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Part 1
INTRODUCTION

1 Introduction to LOCBIF

In this section you’ll learn about the general features of LOCBIF, the au-
thors of LOCBIF and system requirements for using LOCBIF. You will be

also informed about typographic conventions used in this manual.

1.1 What is LOCBIF ?

LOCBIF is a new powerful tool for bifurcation analysis of ordinary differ-
ential equations (ODEs) which depend upon parameters. It allows you to
explore interactively the existence and stability of equilibria in dynamical
models! .

LOCBIF is based on a continuation procedure for relevant local bifur-
cation curves up to codimension three. Projection of these curves onto the
parameter space determines the boundaries of the equilibrium existence and
stability.

LOCBIF combines modern results on normal forms and local bifurca-
tions with interactive computer graphics, resulting in a unique integrated
environment for ODE model analysis.

LOCBIF plots two dimensional projections of the bifurcation curves dur-
ing the computation which may be stepwise or automatic.

LOCBIF maintains an archive of ODEs and allows you to specify a new
system of ODEs during a session in a simple Pascal-like language. It compiles
the right hand sides of ODEs by means of an on-line compiler. Computed
curves may be stored on a disk. Stored curves may be plotted and used in
further computations.

LOCBIF allows you to study dynamical systems with up to ten phase
variables and ten parameters.

IThree additional versions of LOCBIF are also available: for analysis of fixed points
and periodic orbits of iterated maps, periodic solutions of periodically forced ODEs and
periodic solutions (limit cycles) of autonomous ODEs. These versions are presented in
Appendix C.



LOCBIF is designed for students, teachers and scientists.

1.2 Authors of LOCBIF
LOCBIF combines numerical algorithms developed by A. Khibnik and E.

Nikolaev with modern interface designed by Yu. Kuznetsov and V. Levitin.
The numerics of LOCBIF are based on an improved version of the

LINLBF code developed by A. Khibnik. The new continuation code BEE-

TLE used in LOCBIF was developed by E. Nikolaev and A. Khibnik.

The general dialog scenario and graphics window interface of LOCBIF
were designed and implemented by Yu. Kuznetsov.

The built-in RHS editor and on-line compiler, as well as a manager for
system archive, were designed and written by V. Levitin.

As in any large project, LOCBIF is more than simple sum of the parts
mentioned above. A number of useful features of LOCBIF are the result of
close collaboration of all the authors.

For general reference concerning LOCBIF see (Khibnik, Kuznetsov, Lev-
itin, Nikolaev, 1992). An earlier presentation of the numerical algorithms

implemented in LOCBIF can be found in (Khibnik, 1990a,b).
The permanent address of the authors of the LOCBIF:

Institute of Mathematical Problems of Biology,
Russian Academy of Sciences,

Pushchino, Moscow Region,

142292 Russia.

E-mail: com@impb.serpukhov.su

1.3 System requirements

LOCBIF requires an IBM PC/XT, AT, PS/2 or compatible microcom-
puter running DOS version 3.0 or higher. LOCBIF automatically supports
monochrome and color EGA, VGA and Hercules monochrome graphics dis-
play adapters. It requires 640K of RAM with no less than 500K free. A
math coprocessor is not required but LOCBIF will use it if one is present.
The math coprocessor will greatly decrease computation time and is strongly
recommended.



LOCBIF can be run from a double or high density floppy disk but it
will work more efficiently if all its files are on a hard disk.

If your computer has more than 120K of extended memory, LOCBIF can
use a virtual (RAM) drive installed in this memory to store working files.

1.4 Typographic conventions

The following typographic conventions are used throughout the manual:

Typeface Description

KEY TERMS Text in upper case bold typeface indicates a spe-
cific term, punctuation or mark that you must
type in exactly as shown.

placeholders Text in italic typeface indicates a field or a general
kind of information.

[options] Items inside square brackets are optional.

”Messages” Quoted text in bold typeface represents program
messages.

Key+Names The names of key or key sequences. Two-key

combination Keyl+Key2 means that you must
depress the first key and, while holding this key
down, press the second key and then release both
keys.

— This is the Enter key.



2 Getting started with LOCBIF

In this section you’ll learn about files which come on the LOCBIF distri-
bution diskette; the procedure for installing LOCBIF on your machine; and
how to start and use LOCBIF in the case of a very simple problem.

2.1 Files on the LOCBIF distribution diskette

LOCBIF is distributed on a single high density floppy disk which contains
a subdirectory LBEP? with the following files.

LBEP.EXE The LOCBIF manager program. You should
execute this program to run LOCBIF.

LBMEP.EXE The system archives maintain program.

LBFEP.EXE  The main program supporting computations
and user graphics interface.

LBM.HLP The help message file for LBMEP program.

INIT.DAT A standard initial data file.
RHS.DAT A default right hand sides file.

COURB.FON A font file.
The root directory of the diskette contains:
MSHERC.COM A driver file for the system equipped with

a Hercules monochrome graphics display
adapter.

MOUSE.COM A driver for the Microsoft mouse pointer de-
vice (see Appendix D).

2.2 Installing LOCBIF
The first thing you should do is to make a backup copy of the LOCBIF

distribution diskette. See your DOS manual for relevant instructions. If you

2The other subdirectories in the diskette (namely: LBFP, LBPS and LBLC) con-
tain LOCBIF versions for fixed points, periodic orbits and limit cycles respectively (see

Appendix C).
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do not have a hard disk there is no more installation - LOCBIF will run
from the supplied diskette.

To install LOCBIF on a hard (fixed) disk you should create a directory
where LOCBIF? will reside, for example LBEP. Then copy all files from
the subdirectory LBEP of the LOCBIF distribution diskette to the created
directory. If your hard drive is C: and the LOCBIF distribution diskette is
in the high density floppy disk drive A:, then you may enter the following
sequence of DOS commands:

Cie

md LBEP«—

cd LBEP«—

copy A:\LBEP\*.*—

2.3 Starting LOCBIF
Select the directory with all the LOCBIF files (LBEP in the example above)

as the current directory. You can invoke LOCBIF using the following com-
mand at the DOS command prompt:

LBEP [drv] «

The optional parameter drvis a pathname of the drive and the directory
in which temporal LOCBIF working files will be located during a session.
There should be a free space of approximately 120K on this drive. If the
drv parameter is ommitted, LOCBIF places working files into the current
directory (more precisely, its subdirectory related to ODE system under in-
vestigation) on the current drive.

Notes:

1. If your computer has an extended memory, it is recommended to install
a virtual (RAM) drive in this memory and substitute its name for drv in the
command line. For example, if RAM drive is E: use command

LBEP E: <«
Consult your DOS manual for details on RAM drive installation.

3In the most of the following sections we will be dealing exclusively with the LOCBIF
version for equilibria of autonomous ODEs (LBEP). The installation procedure for the
other versions is the same if you substitute EP by FP, PS, or LC respectively.

11



2. If the Hercules monochrome graphics display adapter is installed on
your computer you must load a special driver before running LOCBIF by
the command

MSHERC <

You should load this driver only once when you turn on your computer. To

do this, add the command MSHERC to your AUTOEXEC.BAT file.

2.4 A simple example of LOCBIF usage

Consider a system of differential equations with two phase variables (z,¥)
which depends upon four parameters (o, 3,7, 6):

Yy 2
r = T — —
1+ ax
_ Yy o2
y = 7y+1+(mj Y

These equations describe qualitatively the behavior of an ecological system
of predator-prey type (Bazykin, 1985). Here z and y are (dimensionless)
prey and predator population densities, while parameters (e, 3,7, ) repre-
sent some inter- and cross-population effects.

It is known (see Part 3) that for &« = 0.3, = 0.01,4 = 1.0 and 6§ = 0.5
the system has an equilibrium point with x = 82.97...y = 4.409.... The
problem is to determine a dependence of this equilibrium upon parameter ¢
and to analyze its stability while ¢ varies from 0.2 to 0.6.

Suppose, you have invoked LOCBIF as described before. You should see
the opening screen shown in Figure 1. Press any key. Now you can see an
Initial screen with a ODEs Archive Window. The archive is empty (actually
it may contain several test examples as well as systems which have been
specified earlier, say by other users).

Input equations

First of all you have to input the equations into LOCBIF. Type a name
for the system, for example ECOL, and press Enter. An Equation Win-
dow will appear with default right hand sides (RHS). Type in RHS of the

equations in the following form:

12



LOCBIF: Interactive Local Bifurcation fnalyzer, v 2.2

Alexander Khibnik Bifurcation analusis

Yuri Kuznetsow General design and program interface
Victor Levitin System archive, RHS compiler

Eugene Nikolaev Continuation procedure

Research Computing Centre, Russian Academy of Sciences
Pushchino, Moscow Region, Russia, 142292

Equilibrium points of ODEs

Press any key to continue.

(C) 1992 Copyright by the Authors. All rights reserved.

Figure 1: LOCBIF opening screen

PHASE X,Y
PAR ALPHA,BETA,GAMMA ,DELTA
X'=X-X*Y/(14+ALPHA*X)-BETA*X "2
Y'=-GAMMA*Y+X*Y /(14+ALPHA*X)-DELTA*Y "2

and erase the rest of the default RHS.

You may use conventional keys (Arrows, Del, Backspace and so on). See
Figure 2 for the resulting screen.

The first and second lines are variable and parameter declarations, while
the last two lines are formulae for the RHS. Here ' stands for time derivatives.

After you finish typing RHS, press Alt+X (press and hold down Alt key
and then press X key). If errors occur you will see an error message. Other-

wise you will leave the Equation Window and return to the Initial screen with
the ODEs Archive Window. The archive now contains your system ECOL

13




LOCBIF: Interactive Local Bifurcation fwalyzer, v 2.2

ECOL
PHASE X, Y
PAR ALPHA,BETA,GAMMA, DELTA
X' =X-X#Y/ (1 +ALPHA=X)-BETARX "2
¥’ =—GAMMARY +X*Y/ (1+ALPHA=X)-DELTA%Y"2

Alt-X - Return to main menu, Alt-H - Help on editor and RHS specifications

(C) 1992 Copyright by the Authors. All rights reserved.

Figure 2: Equation Window of LOCBIF

(see Figure 3).

Selection and activation of items
For selection of an item move the cursor with directional keys (Up, Down, Left,
Right). Press Enter to complete selection and activate the item.

Setting initial values

Select the system ECOL and press Enter. After a short delay you will
see a main LOCBIF screen with a Main Menu line, Graphics, Value, Curve
and Message Windows. All phase variable and parameter values are preset
to zero as well as real and imaginary parts of the eigenvalues. The curve type
is Equilibrium (Figure 4).

Select item Values within the Main Menu and press Enter. A one-symbol
highlight (cursor) will appear in the Value Window. Now you can move it by
directional keys and type initial values of the phase variables and parameters

14



LOCBIF: Interactive Local Bifurcatiom Analyzer, v 2.2
0DEs

Enter Proceed with the ODE ECOL
Alt-E Edit the ODE

Alt-D Eraze the ODE

T and | Move the highlight

Alt-T Use the ODE as a template

Alt-X Quit and return to DOS

(C) 1992 Copyright by the Authors. All rights reserved.

Figure 3: Initial LOCBIF screen with the ODEs Archive Window

specified above.

Choose an active parameter

Being inside the Value Window, move the highlight to the line with pa-
rameter DELTA and press Alt+F keys. This parameter is now highlighted
which means that it is chosen as active and we will compute a dependence
of the equilibrium upon this parameter. Leave the window by pressing the
Esc key. The cursor disappears from the Value Window.

Setting drawing parameters

Select and activate Options item within the Main Menu. You will see
an Option Window appearing over the Graphics Window (see Figure 5). Ac-
tivate the item Axis Parameters. The Axis Parameter Window is opened
over the Graphics Window. Set DELTA for the abscissa and Y for the
ordinate of a plot. This action requires highlighting the abscissa line and

15



1 Commands |2

A4lt+H: Help Equilibrium

Figure 4: Main LOCBIF screen

pressing Enter key several times until the required name for abscissa is cho-
sen. Proceed similarly with ordinate name. Then move the highlight and
type axis limits. Set 0.2 < DELTA < 0.6 and 0 < Y <10. See Figure 6
for the resulting shape of the Axis Parameter Window. Then press Esc to
leave the Axis Parameter Window and press Esc again to leave the Option
Window.

Now you are back at the main screen with the Options item still high-
lighted. Activate Commands item. You will see a Command Window with
highlighted command Delete Graphics over the Graphics Window (see
Figure 7). Press Enter key to refresh the Graphics Window and to exit the
Command Window. Notice, that you have now the proper axis names.

Computation
Now you are ready to start computations. Select Compute item and

16



Figure 6: Axis Parameter Window

press Enter. The flashing marker has appeared in the Message Window after
your pressing Enter. This indicates the computations are in progress.The first
point near the initial point is found and plotted in the Graphics Window. A
corresponding message is sent to the Message Window. In the Value Window
you can see the current values of the equilibrium coordinates X and Y, the
parameter DELTA and the eigenvalues. The real parts of the eigenvalues
are negative, so the equilibrium is stable. The program is waiting now for
your action.

Press the Enter key once more. The computation will be continued and
you'll get the equilibrium curve going to the right from the first point. When
it leaves the Graphics Window, you may terminate computation in this direc-
tion by pressing the Esc key. (There is no automatic termination assumed, so
the computations will be continued until a special point occurs or the buffer
reserved for curve storing is filled.)

Figure 7: Command Window

17



To start computation of the equilibrium point curve in the opposite di-
rection, press the Ctrl+Enter keys. The curve will be computed and some
messages reporting about special points on the curve will be displayed in
the Message Window. After each message the program will wait for your
reaction. To continue, press Enter. When curve leaves the Graphics Window
terminate the computation by pressing Esc key.

Now you have a screen like that in Figure 8. You can see that the depen-
dence of the equilibrium with respect to parameter DELTA has an S-shape.
There is an interval 0.263... < DELTA < 0.436... within which the sys-
tem has three equilibria: two of them are stable and one is unstable. The
boundary points of the interval are critical parameter values corresponding
to when two equilibria appear or disappear in the system (we refer to these
cases as fold or tangent bifurcations).

4 Conpute g

Equilibrium

Figure 8: S-shaped equilibrium curve of the ecological model
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Browsing the curve

Browse command allows to plot the curve once more and display the
related values without recomputation. Let us use browsing to monitor the
behaviour of eigenvalues along the computed equilibrium curve and to ana-
lyze how changes in stability occur.

First, delete the curve through the Command Window as before or select
another color to redraw the curve. In order to chose another color, select
Options. Then select the option Curve Color and press Enter several
times. The current choice is shown by the color used for the curve name in
the Curve Window. When you have found the color you want, press Esc to
leave the Option Window.

Browse the curve by activating the item Browse within the Main Menu.
Eigenvalues in the Value Window will be updated at every point, as well
as the phase coordinates and parameter values. To browse the curve in the
opposite direction, press the Ctrl+Enter keys. You may terminate browsing
at any point just by pressing the Esc key.

