Introduction to Numerical
Bifurcation Analysiss of ODEs
Yu.A. Kuznetsov (Utrecht University)
LECTURE SLIDES:
Lecture
1 (background bifurcation theory - read if necessary)
Lecture
2 (26-07-2011)
Lecture
3 (27-07-2011)
Lecture
4 (28-07-2011)
Lecture
5 (29-07-2011)
COMPUTER SESSIONS:
Tutorial
I (25-07-2011)
Tutorial
II (26-07-2011)
Tutorial
III (27-07-2011)
Tutorial
IV (28-07-2011)
Tutorial
V (29-07-2011)
TO INSTALL your personal
copy of the MATLAB
bifurcation
toolbox MatCont:
(a) put the file matcont3p4.zip
to the Desktop.
(b) extract all files from matcont3p4.zip into the directory matcont on the Desktop.
LITERATURE:
Beyn, W.-J., Champneys, A., Doedel, E., Govaerts,
W.,
Kuznetsov, Yu.A., and Sandstede, B.
Numerical continuation, and computation of normal
forms.
In: B. Fiedler (ed.) "Handbook of Dynamical Systems", v.2, Elsevier
Science, North-Holland, 2002, 149-219
Doedel, E.J., Govaerts, W., and Kuznetsov, Yu.A.
Computation of periodic solution bifurcations in ODEs using bordered
systems.
SIAM J. Numer. Anal. 41 (2003), 401-435
Dhooge, A., Govaerts, W., and Kuznetsov, Yu.A.
MATCONT: A MATLAB package for numerical bifurcation analysis of
ODEs.
ACM Trans. Math. Software 29 (2003), 141 - 164
Govaerts, W., Kuznetsov, Yu.A., and Dhooge,
A.
Numerical continuation of bifurcations of limit cycles in MATLAB.
SIAM J. Sci. Comp. 27 (2005), 231-252
Kuznetsov, Yu. A. , Govaerts, W. , Doedel, E. J.,
and
Dhooge, A.
Numerical periodic normalization for codim 1 bifurcations of limit
cycles.
SIAM J. Numer. Anal. 43 (2005), 1407-1435
Dhooge,
A.
, Govaerts, W., Kuznetsov, Yu.A., Meijer,
H.G.E., and Sautois, B.
New features of the software MatCont for bifurcation analysis of
dynamical systems.
Mathematical and Computer Modelling of Dynamical Systems 14 (2008),
145-17
Doedel, E.J., Kooi, B.W., van Voorn, G.A.K.
,
and Kuznetsov,
Yu.A.
Continuation of connecting orbits in 3D-ODEs: (I)
Point-to-cycle connections.
Int. J. Bifurcation & Chaos 18 (2008), 1889-1903
Doedel, E.J., Kooi, B.W., van Voorn,
G.A.K.
,
and Kuznetsov,
Yu.A.
Continuation of connecting orbits in 3D-ODEs: (II) Cycle-to-cycle connections.
Int. J. Bifurcation & Chaos 19 (2009), 159-169