVector(V); staFunc->NormalizeVector(W); staFunc->AddScaledVector(V,W,-1.0,L); staFunc->NormalizeVector(L); staFunc->AddScaledVector(V,W,1.0,V); staFunc->NormalizeVector(V); } else { /* Hopf */ lambda=Re[imin]; omega=fabs(Im[imin]); /* compute real and imaginary part of the eigenvector */ staFunc->CopyMatrixBlock(C1,0,0,BB,0,0,nphase,nphase); staFunc->CopyMatrixBlock(C1,0,0,BB,nphase,nphase,nphase,nphase); for (i=0; iSngSolve(BB,_eps,VV) != 2*nphase-2) { staUtil->ErrMessage("Unable to find eigenvectors at the initial point"); Ret=1; goto polufinal; } staFunc->CopyVectorElements(VV,0,V,0,nphase); staFunc->CopyVectorElements(VV,nphase,W,0,nphase); /* normalize real and imaginary parts */ d=staFunc->ScalProd(V,V); s=staFunc->ScalProd(W,W); r=staFunc->ScalProd(V,W); if (r!=0) { beta=sqrt(fabs(4.0*r*r+(s-d)*(s-d))); if (2.0*fabs(2.0*r) > beta) { phi=PID2-atan(fabs((s-d)/(2.0*r))); } else { phi=atan(fabs(2.0*r/(s-d))); } if (r < 0) phi=PI-phi; if ((s-d) < 0) phi=-phi; phi/=2.0; for (i=0; iCopyVectorElements(VV,0,V,0,nphase); d=staFunc->ScalProd(V,V); gamma=1/sqrt(d); staFunc->MultiplyVectorScalar(VV,gamma,VV); staFunc->CopyVectorElements(VV,0,V,0,nphase); staFunc->CopyVectorElements(VV,nphase,L,0,nphase); staFunc->NormalizeVector(L); } polufinal: if (Ret) { v1=staFunc->DestroyVector(v1); v2=staFunc->DestroyVector(v2); D=staFunc->DestroyMatrix(D); DE=staFunc->DestroyMatrix(DE); Term(FALSE); return 1; } } } if (JacRHS(x0,C1)) return 1; staFunc->CopyMatrixBlock(C1,0,0,A,0,0,nphase,nphase); /* Fill in the bordered bi-product matrix BP */ staFunc->ClearMatrix(BP); i=-1; for (p=1; pCreateMatrix(m+1,m+1); staFunc->CopyMatrixBlock(BP,0,0,G,0,0,m,m); for (i=0; i t) { p = i; q = j; t = fabs(G[i][j]); } } } if (k!=q) { /* switch colom k with colom q */ for (i=0;i<=m;i++) { t=G[i][k]; G[i][k]=G[i][q]; G[i][q]=t; } } if (k!=p) { /* switch row k with row p */ for (i=0;i<=m;i++) { t=G[k][i]; G[k][i]=G[p][i]; G[p][i]=t; } } if (fabs(G[k][k]) == 0.0) { staUtil->ErrMessage("Biproduct has rank defect at least three"); Term(FALSE); return 1; } kp1=k+1; for (i=kp1;iClearVector(W1); staFunc->ClearVector(W2); W1[p]=1.0; W2[q]=1.0; BP[p][m]=1.0; BP[q][m+1]=1.0; p=(Int2)G[m][m-2]; q=(Int2)G[m][m-1]; staFunc->ClearVector(V1); staFunc->ClearVector(V2); V1[p]=1.0; V2[q]=1.0; BP[m][p]=1.0; BP[m+1][q]=1.0; G=staFunc->DestroyMatrix(G); /* solve first system to obtain new values for V1 */ staFunc->ClearVector(K1); staFunc->ClearVector(K2); staFunc->CopyMatrix(BP,BT); K1[m]=1.0; K2[m+1]=1.0; staFunc->Decomp(BT); staFunc->Solve(BT,K1); staFunc->Solve(BT,K2); staFunc->CopyVector(K1,OK1); staFunc->CopyVector(K1,K3); staFunc->CopyVector(K2,OK2); max1=(fabs(OK1[m])>fabs(OK2[m]))?fabs(OK1[m]):fabs(OK2[m]); max2=(fabs(OK1[m+1])>fabs(OK2[m+1]))?fabs(OK1[m+1]):fabs(OK2[m+1]); if (max1 > max2) { alpha = OK1[m]; beta = OK2[m]; } else { alpha = OK1[m+1]; beta = OK2[m+1]; } staFunc->MultiplyVectorScalar(OK1,-beta,OK1); staFunc->AddScaledVector(OK1,OK2,alpha,K1); staFunc->NormalizeVector(K1); alpha=staFunc->ScalProd(V1,K1); if (alpha < 0) { for (i=0;iCopyVector(K1,V1); /* solve second system to obtain new values for W1 */ staFunc->TransposeMatrix(BP,BT); staFunc->ClearVector(K1); staFunc->ClearVector(K2); K1[m]=1.0; K2[m+1]=1.0; staFunc->Decomp(BT); staFunc->Solve(BT,K1); staFunc->Solve(BT,K2); staFunc->CopyVector(K1,OK1); staFunc->CopyVector(K1,K3); staFunc->CopyVector(K2,OK2); max1=(fabs(OK1[m])>fabs(OK2[m]))?fabs(OK1[m]):fabs(OK2[m]); max2=(fabs(OK1[m+1])>fabs(OK2[m+1]))?fabs(OK1[m+1]):fabs(OK2[m+1]); if (max1 > max2) { alpha = OK1[m]; beta = OK2[m]; } else { alpha = OK1[m+1]; beta = OK2[m+1]; } staFunc->MultiplyVectorScalar(OK1,-beta,OK1); staFunc->AddScaledVector(OK1,OK2,alpha,K1); staFunc->NormalizeVector(K1); alpha=staFunc->ScalProd(W1,K1); if (alpha < 0) { for (i=0;iCopyVector(K1,W1); /* adapt V2 */ staFunc->ClearMatrix(BP1); staFunc->CopyMatrixBlock(BP,0,0,BP1,0,0,m,m); for (i=0;iCopyVectorElements(W2,0,RL,0,m+1); staFunc->Decomp(BP1); staFunc->Solve(BP1,RL); staFunc->NormalizeVector(RL); staFunc->CopyVectorElements(V2,0,OLD,0,m+1); alpha=staFunc->ScalProd(OLD,RL); if (alpha < 0) { for (i=0;iClearVector(V2); staFunc->CopyVectorElements(RL,0,V2,0,m+1); /* adapt W2 */ staFunc->ClearMatrix(BP1); staFunc->CopyMatrixBlock(BP,0,0,BP1,0,0,m,m); for (i=0;iTransposeMatrix(BP1,BT1); staFunc->Decomp(BT1); staFunc->ClearVector(RL); staFunc->CopyVectorElements(V2,0,RL,0,m+1); staFunc->Solve(BT1,RL); staFunc->NormalizeVector(RL); staFunc->CopyVectorElements(W2,0,OLD,0,m+1); alpha=staFunc->ScalProd(OLD,RL); if (alpha < 0) { for (i=0;iClearVector(W2); staFunc->CopyVectorElements(RL,0,W2,0,m+1); for (i=0;iAppendMatrixVector(D,v1,DE); Ret=staFunc->Decomp(DE); if (Ret == 0) { v2[nphase+2+nappend]=stagenData->Forward ? 1 : -1; staFunc->Solve(DE,v2); staFunc->CopyVector(v2,v0); break; }; v1[i]=0.0; }; if (Ret) { staUtil->ErrMessage ("Unable to find a tangent vector to the Generalized Hopf curve"); v1=staFunc->DestroyVector(v1); v2=staFunc->DestroyVector(v2); D=staFunc->DestroyMatrix(D); DE=staFunc->DestroyMatrix(DE); Term(FALSE); return 1; } staFunc->NormalizeVector(v0); v1=staFunc->DestroyVector(v1); v2=staFunc->DestroyVector(v2); D=staFunc->DestroyMatrix(D); DE=staFunc->DestroyMatrix(DE); } /* Initialize continuation */ ((ContDataPtr)stagenptr->GenPtr)->X0=x0; ((ContDataPtr)stagenptr->GenPtr)->V0=v0; ((ContDataPtr)stagenptr->GenPtr)->ActiveSing=staData->ActiveSing; ((ContDataPtr)stagenptr->GenPtr)->ActiveUserTest=staData->ActiveUserTest; ((ContDataPtr)stagenptr->GenPtr)->TypeTestFuns=staData->TypeTestFunc; ((ContDataPtr)stagenptr->GenPtr)->ZeroTestFuns=staData->ZeroTestFunc; /* That's all */ return 0; } /************************/ /* Some common routines */ Local(void) CopyToX(Vector vp) { MemCopy(X,vp,sizeof(FloatHi)*nphase); } Local(void) CopyToP(Vector vp) { Int2 i; for (i=0; i<3+nappend; i++) P[active[i]]=vp[nphase+i]; } Local(void) CopyToE(Vector Re, Vector Im) { MemCopy(E,Re,sizeof(FloatHi)*nphase); MemCopy(E+nphase,Im,sizeof(FloatHi)*nphase); } /***********/ /* Decoder */ Entry(Int2) gh_Decoder(VoidPtr vpoint, FloatHiPtr PNTR indirect, Int2 oper) { switch (oper) { case DECODER_INIT: /* point is a pointer to StagenData structure */ case DECODER_TERM: break; case DECODER_DIM: /* returns number of M-points in given G-point */ return 1; default: /* extract next M-point from G-point pointed by vpoint */ /* vpoint is a Vector */ indirect[CL_TIME]=&zero; indirect[CL_PHASE]=X; CopyToX(vpoint); indirect[CL_PAR]=P; CopyToP(vpoint); indirect[CL_EIGV]=E; CopyToE(Re,Im); indirect[CL_TEST]=test; } return 0; } /***************************/ /* User-defined functions */ Entry(Int2) gh_DefUser (Vector x, Vector y) { Int2 i,j; for (i=j=0; iudFunc)(x,i,&y[j]); j++; } return 0; } /*******/ /* RHS */ Entry(Int2) gh_DefRHS (Vector x, Vector y) { CopyToX(x); CopyToP(x); stagenData->Rhs(X,P,&zero,y); return 0; } /*************************************/ /* Defining function for equilibrium */ Local(Int2) DefEquilib (Vector x, Vector y) { gh_DefRHS(x,y); if (nappend) gh_DefUser(x,y+nphase); return 0; } /********************/ /* Jacobian of RHS */ Local(Int2) JacRHS (Vector x, Matrix Jac) { staFunc->CopyVectorElements(x,0,xp,0,nphase+3+nappend); if (stagenData->Der1) { SymJac(xp,Jac); } else { if (staFunc->Der(gh_DefRHS, nphase, xp, dx, Jac)) { return 1; } } return 0; } /***************************************************/ /* Jacobian of defining conditions for equilibria */ Local(Int2) JacDefEquilib (Vector x, Matrix Jac) { /* Message(MSG_OK,"JacDefEquilib entered"); */ staFunc->ClearMatrix(Jac); JacRHS(x, Jac); if (nappend) staFunc->Der(gh_DefUser, nappend, x, dx, Jac+nphase); /* Message(MSG_OK,"JacDefEquilib left"); */ return 0; } /***************************/ /* Generalized Hopf defining condition */ Entry(Int2) gh_DefBord (Vector x, Vector y) { Int2 i,j,k,l,p,q,m,imax,jmax; Int2 Ret; VAR d,h,r,s,a11,a12,a21,a22,max1,max2,beta,gamma,phi,omega; m=nphase*(nphase-1)/2; if (JacRHS(x,C1)) return 1; /* A,C1,BP,V1,V2,W1,W2 - global */ staFunc->CopyMatrixBlock(C1,0,0,A,0,0,nphase,nphase); /* Fill in the bordered bi-product matrix BP */ staFunc->ClearMatrix(BP); i=-1; for (p=1; pCopyMatrix(BP,BT); Ret=staFunc->Decomp(BT); if (Ret != 0) { return 1; } staFunc->ClearVector(VB1); VB1[m]=1.0; staFunc->Solve(BT,VB1); staFunc->ClearVector(VB2); VB2[m+1]=1.0; staFunc->Solve(BT,VB2); y[0]=(VB1[m]*VB2[m+1]-VB1[m+1]*VB2[m]); /* compute Q as linear combination of VB1 and VB2 */ max1=(fabs(VB1[m])>fabs(VB2[m]))?VB1[m]:VB2[m]; max2=(fabs(VB1[m+1])>fabs(VB2[m+1]))?VB1[m+1]:VB2[m+1]; if (fabs(max1)>fabs(max2)) imax=m; else imax=m+1; for(i=0;id) { imax=i; jmax=j; d=fabs(Q[i*(i-1)/2+j]); } } } d=Q[imax*(imax-1)/2+jmax]; /* compute eigenvectors */ staFunc->ClearVector(V); staFunc->ClearVector(W); for (i=0; iimax) V[i]=-Q[i*(i-1)/2+imax]/d; if (ijmax) W[i]=Q[i*(i-1)/2+jmax]/d; } /* compute -lambda*lambda */ staFunc->MultiplyMatrixVector(A,V,F); /* F=A*V */ a11=staFunc->ScalProd(V,F); a12=staFunc->ScalProd(W,F); staFunc->MultiplyMatrixVector(A,W,F); /* F=A*W */ a21=staFunc->ScalProd(W,F); a22=staFunc->ScalProd(V,F); d=staFunc->ScalProd(V,V)*staFunc->ScalProd(W,W) -staFunc->ScalProd(V,W)*staFunc->ScalProd(V,W); d=(a11*a21-a22*a12)/d; if (d <= 0.0) { /* neutral saddle */ y[1]=777; } else { /* Hopf */ omega=sqrt(d); staFunc->MultiplyMatrixVector(A,V,W); staFunc->MultiplyVectorScalar(W,-1.0/omega,W); /* normalize real and imaginary parts =1, =0 */ d=staFunc->ScalProd(V,V); s=staFunc->ScalProd(W,W); r=staFunc->ScalProd(V,W); if (r==0) { staFunc->CopyVectorElements(V,0,VV,0,nphase); staFunc->CopyVectorElements(W,0,VV,nphase,nphase); } else { beta=sqrt(fabs(4.0*r*r+(s-d)*(s-d))); if (2.0*fabs(2.0*r) > beta) { phi=PID2-atan(fabs((s-d)/(2.0*r))); } else { phi=atan(fabs(2.0*r/(s-d))); } if (r < 0) phi=PI-phi; if ((s-d) < 0) phi=-phi; phi/=2.0; for (i=0; iCopyVectorElements(VV,0,W,0,nphase); d=staFunc->ScalProd(W,W); gamma=1/sqrt(d); staFunc->MultiplyVectorScalar(VV,gamma,VV); staFunc->CopyVectorElements(VV,0,Qr,0,nphase); staFunc->CopyVectorElements(VV,nphase,Qi,0,nphase); /* compute real and imaginary part of the adjoint eigenvector */ staFunc->CopyMatrixBlock(A,0,0,AA,0,0,nphase,nphase); staFunc->TransposeMatrix(AA,AT); staFunc->ClearMatrix(BB); staFunc->CopyMatrixBlock(AT,0,0,BB,0,0,nphase,nphase); staFunc->CopyMatrixBlock(AT,0,0,BB,nphase,nphase,nphase,nphase); for (i=0; iSngSolve(BB,_eps,VV) != 2*nphase-2) { y[1]=1.0; return 1; } staFunc->CopyVectorElements(VV,0,Pr,0,nphase); staFunc->CopyVectorElements(VV,nphase,Pi,0,nphase); /* normalize the adjoint vector +=1, -=0 */ d=staFunc->ScalProd(Pr,Qr); s=staFunc->ScalProd(Pi,Qi); r=staFunc->ScalProd(Pr,Qi); h=staFunc->ScalProd(Pi,Qr); /* phi=atan((r-h)/(d+s)); */ beta=sqrt(fabs((r-h)*(r-h)+(d+s)*(d+s))); if (2.0*fabs(d+s) > beta) { phi=atan(fabs((r-h)/(d+s))); } else { phi=PID2-atan(fabs((d+s)/(r-h))); } if ((r-h) < 0) phi=PI-phi; if ((d+s) < 0) phi=-phi; for (i=0; iCopyVectorElements(VV,0,Pr,0,nphase); staFunc->CopyVectorElements(VV,nphase,Pi,0,nphase); r=staFunc->ScalProd(Pr,Qr); h=staFunc->ScalProd(Pi,Qi); beta=1.0/(r+h); staFunc->MultiplyVectorScalar(Pr,beta,Pr); staFunc->MultiplyVectorScalar(Pi,beta,Pi); /* compute the first Lyapunov coefficient L1 */ /* quadratic terms */ if (stagenData->Der2) { CopyToX(x); CopyToP(x); H=stagenData->Der2(X,P,&zero); /* The 1st elem must be time! */ for (i=0; iClearVector(v0); staFunc->CopyVectorElements(Qr,0,v0,0,nphase); gh_DefRHS(x,aa); staFunc->AddScaledVector(x,v0,ddx,x1); gh_DefRHS(x1,bb); staFunc->AddScaledVector(x,v0,-ddx,x1); gh_DefRHS(x1,cc); staFunc->AddScaledVector(bb,aa,-2.0,rr); staFunc->AddScaledVector(rr,cc,1.0,aa); staFunc->MultiplyVectorScalar(aa,1.0/ddx/ddx,aa); staFunc->CopyVectorElements(Qi,0,v0,0,nphase); gh_DefRHS(x,rr); staFunc->AddScaledVector(x,v0,ddx,x1); gh_DefRHS(x1,bb); staFunc->AddScaledVector(x,v0,-ddx,x1); gh_DefRHS(x1,cc); staFunc->AddScaledVector(bb,rr,-2.0,rr); staFunc->AddScaledVector(rr,cc,1.0,bb); staFunc->MultiplyVectorScalar(bb,1.0/ddx/ddx,bb); staFunc->AddScaledVector(Qr,Qi,1.0,rr); staFunc->CopyVectorElements(rr,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,rr); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,cc); staFunc->AddScaledVector(rr,cc,1.0,dd); staFunc->AddScaledVector(Qr,Qi,-1.0,rr); staFunc->CopyVectorElements(rr,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,rr); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,cc); staFunc->AddScaledVector(rr,cc,1.0,rr); staFunc->AddScaledVector(dd,rr,-1.0,cc); staFunc->MultiplyVectorScalar(cc,-2.0/ddx/ddx,cc); /* cc=-2*c */ } staFunc->CopyMatrixBlock(A,0,0,AA,0,0,nphase,nphase); staFunc->AddScaledVector(aa,bb,1.0,rr); Ret=staFunc->Decomp(AA); if (Ret != 0) { /* Zero-Hopf case */ y[1]=777.0; return 0; } staFunc->Solve(AA,rr); staFunc->MultiplyVectorScalar(rr,-2.0,rr); /* rr=-2*r */ staFunc->AddScaledVector(bb,aa,-1.0,dd); staFunc->CopyVectorElements(dd,0,VV,0,nphase); staFunc->CopyVectorElements(cc,0,VV,nphase,nphase); staFunc->ClearMatrix(BB); staFunc->CopyMatrixBlock(A,0,0,BB,0,0,nphase,nphase); staFunc->CopyMatrixBlock(A,0,0,BB,nphase,nphase,nphase,nphase); for (i=0; iDecomp(BB); if (Ret != 0) { y[1]=1.0; return 3; } staFunc->Solve(BB,VV); staFunc->CopyVectorElements(VV,0,aa,0,nphase); /* aa=Sr */ staFunc->CopyVectorElements(VV,nphase,bb,0,nphase); /* bb=Si */ if (stagenData->Der2) { for (s=0.0,i=0; iClearVector(v0); /* -2* */ staFunc->AddScaledVector(Qr,rr,1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s=staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(Qr,rr,-1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pr,dd); /* -2* */ staFunc->AddScaledVector(Qi,rr,1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(Qi,rr,-1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pi,dd); /* */ staFunc->AddScaledVector(Qr,aa,1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(Qr,aa,-1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pr,dd); /* */ staFunc->AddScaledVector(Qi,bb,1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(Qi,bb,-1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pr,dd); /* */ staFunc->AddScaledVector(Qr,bb,1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(Qr,bb,-1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pi,dd); /* */ staFunc->AddScaledVector(Qi,aa,1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s-=staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(Qi,aa,-1.0,dd); staFunc->CopyVectorElements(dd,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(x,v0,-0.5*ddx,x1); gh_DefRHS(x1,dd); s+=staFunc->ScalProd(Pi,dd); s/=(ddx*ddx); } /* cubic