Storing the curve

To store the curve in the archive, select Archive within the Main Menu
and press Enter. You will see a Curve Archive Window in place of the Value
Window. Type a name of the curve, say EQUILIB, and press Enter. The
program reports that storing is in process. When it is completed, you will
see the name EQUILIB in the list of the stored curves (Figure 9). Press Esc
to leave the Archive Window and return to the main screen.

Visiting the option windows

Select and activate Options item in the Main Menu. Activate Contin-
uation Parameters to open the Continuation Parameter Window (Figure
10), option Orbit Parameters to open the Orbit Parameter Window (Fig-
ure 11), and Service Parameters option to open the Service Parameter
Window (Figure 12) respectively. (These windows are described in Section
5). As before, to exit from any window, press the Esc key. Press the Esc key
once more to exit the Option Window.

Select and activate Curves item. A Curve Select Window will appear
(Figure 13) with a list of all curves computed by LOCBIF. They are de-

scribed in the next sections. Use Esc key to leave the window.

Help

19



EQUILIE

Eguilibrium

Figure 10: Continuation Parameter Window

Press Alt+H keys from within the Main Menu. A Help Window is opened
and some help information is displayed. Press the PgDn key to see the next
page of help and Esc to exit.

Quitting
To quit the analysis of the system, select and activate Commands, then
select Exit command and press Enter. Confirm your intention by pressing

the Y key. You will see the Initial screen. Press Alt+X to exit LOCBIF.

20



Figure 12: Service Parameter Window

3 The fundamentals of LOCBIF

In this section you’ll learn about LOCBIF interface and file system. Some
terminology used in LOCBIF and this manual is introduced.

3.1 Terminology

Mathematical models are often represented as systems of ordinary differential
equations (ODEs) which depend upon parameters. In this manual (exept of
Appendix C) the term system of ODEs or dynamical system means a system
of nonlinear autonomous differential equations of the form

&= F(z,p), (3.1)

where ¢ = (z1,29,...,2,) € R",p = (p1,p2,...,Ppm) € R™ and F is a
smooth vector function. Here dot (') means differentiation with respect to
variable t, referred to as time.

Components z; of vector = are called phase variables, while components
p; of vector p are referred to as parameters. Spaces R™ and R™ are called
phase and parameter spaces respectively.

Values of parameters may be fixed or free during a stage of the system
analysis. A free parameter is called an active parameter. Phase variables and

21



Ho

Double
Hopf +
Double

Figure 13: Curve Select Window

active parameters together will be called simply variables.
Let pi,, piy, ..., pi, be the active parameters. The space R, with s = n+ k&
coordinates

($17$27"'7$n;pi17pi27'"7pik)

is called the active phase-parameter space. If k = 0, this is the same as the
phase space.

A curve in R*® with coordinates denoted by y = (y1,92,...,ys) is a one
dimensional smooth manifold defined either parametrically:

y=y(t)
or implicitly by s — 1 functions Gj:

Ch(y) =0,Ga(y) =0, ..., Gea(y) = 0.

An initial point is a point y(© € R® from which a curve will be computed
point by point. The initial point is to be defined by the user. The initial
point may not lie exactly on the curve. The first computed point on the
curve is called the first point. There are two directions in which the curve
can be computed starting from the initial point.

An orbit or trajectory is a curve in the phase space defined by solution of
Initial Value Problem for system (3.1) forward or backward in time. There
are no active parameters in this case.
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An equilibrium point or equilibrium is a point x in the phase space where

the right hand side of (3.1) vanishes:

F(z,p)=0. (3.2)

Figenvalues of the equilibrium are the eigenvalues of the linearization matrix
of (3.1) at the equilibrium point.

An equilibrium curve is a curve in active phase-parameter space R™*!
with coordinates (x;p;,) defined by Fj(z;p;;) = 0,7 = 1,2,...,n. There is
one active parameter in this case, the others are fixed.

A bifurcation curve is a curve of equilibria satisfying so called bifurcation
conditions. It lies in an active phase-parameter space and is defined by
(3.2) and (k — 1) bifurcation functions Gpy1, Gpy2, ..., Guyr—1, where k is the
number of active parameters.

There are several types of bifurcation curves. Each of them is defined by
a different set of bifurcation functions (see Part 2 for details).

Equilibrium and bifurcation curves may have singular points at which
some additional conditions specific for each curve hold. Singular points may
serve as initial points for the computation of the other bifurcation curves.
These curves may lie in the same, or in a different, active phase-parameter
space.

The computation of orbits is controlled by numerical parameters called
orbit parameters. The computation of curves given implicitly (so called con-
tinuation) is controlled by continuation parameters.

3.2 Main features of LOCBIF interface

Most of actions available for the user may be invoked independently of each
other. This allows the study of different systems in different ways, i.e. cre-
ating a user- and problem-dependent scenario. The building blocks of the
LOCBIF user interface arise naturally from the very idea of continuation
bifurcation analysis and are as follows:

# You can specify a new dynamical system to study or select an existing
system from an archive in order to modify it or continue its investigation. To
formulate a new dynamical system, you must specify the right hand sides of
the system as a program in a Pascal-like language using a build-in editor.
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# You can set initial values of all phase variables and parameters, select
active parameters, and choose a type of curve to be computed.

# You can compute and (simultaneously) plot a curve, doing this in a
forward or backward direction, stepwise or automatically. The computation
can be terminated at any point.

# You can browse the last computed curve without recomputation and
select any point on it as an initial point for the next computation.

# You can store the computed curve into an archive and extract a stored
curve from the archive for browsing.

# You can change current computational and plotting parameters and
save them for the next session.

3.3 LOCBIF windows
A user interacts with LOCBIF by means of the keyboard * . LOCBIF

sends all the information to the user through various windows.

A windowis a rectangular area on the screen. All the windows in LOCBIF
are of a fixed size and position and may have some attributes which can be
changed by the user. Displayed options as well as numerical values can be
directly modified by the user through a relevant window. The user can in-
voke a window by selecting the corresponding item and pressing the Enter
key within a Mlain Menu or within another window. The user can leave the
window by pressing the Esc key.

Names of ODEs are listed in an ODEs Archive Window. A dynamical
system can be specified or modified through an Equation Window. These
two windows appear over the Initial screen. See Figure 2 and Figure 3.

A curve is plotted in a Graphics Window. Phase variables and param-
eters are displayed in a Value Window, as well as eigenvalues and values
of user-defined functions. The type of a curve to be computed is shown in
a Curve Window and can be selected through a Curve Select Window
(Figure 13). All messages are directed into a Message Window.

The Graphics, Value, Curve and Message Windows as well as the
Main Menu are located on the main LOCBIF screen (see Figure 4).
Some commands can be performed through a Command Window (see
Figure 7) while computation and drawing options can be selected through

4Appendix C describes how to use the mouse, if present, to operate LOCBIF.
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an Option Window (see Figure 5). Attributes of the Graphics Window
can be seen and modified through an Axis Parameter Window (Figure 6).
Continuation parameter values, orbit parameter values and additional service
parameter values are displayed and can be modified within Continuation,
Orbit and Service Parameter Windows respectively (Figures 10, 11,
12). These windows, as well as the Curve Select Window, appear over
the Graphics Window. Stored curves can be seen and selected through a
Curve Archive Window, which appears instead of the Value Window
(Figure 9).

There is also a Help Window which contains a list of possible user
actions.

3.4 LOCBIF file system

For each newly specified ODE system LOCBIF will create a separate sub-
directory which contains files, both permanent and working, related to this
system (all these subdirectories are listed in the ODEs Archive Window).
In particular, the file RHS.DAT contains a program with RHS specifications
which the user created during a LOCBIF session using the built-in editor,
and file INIT.DAT is for system-dependent parameter settings. Two other
permanently resident files (RS.DAT and TS.DAT) are for internal use only.

There are also several optional files with extension LIN which are related
to the curve archive. Their names are assigned by the user through the
Archive Window. The optional file RESULT contains a protocol of curve
computations.

Normally the user shouldn’t be concerned about these files except to
preserve them in the corresponding subdirectory.

Note. The manual creation of a subdirectory in the directory LBEP
automatically leads to the appearance of a new name in the LOCBIF ODEs
archives. Careful copying of all the files to this subdirectory from another
ODE system subdirectory makes it valid for LOCBIF, otherwise a program
crash becomes a distinct possibility.
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Part 11
PROGRAM DESCRIPTION

4 Specification of a dynamical system

In this section you’ll learn how to begin the study of a new dynamical system
or continue investigation of an existing one. You’ll learn how to manage the
ODEs Archive and specify RHS of the dynamical system using the build-in
editor. A description of a special language for RHS-programming will be
given.

4.1 ODEs Archive management

All the dynamical systems studied are stored in the ODEs Archive. When
viewing the Initial screen you'll see an ODFEs Archive Window with a list of
all stored dynamical systems. The first line in the window is highlighted. To
the left of the window you can see a menu with possible actions. It includes
the following actions:

- input a new ODE system;

- select one of the listed ODE systems;

- quit LOCBIF and exit to DOS.

To input a new ODEs system, type its name. The name will appear in
the first window line. Correct the name, if necessary, using Arrow, Space
and Backspace keys. When the name is correctly typed, press Enter. You’ll
see an Fquation Window and may start specification of the system RHS.

For selecting one of the listed ODE systems, use Up and Down Arrow
keys. The name of the chosen system is highlighted. If a list of ODEs is
longer than the ODEs Archive Window you may use these keys to scroll the
archive across the window.

To quit LOCBIF and exit to DOS, press the Alt+X keys.

When a system name is selected you may do one of the following actions
which are listed on the screen:

- proceed with the selected dynamical system,;

- edit the RHS of the selected system;
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- delete the selected system:;

- use the selected system as a template to input a new ODEs system;

- quit LOCBIF and exit to DOS.

To proceed with the selected system, just press Enter key. In a seconds,
the main LOCBIF screen will appear.

To edit the RHS of the selected system, press Alt+E keys. You'll see the
Equation Window and you can modify the RHS specifications.

To delete the selected system, press Alt+D keys. LOCBIF requests
confirmation. Press Y to go ahead and make the desired deletion.

Sometimes a new dynamical system may be similar to an existing one
which is stored in the archive. In this case you can use the existing system
as a template to create a new system. For this, select the system to be
considered as a template (i.e. highlight its name) and then press Alt4T
keys. The name will be duplicated to the first window line. You have to
change this name and press Enter. Then you’ll see the Equation Window
and can start the modification of the selected system producing a new one.

All files of a newly specified ODE system will be placed in a subdirectory
of the LOCBIF residal directory. The subdirectory will have the same name
as given to the ODE system.

4.2 Build-in RHS Editor

The system RHS is specified by a program in a Pascal-like language. This
program is stored as file RHS.DAT in a subdirectory related to this system.
You can enter a new ODE system specification or modify an existing system
specification using a build-in editor within the Equation Window.

The following operations are supported by the Editor:

Cursor movement Up, Down, Left, and Right Arrows
Delete character Del

Delete character left Backspace

Delete line Alt+D or Atl+Y

Split line/Insert line Enter

Join lines Del when the cursor is at the end of line

Put cursor at the begin- Home/End
ning/end of line
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Put cursor at the begin- Ctrl+Home/Ctrl+End
ning/end of text

Return to Initial screen with Alt+X

error checking

Return to Initial screen Alt4Q

without error checking

If the RHS text is longer than the Equation Window, you can use Arrow
keys to scroll the text.

If after pressing Alt+X an error found in the RHS specifications, one
of the error messages listed in Appendix A will appear below the Equation
Window. In this case, you can press any key to continue editing.

4.3 RHS Language description
4.3.1 Structure of ODEs specification

A specification of ODEs is to be organized in accordance with the following
structure:

TIME variable declaration
PHASE variable declaration
PARameter declaration must be present

( )
( )
( )
FUNction declaration (may be omitted)
( )
( )
( )

may be omitted
must be present

COMMON variable declaration
function definition(s)

RHS definition(s)

INITial values computation (may be omitted)

may be omitted
may be omitted
must be present

The meaning of the terms time, phase vartables and parameters was ex-
plained in Section 3.

Any text between exclamation mark ”!” and the end of a line is considered
a comment and ignored.

4.3.2 Variable and function declaration

Any declaration consists of an appropriate keyword (TIME, PHASE, PAR,
FUN or COMMON) followed by a list of names. In the case of the TIME
declaration the list consists of only one name. Names may have up to six
characters and must be separated by commas.
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FUNctions are scalar valued functions of phase variables and parame-
ters. They may have some additional formal parameters or arguments. The
functions may be called from the other functions or RHS. Note that func-
tions may be also used in LOCBIF for additional purposes (e.g. tracing
user-defined functions along a curve).

COMMUON variables are internal variables which may be used through
the number of the array elements enclosed in square brackets [ | must follow
variable name.

Note that the LOCBIF functions are not pure functions in the mathe-
matical sense because they can produce side effects. For example, one func-
tion can assign a value to a COMMON variable and another can use this
value although it does not call the first function at all.

4.3.3 Function definitions

The function definition has the following form:
func_name(arg_name, arg_name,...) = body

Here func_name is a function name, arg_names are names of the function
arguments which should not have been declared before. If the function has
no arguments the function definition is simply

func_name = body

The structure of the body will be defined later. You should define as many
functions as you have declared. A function cannot be recursively defined.
4.3.4 RHS definitions
The RHS definition has the following form:

var_nam’' = body

1?7/77

Symbo means time derivative d/dt. The number of RHS definitions in
the program should be equal to the number of phase variables.

4.3.5 Simple body structure

In the simplest cases, body is an arithmetic expression which is build accord-
ing to the usual rules. You may use phase variable and parameter names,
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constants (e.g.,2,3.1415,0.123F — 1, etc), signs (4, —, *, /, ** as well as ~ for
exponentiation) and parentheses ().
You can also use the following standard mathematical functions:

ABS(X) absolute value of X

SQR(X) square root of X

SIN(X) sine of X

COS(X) cosine of X

LOG(X) natural logarithm of X

EXP(X) exponent of X

TAN(X) tangent of X

ATN(X) inverse tangent of X (or arctan X)

SGN(X) if X >0 then SGN(X)= 1
if X = 0 then SGN(X)= 0
if X <0 then SGN(X)=-1

User-defined functions may be used in the same way as the standard
functions. The number of arguments in a function call must be the same as
in the corresponding function declaration.

4.3.6 Complex bodies

An arithmetic expression in the body may be preceded by a program enclosed
in braces . It may contain local variable declarations and a sequence of
statements. The arithmetic expression is evaluated after execution of the
program statements.

You can use local VARiables in the program which have to be declared
at the beginning of that program. Local variable declarations consist of the
keyword VAR followed by a list of local variable names:

VAR locvar_name, locvar_name,...

Local variables may be one-dimensional arrays. In this case a number of the
array elements enclosed in brackets | | must follow a local variable name.

Expressions following braces may use local variables declared in the
preceding program.

There are six kinds of statements: assignment, IF, WHILE, FOR,
terminator and compound.

An assignment statement assigns the value of an arithmetic expression

to a variable. In the expression you may use PHASE, PAR, COMMON
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and VAR variables as well as all declared functions. An array variable name
must be followed by [index].

An IF statement makes a decision regarding program flow. It has the
form:

IF expression relation expression statement ELSE statement

ELSE statement is optional, relation must be one of the symbols: =, <> (not
equal to), < =,> =, < and >. The IF first computes both ezpressions, then
compares the resulting values using the relation. If the relationship is true
the first statement is executed, otherwise the second statement, if present, is
executed. In both cases execution continues with the following statements.

The WHILE statement executes a statement in a loop as long as given
relationship is true. It has the form:

WHILE expression relation expression statement

If the expression relation expressionis true then the statement is executed. If
it is not true, execution continues with the following statements.

The FOR statement executes a statement in the loop a given number of
times. It has the following structure:

FOR var = expression_from, expression_to statement

Variable var takes values from expression_from to expression_to with step 1
and may be used within the statement.

The terminator statement is one of the following statements:

BREAK, ABORT.

An execution of either of these statements leads to generation of an error
return code of the RHS computation. The ABORT indicates additionally
that all the computations should be terminated.

The Compound statement is a sequence of statements surrounded by
braces:

{ statement statement ...}

which is considered as one statement. Compound statement is useful in

FOR, WHILE and IF statements.
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4.3.7 Initial values computation

You can assign desired initial values to phase variables and parameters, as
well as to COMMON variables, by means of the following structure:

INIT = assign code

Here assign is a compound statement which assigns some values to PHASE,
PAR and COMMON variables, and code is a control parameter. You
should set code equal to zero if the variable assignment is successful and
nonzero otherwise. Execution of the INIT assignment depends on user ini-
tiative and is invoked normally by pressing a special key before starting the
main computations (see the next Section).

4.3.8 Error messages

When you have finished the RHS specification you press the Alt+X keys.
The program starts to check the syntax errors and produce internal files
TS.DAT and IR.DAT. If no errors are found, the Equation Window is closed
and you see the Initial screen again.

If there is an error in the RHS specifications the relevant message appears
below the Equation Window and the cursor is placed at the error position.
You may correct the error or quit the editor without error checking by press-
ing Alt+Q keys.

The list of all possible error messages is given in Appendix B.
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5 Investigation of a system

In this section you’ll learn how to use LOCBIF for an ODE system study.
Among other things you’ll learn how to set options and initial data, choose
active parameters, select the curve type, start and terminate computation of
a curve, browse the computed curve and manage a curve archive.

5.1 Main Menu

Suppose you have selected an ODE system for investigation. You should see
the main LOCBIF screen with four windows and a Main Menu line on the
top (Figure 4). The line lists seven items: Commands, Options, Curves,
Compute, Browse, Values and Archive assigned by their numbers. The
first one is highlighted. You can select an item by using Left and Right
Arrows, as well as Home and End keys. When an item is selected, it can be
activated by pressing Enter. The activation of Compute and Browse items
results in an immediate action, while the activation of the other items allows
you to work with relevant windows.

You can select and activate an item by pressing one of the function keys:
F1 - F7. This convention is valid also if you are inside a window activated
from the Main Menu.

5.2 Command Window

If you activate item Commands, the Command Window appears over the
Graphics Window (see Figure 7). The Command Window contains a list of
five commands: Delete Graphics, Show RHS, Preset Values, Help and
Exit. The first one is marked by a highlight. You can select a command by
pressing the Down and Up Arrows and Home and End keys. To perform a
selected command you have to press Enter key.

5.2.1 Clearing Graphics Window

Select command Delete Graphics within the Command Window and press
Enter. The Command Window will be closed and all the plotted curves
deleted from the Graphics Window.

33



5.2.2 Display equations

To display the RHS of a system under investigation, select command Show
RHS within the Command Window and press Enter. The Command Win-
dow will disappear and you will see the system specification over the Graphics
Window. Notice, that some part of the specification text may be invisible
due to the window frame.

5.2.3 Preset values

You may assign values to variables using an INIT statement defined in the
RHS program. Select command Preset Values within the Command Win-
dow and Press Enter. The window will disappear, the values of the phase
variables and parameters will be replaced by those computed in INIT state-
ment, and the message

”Values initialized”

will appear. If the INIT statement completes with a nonzero return code
the values will not be changed and the message

”Values not initialized”

will be displayed. No messages will appear if there is no INIT statement in
the RHS specifications.

You can preset values automatically before each curve computation by
nonzero setting of the Init service parameter (see Section 5.3.11).

5.2.4 Help

Select the Help command within the Command Window and press Enter.
The Command Window will be closed and a Help Window will appear over
the Graphics Window (see Section 8).

5.2.5 Return to the Initial screen

To return to the Initial screen, select the Exit command within the Com-
mand Window and press Enter. The Initial screen with the ODEs Archive
Window will appear.
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5.3 Option Window

If you activate item Options, the Option Window (Figure 5) appears over
the Graphics Window. The Option Window contains a list of several options:
Pause, Join, Update, Sound, File, Curve Color, Background Color,
Axis Parameters, Continuation Parameters, Orbit Parameters and
Service Parameters. You can select an option using the directional keys.
To modify the selected option you have to press the Enter key. The first
seven options are toggles: they can be modified directly, by pressing Enter
one or several times, and their new settings are immediately displayed. The
activation of the other options results in the appearance of a corresponding
window. All values within such a window can be modified directly. You can
use Space, Del and Backspace keys for corrections. To leave the window,
press the Esc key. This will return you to the Option Window. To leave the
Option window, press Enter once more.

All the options chosen will be current during the computation and brows-
ing until you change them.

5.3.1 Setting the pause mode

A process of curve computation or browsing may be interrupted by pauses
which can be initiated either by the program or by the user. Pause means
stoping after calculating a new point. The Pause mode determines when
the pauses should be made. There are three pause modes provided:

Pointwise - with a pause after each calculating point
Special - with pauses at special points only
No - with no pauses

5.3.2 Setting join mode

During continuation or browsing each computed point is plotted in the Graph-
ics Window. A ”dotted” or "solid” mode is used according to the Join mode
setting. The Yes option means that two sequential points will be joint to-
gether by a straight line, while the No option will result in plotting a sequence
of disjointed points.
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5.3.3 Setting update mode

Numerical entries in the Value Window may be updated during computation
or browsing at each computed point or at special points only. Update
mode settings Yes or No correspond to these two alternatives. A frame of
the Value Window indicates that variables will be updated at each point.
The No option may be particularly useful if you are not interested in exact
numbers or if the graphics hardware of your computer is slow.

5.3.4 Setting sound mode

Display of a point during the computation or browse may be accomplished
by a sound. Sound option Yes/No corresponds to sound on/off.

5.3.5 Setting hardcopy mode

While computing or browsing a curve, you can output it to a special file, RE-
SULT, permanently stored in a subdirectory corresponding to the system
under investigation. The output may be complete or reduced. The complete
output contains: the curve type, values of computational parameters, initial
values of phase variables and system parameters, and coordinates of all ob-
tained points on the curve with corresponding messages at special points.
The reduced output consists only of pairs of variables values currently plot-
ted along abscissa and ordinate axis. For storing in the RESULT file, an
append mode is used.

A File option determines if there will be output into the RESULT file
or not and determines its type (No/Complete/Reduced).

5.3.6 Setting curve color

To change the foreground color in which a curve type is displayed in the
Curve Window , select the Curve Color option and press Enter key. The
curve type in the Curve Window will be displayed in the next color supported
by your graphics hardware. You may need to press the same key repeatedly
to find the desired color.
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5.3.7 Setting background color

To change the background color of the Graphics Window, select the option
Background Color and press the Enter key. The next color supported by
your graphics hardware will be displayed in the Curve Window. You may
need to press the same key repeatedly in order to find a desired background
color. Upon exiting from the Option Window, the color of the background
of the Graphics Window will be changed to the selected one and all plotted
curves will disappear.

5.3.8 Setting axis variables and their limits

Select the Axis Parameters option and press Enter. You will see an Axis
Parameter Window which displays variable names plotted along the abscissa
and the ordinate and limits of their visibility (Figure 6). The abscissa name
is highlighted. You can move the cursor by directional keys.

To select a desired abscissa name, press Enter if the abscissa line is se-
lected. All variable, function and eigenvalue names will be consequently
displayed by repeatedly pressing the key. You may press the Ctrl4+Enter
keys to select the names in reverse order. The same procedure should be
applied to select a variable to be plotted along the ordinate.

To set a limit value, move the cursor to the corresponding line and type
a relevant value.

If you have computed a curve or loaded it from the archive, you may
undertake an automatic setting of the visibility limits by pressing the Alt+L
keys. The curve will be analyzed to determine maximal and minimal values of
the axis variables. The visibility limits will then be changed and the message

”Limits adjusted”

will appear in the Message Window. If minimum and maximum values along
an axis happen to be equal, message

”Limits not adjusted: zero difference”

will be displayed and no operations on the limits will be performed.

To leave the Axis Parameter Window, press the Esc key. The window dis-
appears and you will see the main LOCBIF screen with the Option Window
again.
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Note. If you don’t clear the Graphics Window after changing the drawing
parameters described above, the new settings of these parameters will remain
current, even if you see "old” axis names on the screen. This feature might
be helpful if one needs to overlap several pictures which are either drawn
using different scales or related to projections onto different planes.

5.3.9 Setting continuation parameters

Parameters of the continuation procedure may be changed through a Contin-
uation Parameter Window which is invoked by pressing Enter if the option
Continuation Parameters is selected within the Option Window (Figure
10).

In the invoked window you can see values of the computational parameters
which control the continuation procedure. You can modify them if necessary.
For the meaning and possible range of the parameters, see Section 7.

5.3.10 Setting orbit parameters

In an Orbit Parameter Window (see Figure 11), which is invoked by select-
ing the Orbit Parameters option and pressing Enter, you can see values of
computational parameters controlling the orbit computation. You can mod-
ify them if necessary. For the meaning and possible range of the parameters,
see Section 7.

5.3.11 Setting service parameters

In a Service Parameter Window (Figure 12), which is invoked by selecting
Service Parameters option and pressing Enter, you can see values of pa-
rameters controlling the program output. You can modify them if necessary.
They have the following meaning;:

Flash cursor flash index
Messag intermediate message index
0 - message off
1 - message on
Maxnpt maximal number of points in each direction
Init automatic initialization index
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0 - preset off

5.3.12 Default option settings

The following default values of the options (except numerical ones which are
discussed further) are satisfactory for most needs.

Pause Special
Update Yes
Join Yes
Sound Yes
File No
Flash 50
Messag 0
Maxnpt 500
Init 0

5.4 Curve type

You can choose a curve for continuation through a Curve Select Window (see
Figure 13) which is invoked by selecting and activating item Curves of the
Main Menu. Names of all the curves which may be continued by LOCBIF
will be displayed in the Curve Window together with a proper number of
active parameters. You can select the curve type using the directional keys
and then pressing Enter. The Curve Select Window will disappear and the
selected curve type will be displayed in the Curve Window. You can leave
the window without changing the curve type by pressing Esc.
For the meaning of curve types displayed in this window, see Section 6.

5.5 Value Window

The right most window (see Figure 4), called the Value Window, displays all
phase variable and parameter names, together with their numerical values.
Names and values of all functions used in the RHS, as well as real and
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imaginary parts of eigenvalues are displayed. The names of variables and
functions are the same as in the RHS program, with lowercases changed to
uppercases. Re(z) and Im(z) stand for the real and the imaginary part of
i-th eigenvalue respectively. When starting investigation, numerical values
are restored from the last session. If you have just specified a new dynamical
system without using template all numerical values will be preset to zero.

Some of the parameter names may be highlighted. This means that cor-
responding parameters are considered as "free” (or active) in curve continu-
ations while the other are fixed at their initial values.

Before you will start curve computation you should set initial values of
all PHASE and PAR variables and define which of the parameters will be
active during curve continuation. To access the Value Window you have to
select and activate item Values in the Command Line. Then you will see a
one-symbol cursor in the Value Window.

When the variable list is longer then the window, you see symbols Up/Dn
in the Message Window and can use the Up and Down Arrows for scrolling.

5.5.1 Setting initial values by hands

To set or change a variable value, move the cursor by directional keys and
type in a number. Use the Space key to erase a character. Use also the
Backspace and Del keys for corrections.

5.5.2 Taking current values as initial

While in computational or browsing mode (see Sections 5.6 and 5.8), you
may take variable values of a current point as initial values for further com-
putations. To do this, press the Ins key when a fitting point is found. At
that moment a program should be in a waiting mode (pause). Then the com-
putation/browsing will be terminated and coordinates of the last displayed
point will be assigned to the initial one.

A natural way of applying such a basic option is e.g. to take the last
point of an orbit converging to an equilibrium point as initial one for tracing
the next branch of equilibrium. We will discuss some similar and even more
sophisticated examples further.
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5.5.3 Parameter activation

To make a parameter active ("free”), move the cursor in the Value Window
to a line with this parameter name and press Alt+F. The parameter name
becomes highlighted. To make the parameter inactive, press the Alt+ F' keys
once more.

Remember that the number of active parameters should be equal to the
number pointed out with the curve type in the Curve Window. If that is not
the case, message

”Incorrect number of active parameters”

will appear when you attempt to start computations.

5.5.4 Variable ordering

You can exchange any two lines in the Value Window for better recognition.
Press Ctrl+PgUp/PgDn keys to move a line with the cursor up/down.

5.6 Computation
5.6.1 Basic conventions

A curve is presented to the user in a form of an ordered number of points
computed sequentially. Each point is processed immediately after its compu-
tation, which includes graphics representation, displaying of a relevant mes-
sage, updating values, storing in a buffer, pause and termination processing,
etc.

A newly obtained point is plotted in the Graphic Window. A ”dotted” or
”solid” mode is used in accordance with the Join option (see Section 5.3.2).
Special points on a curve are marked.

A standard or special (case-dependent) message is displayed in the Mes-
sage Window, depending on the type of current point (regular or special).
When getting a new point, all values in the Value Window are either updated
or not to their current values, depending on the option Update (see Section
5.3.3). Regardless to this option, if a special point is encountered, this always
leads to values being updated.

Displaying a new point is accompanied by a sound. Its frequency is
different for regular and special points (so you can distinguish between them
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even when speaking with colleagues during curve computation). If this sound
makes you nervous, just turn it off by setting No for the Sound option (see
Section 5.3.4).

Curve computation may be interrupted by a pause, which can be initiated
either by the program or by the user (see Section 5.3.1). Any pause leads to
updating all entries in the Value Window to their current values. Some of
the currently used optional modes can be changed at a pause by the user.