terms */ if (stagenData->Der3) { CopyToX(x); CopyToP(x); D3=stagenData->Der3(X,P,&zero); /* The 1st elem must be time! */ for (r=0.0,i=0; iClearVector(v0); staFunc->CopyVectorElements(Qr,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,3*dddx/2,x1); gh_DefRHS(x1,dd); r=(2.0/3.0)*staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(x,v0,dddx/2,x1); gh_DefRHS(x1,dd); r-=2.0*staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(x,v0,-dddx/2,x1); gh_DefRHS(x1,dd); r+=2.0*staFunc->ScalProd(Pr,dd); staFunc->AddScaledVector(x,v0,-3*dddx/2,x1); gh_DefRHS(x1,dd); r-=(2.0/3.0)*staFunc->ScalProd(Pr,dd); staFunc->CopyVectorElements(Qi,0,v0,0,nphase); staFunc->AddScaledVector(x,v0,3*dddx/2,x1); gh_DefRHS(x1,dd); r+=(2.0/3.0)*staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(x,v0,dddx/2,x1); gh_DefRHS(x1,dd); r-=2.0*staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(x,v0,-dddx/2,x1); gh_DefRHS(x1,dd); r+=2.0*staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(x,v0,-3*dddx/2,x1); gh_DefRHS(x1,dd); r-=(2.0/3.0)*staFunc->ScalProd(Pi,dd); staFunc->AddScaledVector(Qr,Qi,1.0,aa); staFunc->CopyVectorElements(aa,0,v0,0,nphase); staFunc->AddScaledVector(Pr,Pi,1.0,bb); staFunc->AddScaledVector(x,v0,3*dddx/2,x1); gh_DefRHS(x1,dd); r+=staFunc->ScalProd(bb,dd)/6; staFunc->AddScaledVector(x,v0,dddx/2,x1); gh_DefRHS(x1,dd); r-=staFunc->ScalProd(bb,dd)/2; staFunc->AddScaledVector(x,v0,-dddx/2,x1); gh_DefRHS(x1,dd); r+=staFunc->ScalProd(bb,dd)/2; staFunc->AddScaledVector(x,v0,-3*dddx/2,x1); gh_DefRHS(x1,dd); r-=staFunc->ScalProd(bb,dd)/6; staFunc->AddScaledVector(Qr,Qi,-1.0,aa); staFunc->CopyVectorElements(aa,0,v0,0,nphase); staFunc->AddScaledVector(Pr,Pi,-1.0,bb); staFunc->AddScaledVector(x,v0,3*dddx/2,x1); gh_DefRHS(x1,dd); r+=staFunc->ScalProd(bb,dd)/6; staFunc->AddScaledVector(x,v0,dddx/2,x1); gh_DefRHS(x1,dd); r-=staFunc->ScalProd(bb,dd)/2; staFunc->AddScaledVector(x,v0,-dddx/2,x1); gh_DefRHS(x1,dd); r+=staFunc->ScalProd(bb,dd)/2; staFunc->AddScaledVector(x,v0,-3*dddx/2,x1); gh_DefRHS(x1,dd); r-=staFunc->ScalProd(bb,dd)/6; r/=(dddx*dddx*dddx); } y[1]=(s+r)/(2*omega); } return 0; } /****************************************************/ /* Jacobian of Generalized Hopf defining conditions */ Local(Int2) JacDefBord (Vector x, Matrix Jac) { int i,j,k,l,m,n,p,t,u,q; VAR a11,a12,a21,a22,s11,s12,s21,s22,max1,max2,beta,gamma,phi,omega,s,r,h,d; Int2 imax,jmax,Ret; m=nphase*(nphase-1)/2; staFunc->ClearMatrix(Jac); if (stagenData->Der2 && stagenData->Der3) { /* creation of DefBip Jacobian matrix Jac using symbolic second derivatives */ CopyToX(x); CopyToP(x); H=stagenData->Der2(X,P,&zero); D3=stagenData->Der3(X,P,&zero); /* The 1st elem must be time! */ /* take global vectors VB1 and VB2 computed at the computation of DefBord */ /* compute PP1 and PP2 using the transposed bordered bi-product */ staFunc->TransposeMatrix(BP,BT); staFunc->ClearVector(PP1); PP1[m]=1.0; staFunc->Decomp(BT); staFunc->Solve(BT,PP1); staFunc->ClearVector(PP2); PP2[m+1]=1.0; staFunc->Solve(BT,PP2); /* compute gradient of DefBord */ for (l=0; lClearMatrix(BT); i=-1; for (p=1; pCopyVector(x,xp); xp[l]+=_dx; JacRHS(xp,C1); staFunc->CopyMatrixBlock(C1,0,0,A,0,0,nphase,nphase); staFunc->ClearMatrix(BT); i=-1; for (p=1; pDecomp(BT); staFunc->ClearVector(VB1); VB1[m]=1.0; staFunc->Solve(BT,VB1); staFunc->ClearVector(VB2); VB2[m+1]=1.0; staFunc->Solve(BT,VB2); /* compute Q as linear combination of VB1 and VB2 */ max1=(fabs(VB1[m])>fabs(VB2[m]))?VB1[m]:VB2[m]; max2=(fabs(VB1[m+1])>fabs(VB2[m+1]))?VB1[m+1]:VB2[m+1]; if (fabs(max1)>fabs(max2)) imax=m; else