When computations are in process, a special marker in the Message Win-
dow is flashing; it reflects the RHS evaluations (normally not every one of
them). Typically, if there is no flashing, this indicates that the program is in
pause and waiting for user’s action.

A pause enables the user to terminate computation if necessary. Termi-
nation is normally followed by the resetting of all values in the Value Window
to their initial values. This can be changed to preserve the current point as
a new initial one. In this case, the former initial point will be replaced by
the current point.

Computations can be terminated asynchronously, just by pushing a spe-
cial key at an arbitrary moment. Then, the computations will be stopped
and all the values reset to initial ones.

Tracing a curve in either direction, starting from the first point, is con-
sidered an independent computation. The user must specify the desired
direction (forward or backward) when starting a computation. The direction
chosen is referred to by a sign at an ordering number of the current point
(Npt) ("+” for forward, and ”-” for backward direction). To get a whole
branch (in both directions), one has to start forward and backward computa-
tion sequentially (in either order) from the same initial point. Note that the
notion of direction has here a conventional and not a geometrical meaning.

During the computation, the points of a curve are stored in a buffer
file. A stored curve remains available after termination of computations, for
example for redisplaying or saving in a permanent file, RESULT (see Section
5.3.5). The buffer contains only the last computed curve (for each direction).
When starting new computations the old curve is lost. The size of the buffer
is preset by the user (within the free space available or maximal number of
points to be computed). Reaching either buffer or free space limits leads to
termination of the computation automatically.

Computing a curve repeatedly, using the same initial values and the same
computational parameters, should provide the same results. In fact, this can
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be changed by the user when implementing more sophisticated RHS program
but any consequences of this are of his/her responsibility.

5.6.2 Starting computation

To start forward computation of a curve (using the selected curve type and
all the selected options), choose Compute within the Main Menu and press
Enter. To start backward computation, use the Ctrl4+Enter keys. Computa-
tion and plotting of the curve will be started. If the service parameter Init is
nonzero, an initialization procedure will be first executed and completed with
a relevant message (see Section 5.5.2). Next, a flashing cursor will appear in
the Message Window which means curve computation has started.

Recall that you can start computation by pressing the F4 functional key
at the Main Menu or inside the Command, Option, Value or Curve Archive
Windows.

After the first point on the curve is found, a message
”The first point”

is displayed, all values are updated, the point is plotted in the Graphics
Window, and a pause takes place (i.e. the program waits for your reaction),
unless the No-pause mode is currently being used. It should be noticed that
searching for the first point may take a considerable time and may even fail
if an initial guess isn’t good enough. If the program fails, you will get one of
the error messages listed in Section 7.

Having got the first point on a curve, a regular procedure for computing
the next points in the chosen direction can be started. To resume from a
pause , you should press the Enter key.

For any regular point on a curve, you will see a standard message

PNpt = num”,
where num is a point number preceded by a sign showing direction. If a
special point is be encountered, a relevant special message will be displayed;
all the such messages are presented in Section 7.

5.6.3 Pause processing

Causing a pause. The program pauses at every point or only at special points
depending of the pause mode you have chosen. Regardless of the mode, you
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can make it pause at any point on a curve just by pressing the Space key. In
this case the message

PNpt = num”,

will appear when the next point will be computed. You can initiate such a
pause at an arbitrary moment.

You will see that the program is in a pause when the flashing square
from the Message Window disappears. This may be easier to recognize than
watching for message updates.

Changing options. You can change some of the options through a Pause
Option Window during a pause. To invoke the Pause Option Window, press
the F2 functional key. The window appears over the Graphics Window (see
Figure 14). You can set the displayed options in the same way as through
the Option Window (see Section 5.3). Use Esc to leave the window. The
Pause Option Window can be invoked directly by pressing the F2 functional
key while computing.

Zolor

Figure 14: Pause Option Window

Continuing computations. To continue computation in the selected direc-
tion after a pause, press again Enter or Ctrl4+Enter, just as you did when
starting the computations. You can also use F4 (Ctrl+F4) for continuation.
These later keys are also valid inside the Pause Option Window.

Terminate computation. To terminate computation, press the Esc key.
The initial point will be then restored at the Value Window. The message

”Computations terminated”
will be displayed.

Terminate computation with saving current point as the new initial point.
You can take all variable values, corresponding to a point at which you have
paused, as initial values for the next computations. To do this, press the
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Ins key. This action terminates computation without restoring the previous
initial point. In other words, the currently visible point will be used further
as an initial point. The message displayed after termination is the same as
before.

Error messages and forced termination. If the program cannot continue
computations (e.g., it detects a closed curve or a current step-size becomes
extremely small), then it will send a message (see section 7). In this case,
you should press the Esc or Ins key to terminate computation in one of the
possible ways described above. There may be numerical exceptions during
the RHS computation. Then you will get a warning message (see Appendix
B), and the program will wait for your reaction. You may press Esc to
terminate computations, or any other key to continue. In principle, the
latter action may cause erroneous results.

5.6.4 Urgent (asynchronyous) termination

You can terminate computation by pressing the Esc key at any moment. The
computation will be aborted, and the program will react in the same way as
when it is terminated by the Esc key at a pause.

5.6.5 Curve storage

All points computed on a current curve forward (or backward) are stored in
a temporal working file, called buffer (see Section 1). No more than Maxnpt
(defined in the Service Parameter Window) points are stored in each direc-
tion. If this number is exceeded, the message

”Last point in buffer”

will appear. You can press the Ins key to select the last point as new initial
point, or just terminate the current curve computation by pressing the Esc
key.

The message

”Store writing error”

indicates an error in writing into the buffer file and usually means there is
no free space on the corresponding device.
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5.7 Browsing

Recall that the last computed curve is stored in the buffer (see Section 5.6.5).
If one loads a curve from the curve archive (see the next section), it is also
stored in the buffer, replacing a previous one. While having a curve stored
in the buffer, you can browse it as many times as you want. By browsing
the curve, we mean redisplaying it graphically in the Graphics Window and
numerically in the Value Window. All the messages related to special points
remains the same as for curve computation, but warning and error messages
will be omitted. The message

”Last point in the direction”

is specific for browsing; it indicates that last point in the buffer has been
reached.

We should emphasize that almost all the control used in computation
(see 5.6) is also applicable for browsing. It is true for the continuation and
termination of browsing and the option modification. Pressing the Space
key enables the user to make a pause. The Esc and Ins keys are used to
interrupt browsing with or without restoring an initial point. Note that the
last option may be of considerable help since it provides the possibility of
starting tracing some other curve from the currently browsed point.

You can change some of the options (axis, colors, etc.) before starting
browsing (as well as at a pause during the browsing).

To start browsing forward, select the item Browse within the Main Menu
and press Enter. To start browsing backward use the Ctrl4FEnter keys.

The message

”Store reading error”

indicates an error in reading the buffer file. Press any key to terminate
browsing. Note that automatic clearing of the buffer follows such an error,
so the last stored curve is no longer available.

5.8 Curve Archive Window

The computed curve (temporarily stored in the buffer file) may be stored
permanently in the archive. The curve is stored in the directory with the
system name as a file curname.LIN, where curname is a name given by the
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user. The stored curve can be loaded from the archives and then be used for
browsing.

To work with the curve archive, select item Archive within the Command
Line and press Enter. A Curve Archive Window with the list of all stored
curves will appear over the Value Window (see Figure 9). The first line in
the window is highlighted. If there are more stored curves than lines in the
window, symbols Up/Dn appear. You can scroll the curve name list using
the Up and Down Arrows.

To store a computed curve into the archive, type its name. The name
will appear in the first window line. When the name is correctly typed, press
Enter. The message

”Storing...”

will be send to the Message Window and after a short delay a new curve will
be placed into the archive and listed. If you have typed an existing curve
name, the message

”Name duplication: Press Enter to overwrite”

will be send to the Message Window. To overwrite the existing curve, press
Enter, otherwise you should modify the name.
The message

”Storing error”

means an error in the writing procedure and usually corresponds to the ab-
sence of free space on the drive.

To load a curve from the archive, select the desired curve name and press
Enter. The message

”Loading...”

will be displayed while the curve is loaded. After loading done, Curve Archive
Window will be automatically closed and a Value Window will be updated.
The new curve type will be also displayed in the Curve Window.

The message

”Loading error”

means an error in the reading procedure. It may mean the corresponding
curname.LIN file is damaged. Such an error also occurs if a number of
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currently used phase variables, parameters, and functions does not match
with that for loading curve.

To delete a curve from the archive, select the name of the curve to be
deleted, press the Alt+D keys, and confirm your intention by pressing the Y
key.

To exit from the Curve Archive Window, use the Esc key.

5.9 Help system

You may ask for help inside the Equation Window or at the Main Menu,
by pressing Alt+H keys. You will see a Help Window with the relevant
information.

If you press Alt+H during a system specification, the Equation Window
will be replaced by a Help Window. Information on the RHS Editor and
RHS specification language is now available. You may use Home, End and
Up/Down Arrow keys to scroll the information text within the window. Press
Esc to leave the window.

If you press Alt+H at the Main Menu, another Help Window will appear
over the screen. The window will contain a two-page list of possible user
actions together with corresponding keys. To get the next/previous page,
press the PgDn/PgUp keys. You can leave the Help Window by pressing
Esc. This help window can also be opened by the command Help from the
Command Window.

There is also another part of the help system which consists of special
context-dependent hints displayed in the Message Window when you are in
pause outside the Main Menu (for example, inside the Option Window or
pausing during the computations). These hints provide useful information
on possible user actions or about the meaning of optional parameters.

5.10 Hidden keys

You can perform some operations at the Main Menu or inside the Command
or Option Window by directly pressing of special keys. This possibility speeds
up your work with LOCBIF, if you become sufficiently familiar with it.

If you are inside the Command Window, you can use the following keys
to perform the commands:
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Alt+D Delete graphics

Alt+R Show RHS
Alt+1 Preset values
Alt+H Help

Alt+X Exit

If you are inside the Option Window, you can use the following keys to
invoke corresponding windows:

Alt+G Axis Parameter Window

Alt+C Continuation Parameter Window
Alt+0O Orbit Parameter Window

Alt+S Service Parameter Window

as well as Alt4+U keys to set Update mode.
You can use all the above listed keys at the Main Menu line as well. After
performing the corresponding operation you will be back to this line.
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6 Curve descriptions

In this section you’ll learn which curves can be computed by LOCBIF, how
they are defined in terms of bifurcation theory and by means of determining
systems, and how points of higher singularity may be found on these curves.

6.1 List of curves

A list of curves supported by LOCBIF consists of the following items ° :

General curves:

Equilibrium 1 Generic equilibrium point curve

Fold 2 Fold bifurcation curve

Hopf 2 Hopf bifurcation curve

Double Eigenvalue 2 Double eigenvalue curve

Double Zero 3 Bogdanov-Takens bifurcation curve

Fold 4+ Hopf 3 Gavrilov-Guckenheimer bifurcation curve

Cusp 3 Cusp bifurcation curve

Hopf + Lyapunov Zero 3 Degenerate Hopf bifurcation curve

Double Zero + Cusp 4 Degenerate Bogdanov-Takens bifurcation
curve (triple point case)

Hopf + Cusp 4 Degenerate Gavrilov-Guckenheimer bifur-
cation curve (triple point case)

Curves involving nontransversality:

Fold + Extr 3 Nontransversal fold bifurcation

Hopf + Extr 3 Nontransversal Hopf bifurcation

Double Zero + Extr 4 Nontransversal Bogdanov-Takens
bifurcation

Fold + Hopf + Extr 4 Nontransversal Gavrilov-Guckenheimer
bifurcation

Auziliary curves:
Orbit 0 Solution to ODE system
Curve 1 7”Simple” continuation

5Continuation of the curve Double Hopf is not implemented.
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The figure next to a curve name denotes the number of active parameters
required for computation of the curve.

6.2 Basic concepts

The term curve is used here as before for any one-dimensional manifold given
explicitly or implicitly. With respect to their domains of definition, the curves
in the list above are of two kinds:

1) those lying in an extended phase space including also a time variable
(Orbit type),

2) those lying in a phase-parameter space, i.e. in a product of phase and
parameter spaces (all other curve types).

A curve of type Orbit presents a solution to the Initial Value Problem
for the ODE system

&= F(z,p) (6.1)

with n-dimensional phase vector * and m-dimensional parameter vector p.
For such a problem all the parameter values are assumed to be fixed. The
computation of the curve means numerical integration of the system either
in a forward or a backward time direction (see the next section for details).

We discuss in this section the rest of the list of curves. All of these
curves consist of equilibrium points, generic or degenerate. The equilibrium
manifold M is given by the 7algebraic” system

F(z,p) =0 (6.2)

This manifold is located in a phase-parameter space and has a dimension m.
We assume that all the solutions of (6.2) except those lying on a submanifold
of codimension one correspond to hyperbolic (or generic) equilibrium points.
An equilibrium point x¢ is hyperbolic if its Jacobian matrix A = F,(x¢) has
no eigenvalues with zero real part, i.e. ReX; # 0,2 =1,2,...,n. A hyperbolic
equilibrium point is stable if all its eigenvalues \; have negative real parts:
ReX; < 0,0 =1,2,...,n, and unstable if there is an eigenvalue with positive
real part.

A critical case arises if a hyperbolicity condition Re); # 0 is violated
for one or more eigenvalues; the correspondent equilibrium point is called
nonhyperbolic or nongeneric (degenerate). The nonhyperbolic equilibria fill
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in a submanifold of codimension one mentioned above. The points of this
submanifold in turn can be divided into two classes: ”generic” and ”critical”
where the last corresponds to higher singularities. They fill in a submanifold
of codimension two on M. Such a stratification of M can be continued to a
certain extent giving rise to a bifurcation structure of M.

The important assumption we make about the system (6.1) is that this
system is a generic m-parameter family of vector fields in R™. Here generic
means that the family doesn’t belong to any subset in a space H of all vector
fields given by equality type conditions (i.e. no symmetry or other similar
specific features are presumed). More specifically, we assume that for each
singularity of vector fields, the corresponding submanifolds in H and the
family intersect transversally (in particular they may have no common part).
Several consequences follow from this assumption: 1) all equilibrium points of
(6.1) are generically (i.e. for almost all parameter values) hyperbolic, 2) only
(generic) codimension k singularities with & < m may occur in the family, 3)
a codimension of a singularity in the parameter space of the family which is
measured as a codimension of the corresponding submanifold, is equal to that
for a space of all vector fields, and 4) for any singularity of codimension & < m
occurring in the family, the parameters of the family allow to get its versal
k-parameters unfolding. Basically, we can confine genericity assumptions in
a neighbourhood of M which is enough for our purposes in this text.

Although we focus our attention in LOCBIF upon generic systems and
their bifurcations, using the software for problems with symmetry is possible
but of course there are limitations. We make special remarks about this when
discussing the continuation of different singularities.

Roughly speaking, continuation methods are used to investigate the bi-
furcation structure of the manifold M. Given a point on M with a certain
singularity type (e.g. with one zero eigenvalue), the idea is to follow a path of
equilibrium points having the same singularity type. This results in a curve
which lies in a submanifold corresponding to the given singularity.

Curves are the central object of our attention. Each curve may be char-
acterized by the type of singularity it presents which we refer to as a curve
type.

For curve specification we use two parallel languages. We first describe a
singularity using terminology from bifurcation theory (eigenvalues, eigenvec-
tors, normal forms, etc.). Then we specify a related curve using the concept
of determining system which is used by the continuation method.
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Using continuation for bifurcation analysis means not only tracing a curve
itself but also finding special points on it. This primarily addresses points of
higher singularity which one can encounter on the curve. They appear natu-
rally as intersection points of the curve and a submanifold corresponding to
higher singularity. To detect and locate such points, bifurcation or test func-
tions are used which change sign when the higher singularity occurs. It may
also happen that a higher singularity manifests itself in a more geometric
fashion, either as a self-crossing point or an extremum of a system parameter
along the curve. By a self-crossing point (sometimes called bifurcation point)
we mean a point at which locally two (or more) different branches intersect
each other. Notice that all these local branches may lie in the same global
branch. To search for higher singularities and other isolated points of spe-
cial interest along the curve, the program analyzes zero points of specified
bifurcation functions, selfcrossing points and extrema with respect to system
parameters; all such points are referred to as special points.

Searching for special points on a curve creates a basis for what we call
a continuation strategy. This arises from techniques saying 1) how one can
start to compute a curve (i.e. what is the "right” choice of initial point), and
2) how one can manage to switch between different curves in the course of
bifurcation analysis. The continuation strategy refers primarily to the graph
of adjacency of singularities (cf. Afrajmovich et al., 1985). From a practical
point of view, developing a continuation strategy also depends on a choice of
determining systems used for curve definition.

We refer further to monitoring eigenvalues along a branch of equilibrium
points (either generic or degenerate) as a stability analysis, and searching for
special points on the branch as a bifurcation analysis. Monitoring eigenvalues
means just their computation at each point of a curve and displaying them on
a screen. This clearly enables the user to decide the stability of equilibrium
points. The LOCBIF convention is such that the eigenvalues are monitored
automatically for almost all the curves. The exceptional cases are Orbit and
Curve which don’t utilize eigenvalues at all.

6.3 Bifurcation functions

By bifurcation function we mean a scalar-valued function of the phase vari-
ables and parameters whose zero values correspond to simple (codim 1) or
higher singularities of equilibrium points.
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Bifurcation functions serve two purposes:
1) to find, i.e. to detect and locate, special points along curves;
2) to construct determining systems for the bifurcation curves under consid-
eration.

Consider the following bifurcation functions:

by = det A (6.3)

hy = An_y (6.4)

s = Res (P(X),P'(})) (6.5)
bi=a (6.6)

ths = Ly (6.7)

Here A = A(z,p) is the Jacobian (linearization) matrix of system (6.1) at the
equilibrium point (z,p).P(A) is the characteristic polynomial of the matrix
A and P'(A) is its first derivative with respect to A. A,_; denotes the Hur-
witz determinant of order n — 1 associated with P(\)(see Gantmacher, 1960,
p.193). Res stands for the resultant of two polynomials (cf. Gohberg, Lan-
caster, Rodman, 1982). The values of a and L are the coefficients of normal
forms for some singularities of codimension one (see below). Given a Taylor
expansion of (6.1) in a neighborhood of the equilibrium point, the values of
a and L, are determined by the coefficients of the linear and the nonlinear
terms. In other words, unlike the first three functions 1, ¥, %3, the func-
tions th4, 15 involve not only first but also higher derivatives of F'(z,p), and
in this sense they are based essentially on nonlinearity of F.

We should notice that all the functions above are initially assumed to be
functions of phase variables and parameters defined on equilibrium manifold
M. To use these functions in the framework of the continuation method , we
need them also to be smoothly defined in a neighborhood of M.

Condition ¥y = 0 implies that Jacobian matrix A has at least one zero
eigenvalue:

Generic equilibrium with this condition has multiplicity two. We refer to
such singularity as a fold point.
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Condition 9 = 0 holds if and only if there are two eigenvalues A; and A,
with zero sum:

The condition (S51.2) is called a neutrality condition, and the correspond-
ing eigenvalues are called neutral ones. If the neutral eigenvalues are pure
imaginary:

we have a so called focus case. This corresponds to the Andronov-Hopf bi-
furcation (called also Hopf bifurcation) which leads to the appearance of
a small-amplitude periodic solution with a period 1" close to Ty = 27 /w.
Another possible case associated with the condition 9 = 0 is that the eigen-
values are real, hence having a different sign and the same magnitude:

(51.24) A1 = — X2 (real non-zero)

This case is called a neutral saddle ©. In what follows, we use the "Hopf” to
denote case (51.2), which includes two possible variants (51.2) and (51.2;).
Condition 3 = 0 means the existence of two equal eigenvalues:

The function a = a(x, p) is defined at an equilibrium point with zero eigen-
value A\; = 0 and a one dimensional null-space. It reads:

_ld&
~ 24¢

a (¢, F(x + e, p))|e=o (6.8)
where e and ¢’ are eigenvectors of the matrices A and its transpose respec-

tively corresponding to zero eigenvalue, with normalizing conditions (e, e) =
1,{(e’,e’) = 1. Here (-, -) denotes the standard scalar product in R™.

61t has no bifurcation meaning by itself. However, it may influence a change of stability
of a saddle loop and nearby limit cycle if the neutral saddle does have such loop (generally
this is a codimension two singularity).

35



The quantity a also may be characterized as the coefficient of a quadratic
term in the normal form of the equations on a one dimensional center man-
ifold corresponding to the zero eigenvalue (see Carr, 1981):

Uw=au®+... (6.9)

This manifold is tangent to the null-space of A, and one can assume a coor-
dinate u to be chosen along the eigenvector e.

For a generic system, a typical point on a submanifold of degenerate
equilibria with zero eigenvalue has a nonzero value of a. This implies that
the multiple equilibrium point is double. If the coefficient « vanishes, i.e. if
conditions ¢»; = 0 and ?4, = 0 hold together, then the equilibrium, generically,
has multiplicity three. This bring us to a codimension two singularity called
a cusp point, which therefore can be specified as the zero of two functions:
Y1 and ty.

Notice that the function a(z, p) can be applied not only for the case of one
eigenvalue zero, but also for higher singularities such as two zero eigenvalues
(with zero Jordan block) and one zero and two pure imaginary eigenvalues.
In both these cases a appears as a coefficient in the corresponding normal
form (see below). The crucial feature of a is that it allows to distinguish
between double (a # 0) and triple (a = 0) equilibrium points. The terms
double, triple etc. are related to the multiplicity of a root of the equilibrium
point system (6.2): at most two equilibria may appear under perturbation
of a double equilibrium point, at most three - from triple equilibrium point,
etc.

Function Ly = Li(x,p) is called the first Lyapunov coefficient (or the
first Lyapunov quantity). It is defined for an equilibrium with a pair of pure
imaginary eigenvalues: A\; o = *+ww.L; is the real part of the coefficient ¢; of
the normal form of the equation on a two-dimensional center manifold (see

Hassard et al., 1981):

=Xz 422z 4 ... (6.10)

where z is a complex variable. Typically, L; # 0. However for certain param-
eter values, it may vanish. This constitutes a codimension two singularity
called a degenerate Hopf bifurcation. The corresponding critical boundary
defined by equations 1 = 0,15 = 0 separates subcritical (L; > 0) and super-
critical (L1 < 0) Hopf bifurcations. For more details about the computation
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of L; see Section 6.11.

Note that this list of bifurcation functions is not restricted to ”classical”
singularities only (this refers to branching behaviour of equilibria or stability
changes) . It enables the user to study some other critical cases such as the
double eigenvalue.

6.4 Determining system.

By a determining system, we mean a nondegenerate ”algebraic” system of
the form

Fly)=0 (6.11)

where F : RY — RM~! is a smooth mapping. The nondegeneracy of (6.11)
means that the Jacobian matrix F, has a rank N —1 along a solution curve to
(6.1) at all but some isolated points on this curve. Typically such points are
self-crossing points. We include them into a set of special points (this set may
contain also points of other types). We will use the concept of a determining
system to define one-dimensional paths on the equilibrium manifold which
correspond to different properties of the underlying equilibrium points.

A determining system for generic equilibrium points arises naturally if
one uses the system (6.2) with the proper number of variables, namely n 4 1.
Typically one uses for such variables all the phase variables and one of the
parameters while the other parameters are assumed to be fixed.

A general way to provide a determining system for a nongeneric equilib-
rium point curve (bifurcation curve) is to combine the equation (6.2) with
one or more suitably chosen degeneracy (bifurcation) conditions having the
form #; = 0; the resulting system is also called an augmented system. The
number of bifurcation conditions used in the determining system is to be
equal to the codimension of the singularity under consideration. Given a
codimension v singularity, the determining system contains n 4+ v equations
and therefore requires n 4+ v + 1 variables. For such variables one can take
n phase variables and v + 1 active parameters. The active parameters may
be arbitrarily chosen among all the system parameters while the remaining
parameters are to be kept at fixed values.

We consider next equilibrium and bifurcation curves in the same order
as in the list above (i.e. ordered by the number of active parameters). So
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called nontransversal cases are discussed separately since they require an
additional bifurcation function and presume some other relationship between
the codimension of a singularity and the number of active parameters.

6.5 Equilibrium curve

The curve type Equilibrium stands for a curve of equilibrium points. It
requires one active parameter. To simplify notation, choose p; for such a
parameter. Consider an active phase-parameter space with n 4+ 1 coordinates
(x1,22,...,&n,p1). The curve in this space is defined by the system (6.2)
where all parameters but p; are fixed.

We assume that all points of the curve except several isolated ones cor-
respond to hyperbolic equilibria. This implies the nondegeneracy of the de-
termining system (6.2).

The second important assumption is that every nonhyperbolic equilibrium
point on the curve has the following features:

a) it represents a singularity of codimension one,

b) it constitutes a generic or transversal case for the singularity.

Based on this assumption, one can search for such points along the curve
as simple zeros of properly chosen bifurcation functions. Notice that given a
generic system (6.1), the second assumption doesn’t hold automatically: it
requires the nonactive parameters to be fixed at ”"generic” values. In other
words, not only should the system be generic, but also a slice in phase-
parameter space given by fixed values of nonactive parameters should be
generic. Roughly speaking this means that the slice can not pass through
the highly degenerate points on M. Notice that similar assumptions should
be made also with respect to all other curves below.

As was mentioned before, a stability analysis is performed automatically
along a branch of equilibria. A bifurcation analysis involves three bifurca-
tion functions w1, ¥y, 13, zero values of which indicate special points of type
(51.1),(5.2),(51.3), respectively. The type (S1.1) is referred to in the pro-
gram as "Zero eigenvalue”. For type (51.2) the two cases, (51.2f) and
(51.24), are possible: (S1.2y) is referred to as "Hopf” and (51.2,) is re-
ferred to as ”Neutral saddle”. The type (51.3) is indicated as ”Double
eigenvalue”.

Notice that only two —(51.1) and (51.2¢) - of four different types of spe-
cial points on the branch of equilibria show nonhyperbolic equilibria. Two

38



other types deal with hyperbolic equilibrium points which might be of par-
ticular interest in some applications. (See also discussion of continuation
strategy in Section 6.10).

When a special point along the curve is found, additional information
related to this point and the corresponding normal form is provided whenever
possible. For the point of type (51.1)a value of the coefficient « in (6.9)
given by formula (6.8) is computed and reported in the form ”a = value”.
Normally this value should be nonzero. Notice that the sign of this value has
no special meaning (indeed, it may be changed by changing the direction of an
eigenvector €). A small or zero value of a indicates possible higher degeneracy
such as a cusp singularity. (In particular a cusp singularity means that the
slice chosen is not generic). However, for systems with a symmetry group,
vanishing a(z,p) appears to be the typical non-exceptional situation which
indicates that a pitchfork bifurcation occurs (see also below).

For the point of type (51.25) the value of the first Lyapunov coefficient
in (6.10), Ly = Recy, is computed and reported in a form ”L1 = value ”.
Normally it should be nonzero. A negative (positive) value of Ly indicates a
supercritical (subcritical) Hopf bifurcation.

Bifurcation analysis of an equilibrium curve also involves examining the
condition for an extremum of active parameter p; along the curve, as well
as the condition for a self-crossing point. Notice that any fold point on an
equilibrium curve is at the same time an extremal point. So whenever a
fold point is found it also will be reported as an extremal point in a form
?Maximum (or Minimum) of parameter name is value”.

For a generic system, a selfcrossing point can’t occur on an equilibrium
curve. For a system with a symmetry group or a system having an invari-
ant subspace that doesn’t depend on parameters, such points may however
appear. It will be reported then as ”Selfcrossing”. Notice that at a self-
crossing point one eigenvalue vanishes, Ay = 0, so the corresponding diagnos-
tics might be expected. Two typical cases of selfcrossing point are: pitchfork
bifurcation and transcritical bifurcation. For a transcritical bifurcation, both
intersecting branches are monotone with respect to the parameter, and \;
changes sign along any of them. So regardless of branch, this change is de-
tected by function t; and reported as ”Zero eigenvalue: a = value” with
a typically nonzero value of a. In the case of a pitchfork bifurcation, only one
of two branches (which is non parabola-like) has a change in sign of A;. This
is diagnosed and reported in the same fashion as above. In this case, a zero
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value of @ is expected. For the other (parabola-like) branch, the self-crossing
point is also an extremal point, which is also reported.

Note. An item Curve in the list is reserved for a curve defined by the
same formula (6.2) as for Equilibrium curve. A difference from Equilib-
rium is that for Curve, neither stability nor bifurcation analysis is per-
formed. In other words, choosing the Curve option just means performing
simple continuation for the problem defined by (6.2) without taking into ac-
count a formal meaning of F(z,p) as RHS of differential equation system.
In particular this option can be applied for arbitrary continuation problems
given in a form analogous to (6.2) not only for those which come from the
bifurcation analysis of dynamical systems.

6.6 Curves with two active parameters

Let us choose two active parameters, e.¢g. p; and py, and fix all the others at
some particular values. Consider an active phase-parameter space with n+2
coordinates (z1,a,..., %, p1,p2).

6.6.1 Fold (tangent) bifurcation curve

The curve type Fold stands for a fold (also called tangent, limit point, or
turning point) bifurcation curve defined by the condition (S1.1). A deter-
mining system for the curve reads:

F(z,p) = 0
NS (6.12)

where all parameters but p; and p, are fixed.

The projection of a fold curve onto an active parameter plane defines
a curve on which a pair of equilibrium points appear or disappear when
parameters are changed in such a way to cross this curve transversally. For
critical and neighboring parameter values there is a one dimensional invariant
manifold in the phase space with dynamics described by (6.9).