imax=m+1; for(i=0;id) { imax=i; jmax=j; d=fabs(Q[i*(i-1)/2+j]); } } } d=Q[imax*(imax-1)/2+jmax]; /* compute eigenvectors */ staFunc->ClearVector(V); staFunc->ClearVector(W); for (i=0; iimax) V[i]=-Q[i*(i-1)/2+imax]/d; if (ijmax) W[i]=Q[i*(i-1)/2+jmax]/d; } /* compute -lambda*lambda */ staFunc->MultiplyMatrixVector(A,V,F); /* F=A*V */ a11=staFunc->ScalProd(V,F); a12=staFunc->ScalProd(W,F); staFunc->MultiplyMatrixVector(A,W,F); /* F=A*W */ a21=staFunc->ScalProd(W,F); a22=staFunc->ScalProd(V,F); d=staFunc->ScalProd(V,V)*staFunc->ScalProd(W,W) -staFunc->ScalProd(V,W)*staFunc->ScalProd(V,W); d=(a11*a21-a22*a12)/d; if (d <= 0.0) { /* neutral saddle */ return 1; } else { /* Hopf */ omega=sqrt(d); staFunc->MultiplyMatrixVector(A,V,W); staFunc->MultiplyVectorScalar(W,-1.0/omega,W); /* normalize real and imaginary parts =1, =0 */ d=staFunc->ScalProd(V,V); s=staFunc->ScalProd(W,W); r=staFunc->ScalProd(V,W); if (r==0) { staFunc->CopyVectorElements(V,0,VV,0,nphase); staFunc->CopyVectorElements(W,0,VV,nphase,nphase); } else { beta=sqrt(fabs(4.0*r*r+(s-d)*(s-d))); if (2.0*fabs(2.0*r) > beta) { phi=PID2-atan(fabs((s-d)/(2.0*r))); } else { phi=atan(fabs(2.0*r/(s-d))); } if (r < 0) phi=PI-phi; if ((s-d) < 0) phi=-phi; phi/=2.0; for (i=0; iCopyVectorElements(VV,0,W,0,nphase); d=staFunc->ScalProd(W,W); gamma=1/sqrt(d); staFunc->MultiplyVectorScalar(VV,gamma,VV); staFunc->CopyVectorElements(VV,0,Qr,0,nphase); staFunc->CopyVectorElements(VV,nphase,Qi,0,nphase); /* compute real and imaginary part of the adjoint eigenvector */ staFunc->CopyMatrixBlock(A,0,0,AA,0,0,nphase,nphase); staFunc->TransposeMatrix(AA,AT); staFunc->ClearMatrix(BB); staFunc->CopyMatrixBlock(AT,0,0,BB,0,0,nphase,nphase); staFunc->CopyMatrixBlock(AT,0,0,BB,nphase,nphase,nphase,nphase); for (i=0; iSngSolve(BB,_eps,VV) != 2*nphase-2) { return 1; } staFunc->CopyVectorElements(VV,0,Pr,0,nphase); staFunc->CopyVectorElements(VV,nphase,Pi,0,nphase); /* normalize the adjoint vector +=1, -=0 */ d=staFunc->ScalProd(Pr,Qr); s=staFunc->ScalProd(Pi,Qi); r=staFunc->ScalProd(Pr,Qi); h=staFunc->ScalProd(Pi,Qr); phi=atan((r-h)/(d+s)); for (i=0; iCopyVectorElements(VV,0,Pr,0,nphase); staFunc->CopyVectorElements(VV,nphase,Pi,0,nphase); r=staFunc->ScalProd(Pr,Qr); h=staFunc->ScalProd(Pi,Qi); beta=1.0/(r+h); staFunc->MultiplyVectorScalar(Pr,beta,Pr); staFunc->MultiplyVectorScalar(Pi,beta,Pi); /* compute the first Lyapunov coefficient L1 */ /* quadratic terms */ for (i=0; iCopyMatrixBlock(A,0,0,AA,0,0,nphase,nphase); staFunc->AddScaledVector(aa,bb,1.0,rr); Ret=staFunc->Decomp(AA); if (Ret != 0) { /* Zero-Hopf case */ return 0; } staFunc->Solve(AA,rr); staFunc->MultiplyVectorScalar(rr,-2.0,rr); /* rr=-2*r */ staFunc->AddScaledVector(bb,aa,-1.0,dd); staFunc->CopyVectorElements(dd,0,VV,0,nphase); staFunc->CopyVectorElements(cc,0,VV,nphase,nphase); staFunc->ClearMatrix(BB); staFunc->CopyMatrixBlock(A,0,0,BB,0,0,nphase,nphase); staFunc->CopyMatrixBlock(A,0,0,BB,nphase,nphase,nphase,nphase); for (i=0; iDecomp(BB); if (Ret != 0) { return 3; } staFunc->Solve(BB,VV); staFunc->CopyVectorElements(VV,0,aa,0,nphase); /* aa=Sr */ staFunc->CopyVectorElements(VV,nphase,bb,0,nphase); /* bb=Si */ for (s=0.0,i=0; iCopyVector(x,xp); xp[l]-=_dx; JacRHS(xp,C1); staFunc->CopyMatrixBlock(C1,0,0,A,0,0,nphase,nphase); staFunc->ClearMatrix(BT); i=-1; for (p=1; pDecomp(BT); staFunc->ClearVector(VB1); VB1[m]=1.0; staFunc->Solve(BT,VB1); staFunc->ClearVector(VB2); VB2[m+1]=1.0; staFunc->Solve(BT,VB2); /* compute Q as linear combination of VB1 and VB2 */ max1=(fabs(VB1[m])>fabs(VB2[m]))?VB1[m]:VB2[m]; max2=(fabs(VB1[m+1])>fabs(VB2[m+1]))?VB1[m+1]:VB2[m+1]; if (fabs(max1)>fabs(max2)) imax=m; else imax=m+1; for(i=0;id) { imax=i; jmax=j; d=fabs(Q[i*(i-1)/2+j]); } } } d=Q[imax*(imax-1)/2+jmax]; /* compute eigenvectors */ staFunc->ClearVector(V); staFunc->ClearVector(W); for (i=0; iimax) V[i]=-Q[i*(i-1)/2+imax]/d; if (ijmax) W[i]=Q[i*(i-1)/2+jmax]/d; } /* compute -lambda*lambda */ staFunc->MultiplyMatrixVector(A,V,F); /* F=A*V */ a11=staFunc->ScalProd(V,F); a12=staFunc->ScalProd(W,F); staFunc->MultiplyMatrixVector(A,W,F); /* F=A*W */ a21=staFunc->ScalProd(W,F); a22=staFunc->ScalProd(V,F); d=staFunc->ScalProd(V,V)*staFunc->ScalProd(W,W) -staFunc->ScalProd(V,W)*staFunc->ScalProd(V,W); d=(a11*a21-a22*a12)/d; if (d <= 0.0) { /* neutral saddle */ return 1; } else { /* Hopf */ omega=sqrt(d); staFunc->MultiplyMatrixVector(A,V,W); staFunc->MultiplyVectorScalar(W,-1.0/omega,W); /* normalize real and imaginary parts =1, =0 */ d=staFunc->ScalProd(V,V); s=staFunc->ScalProd(W,W); r=staFunc->ScalProd(V,W); if (r==0) { staFunc->CopyVectorElements(V,0,VV,0,nphase); staFunc->CopyVectorElements(W,0,VV,nphase,nphase); } else { beta=sqrt(fabs(4.0*r*r+(s-d)*(s-d))); if (2.0*fabs(2.0*r) > beta) { phi=PID2-atan(fabs((s-d)/(2.0*r))); } else { phi=atan(fabs(2.0*r/(s-d))); } if (r < 0) phi=PI-phi; if ((s-d) < 0) phi=-phi; phi/=2.0; for (i=0; iCopyVectorElements(VV,0,W,0,nphase); d=staFunc->ScalProd(W,W); gamma=1/sqrt(d); staFunc->MultiplyVectorScalar(VV,gamma,VV); staFunc->CopyVectorElements(VV,0,Qr,0,nphase); staFunc->CopyVectorElements(VV,nphase,Qi,0,nphase); /* compute real and imaginary part of the adjoint eigenvector */ staFunc->CopyMatrixBlock(A,0,0,AA,0,0,nphase,nphase); staFunc->TransposeMatrix(AA,AT); staFunc->ClearMatrix(BB); staFunc->CopyMatrixBlock(AT,0,0,BB,0,0,nphase,nphase); staFunc->CopyMatrixBlock(AT,0,0,BB,nphase,nphase,nphase,nphase); for (i=0; iSngSolve(BB,_eps,VV) != 2*nphase-2) { return 1; } staFunc->CopyVectorElements(VV,0,Pr,0,nphase); staFunc->CopyVectorElements(VV,nphase,Pi,0,nphase); /* normalize the adjoint vector +=1, -=0 */ d=staFunc->ScalProd(Pr,Qr); s=staFunc->ScalProd(Pi,Qi); r=staFunc->ScalProd(Pr,Qi); h=staFunc->ScalProd(Pi,Qr); phi=atan((r-h)/(d+s)); for (i=0; iCopyVectorElements(VV,0,Pr,0,nphase); staFunc->CopyVectorElements(VV,nphase,Pi,0,nphase); r=staFunc->ScalProd(Pr,Qr); h=staFunc->ScalProd(Pi,Qi); beta=1.0/(r+h); staFunc->MultiplyVectorScalar(Pr,beta,Pr); staFunc->MultiplyVectorScalar(Pi,beta,Pi); /* compute the first Lyapunov coefficient L1 */ /* quadratic terms */ for (i=0; iCopyMatrixBlock(A,0,0,AA,0,0,nphase,nphase); staFunc->AddScaledVector(aa,bb,1.0,rr); Ret=staFunc->Decomp(AA); if (Ret != 0) { /* Zero-Hopf case */ return 0; } staFunc->Solve(AA,rr); staFunc->MultiplyVectorScalar(rr,-2.0,rr); /* rr=-2*r */ staFunc->AddScaledVector(bb,aa,-1.0,dd); staFunc->CopyVectorElements(dd,0,VV,0,nphase); staFunc->CopyVectorElements(cc,0,VV,nphase,nphase); staFunc->ClearMatrix(BB); staFunc->CopyMatrixBlock(A,0,0,BB,0,0,nphase,nphase); staFunc->CopyMatrixBlock(A,0,0,BB,nphase,nphase,nphase,nphase); for (i=0; iDecomp(BB); if (Ret != 0) { return 3; } staFunc->Solve(BB,VV); staFunc->CopyVectorElements(VV,0,aa,0,nphase); /* aa=Sr */ staFunc->CopyVectorElements(VV,nphase,bb,0,nphase); /* bb=Si */ for (s=0.0,i=0; iDer(gh_DefBord, 2, x, dx, Jac)) return 1; } return(0); } /*************************************************/ /* Defining functions for Generalized Hopf curve */ Entry(Int2) gh_DefGeneralizedHopf (Vector x, Vector y) { if (DefEquilib(x,y)) return 1; if (gh_DefBord(x,y+nphase+nappend)) return 2; return 0; } /*************************************************/ /* Jacobian of defining functions for Hopf curve */ Entry(Int2) gh_JacDefGeneralizedHopf (Vector x, Matrix Jac) { staFunc->ClearMatrix(Jac); if (JacDefEquilib(x,C)) return 1; staFunc->CopyMatrixBlock(C,0,0,Jac,0,0,nphase+nappend,nphase+3+nappend); if (JacDefBord(x,C2)) return 2; staFunc->CopyMatrixBlock(C2,0,0,Jac,nphase+nappend,0,2,nphase+3+nappend); return 0; } /*********************/ /* Default processor */ Entry(Int2) gh_ProcDefault(Int2 Ind, Vector x, Vector v1, CharPtr *msg) { /* Assert: v1==NULL, msg==NULL, Ind==0 */ gh_DefGeneralizedHopf (x, xp1); /* compute global Q for test functions */ MemCopy(x1,x,sizeof(FloatHi)*(nphase+3+nappend)); /* for the last point */ if (!staData->eigcomp) return 0; if (JacRHS(x,C1)) return (1); staFunc->EigenValues(C1,Re,Im); return 0; } /*********************************/ /* Test and processing functions */ typedef EntryPtr(Int2,TestFuncPtr,(Vector xx, Vector vv, FloatHiPtr TV)); typedef EntryPtr(Int2,ProcFuncPtr,(Int2 Ind, Vector xx, Vector vv, CharPtr *msg)); Entry(Int2) gh_TestDummy(Vector x, Vector v, FloatHiPtr res) { *res=1.0; test[0]=*res; return 0; } Entry(Int2) gh_ProcDummy(Int2 Ind, Vector x, Vector v, CharPtr *msg) { return 0; } /**************************************************/ /* Adaptation of the bordering vectors V1,V2,W1,W2 */ Entry(Int2) gh_Adapter(Vector x, Vector v) { int i,m; VAR alpha,beta,max1,max2; m=nphase*(nphase-1)/2; /* solve first system to obtain new values for V1 */ staFunc->ClearVector(K1); staFunc->ClearVector(K2); staFunc->CopyMatrix(BP,BT); K1[m]=1.0; K2[m+1]=1.0; staFunc->Decomp(BT); staFunc->Solve(BT,K1); staFunc->Solve(BT,K2); staFunc->CopyVector(K1,OK1); staFunc->CopyVector(K1,K3); staFunc->CopyVector(K2,OK2); max1=(fabs(OK1[m])>fabs(OK2[m]))?fabs(OK1[m]):fabs(OK2[m]); max2=(fabs(OK1[m+1])>fabs(OK2[m+1]))?fabs(OK1[m+1]):fabs(OK2[m+1]); if (max1 > max2) { alpha = OK1[m]; beta = OK2[m]; } else { alpha = OK1[m+1]; beta = OK2[m+1]; } staFunc->MultiplyVectorScalar(OK1,-beta,OK1); staFunc->AddScaledVector(OK1,OK2,alpha,K1); staFunc->NormalizeVector(K1); alpha=staFunc->ScalProd(V1,K1); if (alpha < 0) { for (i=0;iCopyVector(K1,V1); /* solve second system to obtain new values for W1 */ staFunc->TransposeMatrix(BP,BT); staFunc->ClearVector(K1); staFunc->ClearVector(K2); K1[m]=1.0; K2[m+1]=1.0; staFunc->Decomp(BT); staFunc->Solve(BT,K1); staFunc->Solve(BT,K2); staFunc->CopyVector(K1,OK1); staFunc->CopyVector(K1,K3); staFunc->CopyVector(K2,OK2); max1=(fabs(OK1[m])>fabs(OK2[m]))?fabs(OK1[m]):fabs(OK2[m]); max2=(fabs(OK1[m+1])>fabs(OK2[m+1]))?fabs(OK1[m+1]):fabs(OK2[m+1]); if (max1 > max2) { alpha = OK1[m]; beta = OK2[m]; } else { alpha = OK1[m+1]; beta = OK2[m+1]; } staFunc->MultiplyVectorScalar(OK1,-beta,OK1); staFunc->AddScaledVector(OK1,OK2,alpha,K1); staFunc->NormalizeVector(K1); alpha=staFunc->ScalProd(W1,K1); if (alpha < 0) { for (i=0;iCopyVector(K1,W1); /* adapt V2 */ staFunc->ClearMatrix(BP1); staFunc->CopyMatrixBlock(BP,0,0,BP1,0,0,m,m); for (i=0;iCopyVectorElements(W2,0,RL,0,m+1); staFunc->Decomp(BP1); staFunc->Solve(BP1,RL); staFunc->NormalizeVector(RL); staFunc->CopyVectorElements(V2,0,OLD,0,m+1); alpha=staFunc->ScalProd(OLD,RL); if (alpha < 0) { for (i=0;iClearVector(V2); staFunc->CopyVectorElements(RL,0,V2,0,m+1); /* adapt W2 */ staFunc->ClearMatrix(BP1); staFunc->CopyMatrixBlock(BP,0,0,BP1,0,0,m,m); for (i=0;iTransposeMatrix(BP1,BT1); staFunc->Decomp(BT1); staFunc->ClearVector(RL); staFunc->CopyVectorElements(V2,0,RL,0,m+1); staFunc->Solve(BT1,RL); staFunc->NormalizeVector(RL); staFunc->CopyVectorElements(W2,0,OLD,0,m+1); alpha=staFunc->ScalProd(OLD,RL); if (alpha < 0) { for (i=0;iClearVector(W2); staFunc->CopyVectorElements(RL,0,W2,0,m+1); return 0; }