While tracing a fold curve, the bifurcation functions s, ¥3, and 1, are
monitored along it to find special points corresponding to zeros of these
functions.
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Condition ¥ = 0 means that the equilibrium has a pair of eigenvalues
of zero sum (simultaneously with having one zero eigenvalue). We have here
one of the following cases:

(52.1) A = Ay = 0 (with zero Jordan block of order two)
(52.2) M =0, A+ A3=0

(52.2)) A =0, Mg = Fiw (w > 0)

(52.2,) A =0, Ay = —\s (real non-zero).

We refer to the case (52.1) as Bogdanov-Takens (BT') singularity, and to
the case (52.2) as Gavrilov-Guckenheimer (GG) singularity (for more infor-
mation about these codimension two singularities see Arnold, 1982; Guck-
enheimer and Holmes, 1983; Afrajmovich et al., 1985, 1991). In fact only
the subcase (52.2y) is of interest for (GG-singularity; another one formally
has codimension one (”degenerate neutral saddle”) and doesn’t attract much
interest in bifurcation studies.

A special point satisfying case (52.1) may be used as an initial one to
compute Hopf, Double Eigenvalue and Double Zero bifurcation curves.
Analogously, the cases (52.25) and (52.25) provide initial points to compute
Hopf and Fold + Hopf bifurcation curves. Notice that the continuation
of Double Zero and Fold 4+ Hopf bifurcation curves requires three active
parameters (see below). Notice also that you can easily distinguish between
the cases (52.1),(52.2¢),(52.2;) simply by looking at the eigenvalues in the
Value Window. When a special point with ¥, = 0 is found, it is reported in
the form ” Neutrality : a = value”. Here value is a current value of a given
by (6.8). Normally it should be nonzero.

Condition ®3 = 0 means that the equilibrium has a pair of multiple
eigenvalues (simultaneously with having one zero eigenvalue). We may have
here the case (52.1) or another case

(52.3) A =0, Ay = A3 (real non-zero).

We should note that the case (52.1) can hardly be detected on a fold curve
by using the function 3 since being zero it doesn’t change sign at such a
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point. The case (52.3) is more regular in this sense. However it doesn’t
present a higher singularity. The corresponding special point can be used to
start computation of the Double Eigenvalue curve.

Finding a special point with the condition at which 3 = 0 is reported in
the form ”Double eigenvalue : a = value”. Here value is a current value
of a as in the previous case. Typically it should be nonzero.

The last type of special point detected on a fold curve is that defined by
the condition ©4 = 0:

(524) )\1 == O, a=0.

It corresponds to triple equilibrium point also referred to as a cusp point.
Such a point may be used as an initial point for tracing a Cusp curve. A
message associated with the case ¥, = 0 reads simply ”Cusp”. Notice that
a cusp point is typically detected also as an extremum along the curve of one
or both active parameters.

A self-crossing point can’t arise on a fold curve provided the system is
generic. But for a non-generic system, such a point may occur. In this case,
the null-space corresponding to zero eigenvalue, has dimension two, not one
as before.

A point at which one of active parameters say p; reaches an extremal
value may be of the cusp type discussed earlier. The other (equally possible)
case is a regular extremal point, i.e. a non-degenerate fold point (a # 0) at
which the transversality condition for fold bifurcation is not satisfied. This
transversality condition is related to the complimentary active parameter py
which changes monotonically at this point (see also discussion in the next
section). A regular extremal point on the fold curve may be used as an initial
point to compute a Fold 4+ Extr curve.

6.6.2 Hopf bifurcation curve

The curve type Hopf stands for a Hopf bifurcation curve. Recall that by a
(generalized) Hopf singularity we mean a case (51.2), i.e. when the system
has an equilibrium point with a pair of neutral eigenvalues. To define this
curve in algebraic form, we use the following equations:

F(z,p) = 0
Polz,p) = 0 (6.13)



where all parameters but p; and p, are fixed.

The projection of the Hopf curve onto an active parameter plane with
coordinates (p1,p2) defines a curve at which a (small-amplitude) limit cycle
bifurcates from an equilibrium point. In fact this happens only for the (focal)
segment of the curve which corresponds to pure imaginary eigenvalues. Still,
on another (saddle) segment of the Hopf curve the neutral eigenvalues happen
to be real, which corresponds to a neutral saddle. Appearance of a neutral
saddle in the system doesn’t lead to any bifurcation unless global bifurcation
comes into consideration (see e.g. Afrajmovichet. al., 1985, 1991). The focal
and saddle segments meet at a codimension two point of Bogdanov-Takens
type. We should notice that since we use the general condition ¥y = 0 to
define the Hopf curve, a transition between these segments doesn’t cause any
problems.

Three bifurcation functions v, 13, and 5 are monitored along the Hopf
curve. Their zeros indicate the special points of the following type: (52.1),
(52.2), and also

(52.5) A+ Ay =0, A3 = Ay (real non-zero)

(52.5,) Az = tiw (w > 0), A5 = Ay (real non-zero)
(52.5,) A = —A, (real non-zero), As = Ay (real non-zero)
(52.6) Az = tiw, Ly =0

More specifically, one has the following possibilities:

1 =0 type (52.1) or (52.2); reported as ”Zero eigenvalue:
a = value”.

0 type (S52.1) or (52.5); reported as ”Double
eigenvalue”.

s =0 type (52.6); reported as ”Zero Lyapunov value”.

s

The first Lyapunov value L; computed along the Hopf curve (only when
critical eigenvalues are pure imaginary) provides the user with important in-
formation about the direction of limit cycle appearance, when the eigenvalues
cross the imaginary axis, and its stability.
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A Hopf bifurcation curve may also contain a point with two pairs of
neutral eigenvalues:

(52.7) A4 A2 =0, As+ Ay =0,
(52.74¢) Az = Fiwy, Asa = Liws,
(52.7;,) Az = tiwr, Ay = —Ay (real),
(52.7,,) A = =\ (real), A3 = —\q (real).

Such a point is detected on the curve as a self-crossing point (i.e. as a
standard geometric singularity on the curve). One has in this case a message
”Selfcrossing”.

A special point of type (52.1) on Hopf curve can be used to start Fold,
Double Eigenvalue or Double Zero curves. A special point of type (52.2)
can be used to start Fold and Fold + Hopf curves. A point of type (52.5)
is a starting point for a Double Eigenvalue curve. A point of type (52.6)
can be used for starting computation of a Hopf + Lyapunov Zero curve.
On the contrary, a point of type (52.7) can’t be used directly to start tracing
another branch of a Hopf curve since at this point the determining system
(6.13) becomes degenerate.

A point at which one of active parameters reaches an extremal value in-
dicates a degeneracy of nontransversality type. Assume for example that the
parameter p; has maximim or minimum at a point £ on the Hopf curve with
A1,2 = Tww.Fix the parameter p; at its extremal value and leave the param-
eter p, still active. Consider the equilibrium curve which pass through the
point K. Then this point becomes a special point of the Hopf type on the equi-
librium curve. The transversality condition for Hopf bifurcation means that
d(Re)2)/dps: # 0 along the equilibrium curve. At the point £ however, this
condition happens to be broken because of tangency of the equilibrium and
the Hopf curves. Notice now that because of this degeneracy, the bifurcation
function v, doesn’t change sign at the point £ along the equilibrium curve (it
has a zero of order two). Therefore the corresponding special point of Hopf
type can hardly be detected. Referring to the previous discussion of generic
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and non-generic slices, one can interpret the nontransversality above saying
that the psy-slice corresponding to the chosen fixed value of p; is non-generic.
A regular extremal point on the Hopf curve may be used as an initial
point to compute a Hopf + Extr curve.
The above discussion about mutual relation between extrema of active
parameters and degeneracies of nontransversality type may be carried over
to all other curve types.

6.6.3 Double eigenvalue curve

The curve type Double Eigenvalue refers to the double eigenvalue curve
which is determined by the system of equations:

F(z,p) = 0
%/)3(137?) =0

where all parameters but py, p; are fixed.

(6.14)

The projection of the computed curve onto an active parameter plane
generally defines a curve on which two distinct real eigenvalues of an equi-
librium point coincide and become complex. This curve is not bifurcational,
however it may be important for applications. For stable equilibria of a two-
dimensional system the curve defines a border on which a monotone decay to
stationary solution replaces the oscillatory type decay (on the phase plane,
a node changes to a focus). One can see the same phenomenon even in the
case of a higher dimensional system provided that colliding eigenvalues lie
closer to the imaginary axes than others.

Two bifurcation functions 1y and ¥, are monitored along the double
eigenvalue curve. A zero of the function ; indicates a special point of either
type (52.1) or (52.3). The corresponding message is ”Zero eigenvalue: a
= value”. A zero of the function 1, indicates a special point of type (52.5).
The corresponding message is ” Neutrality”.

A special point with ¥; = 0 may be used to start a Fold curve, and
analagously a special point with 1)y = 0 may be used to start a Hopf curve.
If both functions ?; and ¥, vanish simultaneously, this means a point of
(52.1) type is detected. It may be used to start a Double Zero curve.
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6.7 Curves with three active parameters

We consider here singularities of codimension two. Tracing such singularities
requires three active parameters. Notice that these and higher singularities
may exhibit rather complicated bifurcation diagrams, discussion of which is
far beyond the present manual. We recommend (Arnold, 1982; Guckenheimer
and Holmes, 1983; Afrajmovich et al., 1985, 1991) for general references con-
cerning these singularities. We also should note that not all known cases of
codimension two and three singularities are supported by the current version
of LOCBIF.

Choose three active parameters, e.g. p1, ps, and p; and fix all the others
at some particular values. Consider an active phase-parameter space with
n + 3 coordinates (x1, 22, ..., &, p1, P2, P3)-

6.7.1 Bogdanov-Takens bifurcation curve

A Bogdanov-Takens (BT') bifurcation curve, which is referred to in the pro-
gram as a Double Zero curve is a curve of equilibrium points satisfying the
singularity condition (52.1). The corresponding determining system has a
form:

F(z,p) = 0
Pi(z,p) = 0 (6.15)
%/)2(137?) =0

where all parameters but p;, p, and p3 are fixed.

Notice that the Bogdanov-Takens bifurcation curve is a common curve of
two surfaces corresponding to fold and Hopf singularities respectively.

In the case of BT singularity the value a defined by formula (6.8) is
essentially one of the coefficients of the corresponding normal form:

v+ ...

v = au®+ buv+... (6'16)

Generically, both a and b should be nonzero. Vanishing of either a or
b provides two different singularities of codimension three. The bifurcation
function 14 is monitored along the BT curve to search for one of these sin-
gularities, namely that related to the coefficient a:

(53.1) A = A2 =0 (zero Jordan block), a = 0.
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Finding such a point is reported as ”Cusp” since a zero eigenvalue with
the condition @ = 0 yields a cusp point. See (Bazykin et al., 1985, 1989;
Dumortier et al, 1991) for more details about singularity (53.1).
A special point of the type (53.1) may be used to start a Cusp curve.
The other singularity on B7' curve is related to the coefficient b in (6.16):

(53.2) A1 = A2 = 0 (zero Jordan block), b= 0.

The program doesn’t search for this singularity automatically yet. Some
indirect way to detect this singularity is to investigate a possibility for a Hopf
curve to create a cusp point as being projected onto the active parameter
plane. A closely associated phenomenon which clearly indicate such cusp to
occur is the following. Suppose that one observes in the projection of a Hopf
curve a loop which terminates at a self-crossing point and contains BT or
GGG point in its internal part. Assume now that under variation of the third
parameter such a loop shrinks and disappears at BT or GG point. This
means that a point of (53.2) type has been passed. For more information
about this singularity see (Berezovskaya and Khibnik, 1985; Basykin et al.,
1985, 1989; Dumortier et al., 1987).

Assume that a regular extremal point occurs along a BT' curve, say with
respect to parameter p;(which is correspondingly reported). This means
the transversality condition for BT singularity is broken, with respect to
complimentary parameters p; and ps. This violation of the transversality
condition may be characterized geometrically as follows. On (pz, p3)-plane,
the fold and Hopf curves have at BT point a higher order of tangency than
usual quadratic one. For close to extremal values of pq, there are (locally)
two or no BT points exist. A regular extremal point on BT curve may be
used as a starting point for a Double Zero + Extr curve.

Notice that for two-dimensional systems a BT curve typically doesn’t
contain self-crossing points unless a symmetry is involved. As for higher
dimensions, this becomes possible (see next section).

6.7.2 Gavrilov-Guckenheimer bifurcation curve

A Gavrilov-Guckenheimer (G(7) bifurcation curve, which is referred to in the
program as a Fold + Hopf curve, is defined by the singularity condition
(52.2). We use for this case exactly the same determining system (6.15) as
for the Bogdanov -Takens case above.
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For (GG singularity, the value a defined by formula (6.8) appears just as
one of the coefficients of a normal form related to (52.2):

_— 9 _
L (6.17)
Z2 = wzteczzH+dzu+tezzt+ ...

where u is a real and z is a complex variable.

Generically, all the coefficients in the normal form should be nonzero.
Vanishing of any one of them leads to a singularity of codimension three
(more precisely, this refers to the coefficients of the corresponding amplitude
equation which are essentially a,b, Re ¢, Re d and Re e). The bifurcation
function 4 is monitored along the GG curve to search for one such singu-

larity, namely associated with vanishing of the coefficient a:
(S33f> /\1 = 07 )\273 = :l:zw, a=0.

Similarly to the previous case, a zero of the function 4 is reported as
7?Cusp”. Notice that such a zero may also mean a less interesting point
of the type

(53.35) A =0, Ay = —A3 (real nonzero), a = 0.

Both (53.24) and (53.2,) are the two subcases of the following singularity
type:

(533) /\1 = 07 /\2 + /\3 = 07 a=0.

A special point of the type (53.3) on GGG curve may be used to start a Cusp
curve.

If a regular extremal point occurs along a GG curve, with respect to
a certain active parameter, this means the transversality condition for GG
singularity is broken with respect to two other complimentary active param-
eters. Such point may be used as a starting point for a Fold + Hopf +
Extr curve.

A self-crossing point may occur generically on GG(resp. BT) curve. It
simply means intersection with BT (resp. GG') curve. Recall that for both
cases BT and GGG we use the same defining system (6.15), and self-crossing
means just a degeneration of this system. This becomes possible if three
eigenvalues vanish simultaneously:

(53.4) A1 = Ay = A3 = 0 (zero Jordan block of order 3).
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This is a codimension three singularity not too much studied so far. Any-
way such self-crossing point may be used to switch from BT to GG curve
and vise versa, although due to degeneracy of (6.15) we can’t perform this
directly without special efforts.

6.7.3 Cusp bifurcation curve

A cusp bifurcation curve, which is referred to in the program as a Cusp
curve, is defined by the singularity condition (52.4). The corresponding
determining system has the form:

F(z,p) = 0
Vi(z,p) = 0 (6.18)
%/)4(51?717) =0

where all parameters but p;, p; and p3 are fixed.

The bifurcation function 5 is monitored along the cusp curve. A zero
of 1, indicates a codimension three point either of type (53.1) or (53.3;) or
(53.35). Regardless of the case, the corresponding message is ” Neutrality”.

A special point of the types (53.1) or (53.3) may be used to start a
Double Zero or Fold + Hopf curves respectively.

Recall that a normal form for cusp singularity is

u=bu®+... (6.19)

where u is real, and b is assumed to be nonzero. A point with b6 = 0 also
might occur on the cusp curve; such a point is called a swallowtail and has
codimension three. This point can be typically detected on the cusp curve
as an extremum with respect to an active system parameter.

6.7.4 Degenerate Hopf bifurcation curve

A degenerate Hopf bifurcation curve, which is referred to in the program as a
Hopf 4+ Lyapunov Zero curve, is defined by singularity condition (52.6).
The corresponding determining system reads:
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F(z,p) = 0
v1(x,p) = 0 (6.20)
vs(z,p) = 0

where all parameters but p;, p, and p3 are fixed.

Notice that the condition (52.6) is limited to a Hopf point of focus type
only (i.e. with pure imaginary eigenvalues). A consequence of this limitation
is that unlike the other curves above, a degenerate Hopf bifurcation curve
may terminate naturally. This happens when critical eigenvalues approach
zero. One can suggest that the termination point (which belongs to a closure
of the curve) has higher codimension. Two particular cases of this type are
codimension three singularities of (53.1) and (53.2) types (cf. bifurcation
diagrams in relevant references above).

No bifurcation functions are monitored along the degenerate Hopf bifur-
cation curve.

A normal form relevant to the singularity (52.6) is as follows:

Z=idwz+ 2z 4. (6.21)
where z is complex, and by a nondegeneracy condition, Ly = Re ¢, is nonzero.

The value L, is called the second Lyapunov coefficient (quantity). Notice that
finding its zeros along the degenerate Hopf bifurcation curve appears to be an
exciting but nontrivial numerical problem even for two dimensional systems
(it requires computing derivatives up to fifth order); the program doesn’t
deal with this problem.

If a regular extremal point occurs along a degenerate Hopf curve, with
respect to a certain active parameter, this means the transversality conditions
for the correspondent singularity are no longer satisfied, with respect to the
other two complimentary active parameters.

6.8 Curves with four active parameters

We consider here just two cases of singularities of codimension three. Trac-
ing such singularities requires four active parameters. Choose such pa-
rameters, e.g. pi,p2,p3 and p; and fix all the others at some particular
values. Consider an active phase-parameter space with n 4+ 4 coordinates

(5517«T27 .. .,xn,p1,p2,p3,p4)-
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6.8.1 Degenerate Bogdanov-Takens bifurcation curve (triple point
case)

A degenerate Bogdanov-Takens bifurcation curve (triple point case), which
is referred to in the program as a Double Zero + Cusp curve is a curve
of equilibrium points satisfying the singularity condition (53.1). The corre-
sponding determining system has a form:

F(z,p) = 0
77Z)1(:l:7p) =0
Yoz, p) = 0 (6:22)
77Z)4(:l:7p) =0
where all parameters but py, p2, p3 and p4 are fixed.
A normal form for this singularity reads:
v+ (6.23)

v = cu®+ buv + duv + ...
with nondegeneracy conditions ¢ # 0, b# 0, d # 0, d* 4+ 8¢ # 0.

No bifurcation functions are monitored along this curve. When a regular
extremal point occurs, this corresponds to violation of the transversality
condition, with respect to the complimentary active parameters.

6.8.2 Degenerate Gavrilov-Guckenchimer bifurcation curve (triple
point case)

A degenerate Gavrilov-Guckenheimer bifurcation curve (triple point case),
which is referred to in the program as a Hopf 4+ Cusp curve is a curve
of equilibrium points satisfying the singularity condition (,53.3). The corre-
sponding determining system is (6.22), the same as for the previous case.

No bifurcation functions are monitored along this curve. When regular
extremal point for an active parameter occurs, this corresponds to violation
of the transversality condition, with respect to the complimentary active
parameters.
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6.9 Curves with nontransversality condition violated

We start with remark that all singularities (and related to them bifurcation
functions) discussed above have nothing to do with a concrete dependence
of the system (6.1) upon parameters. Such dependence first appears in a
determining system for the singularity continuation when we need to choose
active parameters and impose the non-degeneracy of this system. Now we
arrive at the point at which the dependence upon parameters becomes really
crucial: we will discuss here the violation of the transversality conditions
with respect to the concrete system parameters. We need first to explain
how a determining system is constructed in this case.

6.9.1 Construction of determining system

For a codimension v singularity undergoing additionally a degeneracy of the
nontransversality type, a determining system consists of three parts: 1)n
equations defining equilibrium point, 2) iv equations defining singularity con-
ditions, and 3) one equation defining nontransversality condition. This last
equation is derived from the previous n 4+ v equations which define the sin-
gularity itself in a way described above. Since the determining system being
constructed contains n 4+ v + 1 equations, it requires n + v 4+ 2 unknowns.
In other words, the continuation of the codimension v singularity with the
transversality conditions broken requires v 4+ 2 active parameters not v + 1
as in the standard case above.

Given a codimension v singularity, consider the corresponding (standard)
determining system. Choose a set of v system parameters. We say that this
set is non-generic at the point (2°,p°) of the product space if the matrix B
is singular,

det B = 0 (6.24)

where B is the (n 4 v) X (n + v) linearization matrix at (z°, p°) of the deter-
mining system with respect to the phase variables and the chosen parameters.
The meaning of the condition (6.24) is that the chosen parameters do not
provide the generic unfolding of the singularity under consideration. This
is equivalent to saying that the transversality conditions are broken with
respect to the chosen set of parameters.
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Now one can extend the original determining system (of n + v equations)
by the equation (6.24). This completes a new determining system which
defines the nontransversal case. Notice that the matrix B depends on the
choice of the set of parameters to be interpreted as non-generic, although this
is not reflected explicitly in (6.24). Apparently, a different choice leads to a
different matrix B. Therefore the corresponding determining system appears
to be also different although constructed in the same fashion.

6.9.2 Nontransversal fold bifurcation curve

A nontransversal fold bifurcation curve referred to in the program as a Fold
+ Extr curve is defined by the condition (S1.1) and the nontransversality
type condition (6.24). Since a codimension of a fold singularity is one, this
curve requires three active parameters, e.g. pi,ps and p3. Make a choice
which one of them will be considered as a non-generic parameter (in gen-
eral such choce can be made among all system parameters). Consider the
determining system (6.12) as depending on the phase variables and one pa-
rameter p; and compute the linearisation matrix B at a given point in a
product space. Now combine the system (6.12) and equation (6.24) with
the computed matrix B. This results in a new determining system of n + 2
equations relevant to our case:

F(z,p) = 0
Yi(z,p) = 0 (6.25)
det B(z,p) = 0

where all parameters but p;, p; and p3 are fixed.

The bifurcation function #, is monitored along this curve to detect spe-
cial points with condition (52.1) or (52.2) being satisfied. The corresponding
message is exactly the same as for a fold curve. Since in generic case, the pro-
jection of fold and Hopf curves onto the parameter plane shows tangency at
their common point (which is essentially of BT or GGG type), a nontransver-
sality phenomenon for fold bifurcation implies just the same phenomenon for
Hopf bifurcation. This allows us to use the special point to switch to Double
Zero, Fold 4+ Hopf, and also to Hopf + Extr curves.

Reaching an extremal point is possible along a nontransversal fold bifur-
cation curve and may happen in several different variants. We just mention
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some of them not pretending to provide a complete classification.

First possibility is a swallowtail point which has codimension three. The
next two possibilities are the isola and the self-crossing of a fold curve (in
fact these are two complimentary subcases of the same singularity type). To
be definite, assume a maximum of the parameter p3, namely p3 is achieved.
Locally, an isola means that in a (p1, p2) parameter slice corresponding to ps
a fold curve forms an annulus (a small closed curve topologically equivalent
to a circle), while for values of p; greater than pj, a fold curve does not exist
at all. A self-crossing of a fold curve implies that for all p3 close to p3, the
fold curve has (locally) two different hyperbola-like branches which approach
to one other as p3 tends to pj.

Notice that reaching an extremal point along nontransversal fold curve
means that two different system parameters become non-generic simultane-
ously. This allows us to switch between different branches corresponding to
the degeneracy of the nontransversality type. For this to be done, one needs
just to switch the index of the non-generic parameter in the computation of
the matrix B.

6.9.3 Nontransversal Hopf bifurcation curve

A nontransversal Hopf bifurcation curve referred to in the program as a Hopf
+ Extr curve is defined by the condition (51.2) and the nontransversality
type condition (6.24). This curve also requires three active parameters, e.g.
p1, p2 and ps.

The way of constructing the corresponding determining system is exactly
the same as for a nontransversal fold curve. One needs just to replace the
system (6.12) by (6.13) which is the determining system for a Hopf bifurcation
curve. The linearization matrix B is to be computed now from the system
(6.13) and a choice is to be made for a non-generic parameter. This gives
meaning to the equation (6.24) which now can be added to the system (6.13).
The resulting determining system reads:

F(z,p) = 0

ha(z,p) = 0 (6.26)
det B(z,p) = 0

where all parameters but p;, p, and p3 are fixed.
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The bifurcation function )y is monitored along this curve to detect special
points with condition (52.1) or (52.2) being satisfied. The corresponding
message is exactly the same as for a Hopt curve. A nature of the special
point may be of that type as discussed above for nontransversal fold curve
(i.e. generic BT or GGG point with transversality conditions broken simul-
taneously for fold and Hopf curves). There is however another possibility,
namely a codimension three singularity of (53.2) type (remind that near this
singularity, a loop of a Hopf curve in the corresponding parameter projection
occurs, see section 6.7.4). Notice that for this latter case, the fold curve still
remain generic , i.e. no transversality conditions are violated.

Switches to Double Zero, Fold 4+ Hopf, and Fold 4+ Extr curves
are possible at the special point regarding particular type of singularity it
presents.

An extremal point on a nontransversal Hopf curve may easily be of isola
or of self-crossing type.

6.9.4 Nontransversal Bogdanov-Takens bifurcation curve

A nontransversal Bogdanov-Takens bifurcation curve referred to in the pro-
gram as a Double Zero + Extr curve is defined by the condition (52.1)
and the nontransversality type condition (6.24). This curve requires four
active parameters, e.g. py, p2, p3 and py.

According to the above scheme, consider the determining system (6.15)
for the BT curve, choose two active parameters to be of non-generic type,
and compute the linearization matrix B of (6.15) with respect to the phase
variables and chosen parameters. Now extend (6.15) with (6.24) where B is
the computed matrix. This yields a new determining system relevant for our
case:

FEx,p; 0
va(z,p) = 0
oz, p) = 0 (6.27)

det B(z,p) = 0
where all parameters but py, p2, p3 and p4 are fixed.

No bifurcation functions are monitored along a nontransversal BT curve.
As usual extremal points may occur along the curve. The switching to an-
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other branch of the same type characterized by a different choice of non-
generic parameters, might be possible at such a point regarding a case.

6.9.5 Nontransversal Gavrilov-Guckenheimer bifurcation curve

A nontransversal Gavrilov-Guckenheimer bifurcation curve referred to in the
program as a Fold 4+ Hopf 4+ Extr curve is defined by the condition (52.2)
and the nontransversality type condition (6.24). This curve requires four
active parameters, e.g. py, p2, p3 and py.

A determining system used in this case is exactly the same as for non-
transversal BT singularity, namely (6.27).

No bifurcation functions are monitored along a nontransversal GG curve.
As usual extremal points may occur along the curve. The switching to an-
other branch of the same type characterized by a different choice of non-
generic parameters, might be possible at such a point regarding a case.

6.10 Continuation strategy

We summarize here all information related to curves, special points on them
and possible switches to other curves, in a way suitable for further references.

A key question we have in mind is how one can use the continuation of all
singularities above to create a kind of route along the equilibrium manifold
M. Such a route aims to investigate a bifurcation structure of M. It consists
of a number of smooth paths which essentially are segments of curves above.
Being considered geometrically, the route presents a connected network on M
which ideally should cover all strata of the bifurcation structure. We do not
intend to discuss here the algorithmic aspects of constructing an arbitrary
or in a certain sense minimal network of this kind (see e.g. Khibnik, 1990).
We address only the "elementary operations” used in constructing the route.
They are: 1) the detecting and the locating of special points on curves, and
2) the switching to another curves whenever possible.

This reference material is organized as follows. For each curve we enumer-
ate all possible messages. The explanation concerns the related bifurcation
function, the type of singularity, and other curves (of the same or higher
codimension) which pass through the special point under consideration. A
convenient way to present (part of) this information graphically is a graph

of adjacency (cf. Khibnik et al., 1992, Fig.1).
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Curve

Message

Comment

Equilibrium(1)

Zero eigenvalue
Hopf

Neutral saddle
Double eigenvalue
Extremum

Selfcrossing

1, fold point (S1.1),

Fold (2)

by, Hopf point (S1.2y),

Hopf(2)

by, Hopf point (51.25),

Hopf(2)

15, double eigenvalue point (S1.3),
Double Eigenvalue(2)

fold point (51.1),

Fold(2)

pitchfork

or transcritical bifurcation (only for
system with symmetry)

Fold (2)

(S1.1)

Neutrality

Double eigenvalue

Cusp

Extremum

Selfcrossing

by, BT point (52.1) or GG point
(52.2),

Hopf(2),

Double Eigenvalue(2),

Double Zero(3),

Fold + Hopf(3)

s, BT point (52.1), or (52.3) type,
Double Eigenvalue (2),
Double Zero(3)

thy, cusp point (52.4),

Cusp(3)

cusp point (52.4) or nontransversal
fold point,

Fold + Cusp(3)

does not occur for generic systems

Hopf(2)

(51.2)

Zero eigenvalue

Double eigenvalue

7

Y1, BT point (52.1) or GG point
(52.2),

Fold(2)

Double Eigenvalue(2)

Double Zero(3)

s, BT point (52.1), or (52.5) type,



Zero Lyapunov

Extremum

Selfcrossing

Double Eigenvalue(2),
Double Zero(3)

¥s, degenerate Hopf point
(52.6),

Hopf + Lyapunov Zero
3)

nontransversal Hopf point,
Hopf + Cusp(3)

double Hopf point (52.7),
Hopf(2) (the other branch)

()

Double Eigenvalue(2)

(51.3)

Zero eigenvalue

Neutrality

Extremum

Selfcrossing

Y1, BT point (52.1), or
(52.3) type,

Fold(2),

Double Zero(3)

g, BT point (52.1), or
(52.5) type,

Hopf(2),

Double Zero(3)
nontransversal double eigen-
value point

two pairs of colliding
eigenvalues,

Double  Eigenvalue(2)
(the other branch) (*)

Double Zero (3)

(52.1)

Cusp

Extremum

Selfcrossing

¥4, degenerate BT point
(53.1)

Cusp(3).

Double Zero + Cusp(4)
nontransversal BT point,
Double Zero + Extr(4),
triple zero eigenvalue (53.4),
Fold + Hopf(3) (*)

Fold + Hopf (3)

(52.2)

Cusp
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14, degenerate GG point
(53.3),
Fold + Hopf + Cusp(4)



Extremum

Selfcrossing

nontransversal GG point,
Fold + Hopf + Extr(4),
triple zero eigenvalue (53.4),
Double Zero(3) (*)

Cusp (3)

(52.4)

Neutrality

Extremum

Selfcrossing

9, degenerate BT point
(53.1) or degenerate GG
point (53.3),

Double Zero(3),

Fold + Hopf(3),

Double Zero 4+ Cusp(4),
Fold + Hopf + Cusp(4)
swallowtail point or non-
transversal cusp point

does not occur for generic
systems

Hopf + Lyapunov Zero(3)

(52.6)

Extremum

Selfcrossing

nontransversal  degenerate
Hopf point
does not occur for generic

systems

Double Zero 4+ Cusp(4)

($3.1)

Extremum

Selfcrossing

nontransversality conditions
violated

triple equilibrium point with
triple zero eigenvalue,

Fold 4+ Hopf 4+ Cusp(4)
()

Fold + Hopf + Cusp(4)

(53.3)

Fold + Extr (3)

Extremum

Selfcrossing

Neutrality

79

nontransversality conditions
violated

triple equilibrium point with
triple zero eigenvalue,
Double Zero + Cusp(4)
(*)

Y2, BT point (52.1) or GG
point (52.2),

Double Zero(3),

Fold + Hopf(3)

Hopf + Extr(3)



Extremum

Selfcrossing

swallowtail point or fold
isola or fold self-crossing,
Fold + Extr (3) (the other
branch)

does not occur for generic
systems

Hopf + Extr (3)

Zero eigenvalue

1, BT point (52.1) or GG
point (52.2) or degenerate
BT point of (53.2) type,
Double Zero(3),

Fold + Hopf(3),

Fold + Extr(3)

Extremum Hopf isola or Hopf self-
crossing,
Hopf + Extr(3) (the other
branch)
Selfcrossing does not occur for generic
systems
Double Zero + Extr(4) Extremum
Selfcrossing does not occur for generic
systems
Fold + Hopf + Extr(4) Extremum
Selfcrossing does not occur for generic

systems

The figure in parenthesis denotes the number of active parameters re-
quired. A star (*) near a curve name indicates a degeneracy of the corre-
sponding determining system which means one can not switch directly to
such curve but probably some small perturbation would be sufficient.

6.11

More about bifurcation functions

This section aims to discuss briefly what we mean by a smooth extension of
bifurcation functions in a neighbourhood of M (see Section 6.3), and also to
present a computational algorithm for the first Lyapunov coefficient.

Bifurcation functions are used to construct determining systems described
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above. Recall that such a system is assumed to have sense in some neigh-
bourhood of the curve it defines and to be non-degenerate on the curve. That
is why the bifurcation functions have to be suitably extended.

For functions 1,4, and 13 such an extension is trivial since they use
only the linearization matrix A of (6.1) at an equilibrium point. Naturally
one can assume that the matrix A is computed at any point close to the
equilibrium and apply function definitions (6.3)-(6.5) to this matrix.

As far as the function 4 is concerned, let the linearization matrix A be
computed at a given point (z°, p°) of a product space close to a submanifold
of equilibrium points with zero eigenvalue and one-dimensional null space.
Let A be some singular rank n — 1 matrix close to A4 (in fact we get such
matrix by LU-decomposition of A with complete pivoting and replacing then
the last small pivot by zero), with e and e’ be the corresponding eigenvectors
of A and its transpose. Then the formula (6.8) may be applied as before.

Now we give a constructive definition of the first Lyapunov coefficient
associated with the Hopf bifurcation. We will assume from the very beginning
that the Hopf condition Re A ; = 0 is satisfied approximately. Namely, let an
equilibrium point (z° p%) be given, at which the linearization matrix A has
a pair of complex-conjugate eigenvalues A\; 3 = o & 1w close to the imaginary
axis while having other eigenvalues located relatively far from it. Let vectors
€1, ez and e}, €} lie in the corresponding two-dimension invariant subspaces of
A and its transpose, respectively, and the following conditions are satisfied:
Aer = aey; — wey, Aeg = wey + aey, (er, e1)(ea, e2) — [(e1,€2)]* = 1, (e}, e1) =
17 <e/17 62> = 07 <e/27 61> = 07 <e/27 62> =L

Extend these two pairs of vectors to two bi-orthogonal sets of vectors

(€1,€2,..5€n), (€],€h, ... €)
where (e!, e;) = 6;;, and é;; is the Kronecker’s symbol. Denote by ¥ = (o;;) an
(n—2)x(n—2) matrix with components o;; = (e, ,, Aejya),2,7 =1,...,n=2.

A number of direction derivatives of second and third order has to be

computed at point (z°, p°):

L1 o

0 0 . . .
aj; = mw%f(m +€er +neg,p)), i =0,1,2,5 =2 —1,



bE — Al
Y 9Eon
1 o
k _ _— /
€= T e
The following evaluations provide a value of the first Lyapunov coefficient,

essentially only for two-dimensional system being a projection of the original
system onto a plane spanned on eq, e;:

<€;€,F(ZCO—|—€€¢ +nej7p0)>7iak = 1725j = 3)"'7”7

JE(2® ey +mey,p°))k=1,2, =k —1,k+1,i =3~

1 1 2 2
T1 = Qg + G, T2 = Gy F gy,
_ 1 2 1 _ 2 1 2
81 = Qg+ a7y — Gy, S2 = Ay — Ay — Qg

3 1
rs = —(s1r1 — S2r2) + Z(r% +72)

8
2 2
rq = s+ 83, s = s1T2 + Sor1,
~ T3 1 Ty 1 wrs

L = _ _
1=a (a2—|—w2)+8(a2—|—9w2) 8(a2+w2)+

1
‘|‘§(3Céo + Cgl + 012 + 3033) (6-28)

Introduce now (n — 2)-vectors b = (bfj)aj =3,...,n,and d;; = (afj),k =
3,...,n. The last set of formulas completing the computations of the first
Lyapunov coefficient in the n-dimensional case reads:

Ulzb%—bg, ngbé—b%, ngb%—kbg,
vy = YTuy — 2wuy, vy = Yy + 2wuy,
T
T = (¥ +401)

hl = T_l’l)l, hg = T_lvg, hg = (ZT)_1U3,
~ 1

Ly =1L, — 3 [(h1,dao — doz) + (ha, di1) + 2(h3, d3o + do2)] (6.29)
Here I denotes the identity matrix, and AT stands for A transpose. We
conclude with the remark that all computations above may be accomplished
succesfully (without regard to the meaning of a resulting value) without
necessarily the point (z° p%) being an equilibrium point. It just should be
close to the equilibrium manifold and satisfy the conditions above on the
spectrum of A.
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7 Curve computation

In this section you will learn about a general continuation algorithm cus-
tomized in LOCBIF and about particular techniques used to evaluate bi-
furcation functions and to search for special points on a curve. You will be
given some information about ODE solvers available in LOCBIF for orbit
computations. A list of all computational parameters will be presented and
discussed here.

7.1 Continuation algorithms
7.1.1 Basic continuation scheme

A continuation problem for equilibrium and all bifurcation curves may be
formulated as follows. We have to continue a curve vy = 4(7) in space R* with
coordinates y = (y1,ya,...,ys) starting from a given initial point ¥ € R?;
here 7 € R is some parametrization of the curve. The curve is defined by s—1
smooth scalar functions G4(y), Ga2(y), ..., Gs—1(y) as their zero manifold:

Gi(y) = 0
Galy) = 0 (7.1)
Gs—l(‘ﬁ;)‘ =0

Continuation of the curve v given by (7.1) means computing a sequence of
points y™M, 3 y©  which satisfy (7.1). Moreover, we assume that the
sequence provides a "reasonable” approximation of v as far as its continuity,
curvature and location of special points on it are concerned.

The first point y) is expected to be close to the initial point y(®). Notice
that the initial point y¥® plays two roles: (1) it serves as an initial guess for
searching the first point on the curve; (2) it indicates implicitly the branch
to be computed (in case there are several branches defined by system (7.1)).

The basic assumption for a (smooth) continuation method is that the
system (7.1) is non-degenerate on curve v, i.e. the linearisation matrix A =
Gy,G = (Gy,...,Gs_1), is nonsingular, of rank s — 1. Theoretically, this
allows us to apply the Implicit Function Theorem for constructing a branch
of solutions to (7.1), and practically, to implement the related ideas in a
numerical algorithm. We should outline that the non-degeneracy conditions
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may be violated at some (isolated) points on curve 4. Typically, such points,
which are called self-crossing (or bifurcation) points, reveal the existence of
other branches.

Basically, the continuation scheme involves the following stages which are
performed repeatedly, except the first one:

1) Searching the first point on the curve.

2) Guessing the next point on the curve (predictor).

4

5) Choosing the new step size.

)
3) Computing the next point (corrector).
) Testing the computed point.

)

6) Processing the computed point.

Stages 1)-5) deal with so called regular points and represent a basic
(problem-independent) part of a continuation scheme. The stage 6) is problem-
dependent. In our approach, the idea behind this stage is to analyze the
behaviour of some (test) functions defined along the curve, with particular
interest to their roots. This results in computing some more points on the
curve; these additional points are referred to as special points. Each new se-
quence of special points fits to the curve between the two last regular points.
Finally, one obtains a (mixed) sequence of both regular and special points,
naturally ordered along the curve.

In LOCBIF the curve continuation is supported by a general code BEE-
TLE which incorporates the finding of special points.

7.1.2 Computing regular points

(k=1) are already computed. To find

Assume that regular points y(), ... y
the next regular point on the curve, we use a tangent prediction and Newton
iteration as a correction scheme.

Predictor. A step of size h is made from the previous point y* =1,
in the tangent direction along the curve: 7 = y*=1) 4 pu*F=1D where
u®*=1) is a normalized tangent vector, G, (y*"Nu-1 = 0 | w*-V ||=
1, (a1, y (=) (-2)y 5

Corrector. We fix a plane y; = const, where const = g];k) and y; is (lo-
cally) the most rapidly changing variable called leading variable. The leading
variable y; corresponds to the largest component of the tangent vector u(*~1)
and is used for local parametrization of the curve. Newton iterations are
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performed within the plane to find a root of equations (7.1). When the iter-
ations are successful (see stopping criteria below) the result of the iterations
is considered to be the next point y*) on the curve. More details about
corrector iterations will be given in Section 7.1.5.

Testing the computed point. The computed point y*) still has to pass
some tests to be finally accepted as the next regular point on the curve.
There are three tests: a tangent, a curvature and (optionally) a special
point test. The tangent test simply checks whether tangent vector u(® to
the curve can be computed at the point y*). The curvature test checks
whether the angle between the tangent vector u(*~1)
ak=1) = ¢ F) — y(k=1) passing through two last points, isn’t "too large” (and
similarly for the tangent vector u(¥) at the point y(®). If it is large, a jump

and the secant vector

to another branch or different part of the same branch may be suspected,
which should be prevented, of course. The curvature test also aims at linking
the "density” of the computed points to the (local) curvature of a branch:
a larger curvature should lead to the computation of a more dense set of
regular points. Specifically, for the curvature test we check the following
condition: p; = cos(u*V @~} > py > 0, where py is a given value (it is
derived from the user-defined parameter Angerv). If the current point y®*)
satisfies the curvature test, we start to search for special points on the curve
located between points y*~1) and y*)(see further). In case of certain failures
of searching procedure, the point y*) may be also rejected.

Choosing step size. Based on results of the Newton corrector iterations
and of the above tests, the point y* is accepted or rejected. This also means
that the current step size h is considered as acceptable or not. If not, the
step size is reduced by a factor 2, and the computation of the next point y*)
starts from stage 2 again. If point y*) is accepted, then the program ad-
justs the step size using one of the implemented step size control algorithms,
regarding user’s choice (parameter Algerv). In any case, after making a
successful step, a choice of the next step size depends on the local curvature
(such dependence is controlled by user defined parameter Angcrv), which
may cause either increasing or decreasing of the step size. Lower and up-
per limits for step size restrict its variation. If (due to reductions)h becomes
smaller than the minimally allowed value the continuation is terminated with
the corresponding message. The initial, minimal and maximal step sizes (HO,
Hcrmin and Hermax respectively) are to be defined by the user. We ad-
dress to particular strategies of the step size control in Section 7.1.8.
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Other numerical aspects. The linearization matrix of (7.1) is required for
computing the tangent vector and for the corrector iterations. We calculate it
by numerical differentiation of functions G;,¢ = 1,2, ...s—1. Typically, in the
course of Newton iterations, only a few matrix reevaluations are necessary.
We assume that the matrix is evaluated at initial iterations and then is
kept fixed. A number of such initial iterations as well as maximally allowed
number of corrector iterations (Modit and Maxit respectively) are to be
given by the user. Notice that the Jacobian matrix of the ODE system which
is required for evaluating bifurcation functions, is also computed numerically.
The user is supposed to provide increments for computing both matrices
(Dherv and Dhjac). For treating numerical linear algebra problems arising
in the continuation code and in the computation of bifurcation functions,
we mostly use standard routines from LINPACK (Dongarra, et al., 1978) or
similar to them.

7.1.3 Special points

The continuation code locates three types of special points: self-crossing
points, local extremum points and zeros of external (called also "user-defined”)
functions defined on the curve. In some sense the first two types of special
points characterize the curve itself (its geometry, branching properties etc.),
while the third type describes additional (external) features of the curve.
Despite these differences, we use the same technique to compute all special
points. It is based on the assumption that every special point may be defined
as a root of a properly chosen continuous function defined along the curve,
called test function. If the function changes sign at a special point, a secant
method may be used to find its root.

Assume that a curve segment is given bounded by regular points y
and y®), and that y; is a local leading variable. By definition, at a self-
crossing point the Jacobian matrix A of (7.1) is singular and has rank < s—1.
Consider the determinant of the (s — 1) x (s — 1) submatrix A of A obtained
by removing the j-th column, where j is the index of locally leading variable.
At a self-crossing point, determinant det(./zl) changes sign along the branch.
Therefore, it can be used as the test function related to self-crossing points.

Assume that a component y; with index ¢,z # j, reaches a local extremum
along the branch between regular points y*~ and y®), i.e. that a turning

(k=1)

point with respect to y; is reached. This implies that the i-th components

86



of the related tangent vectors u*=1) and u(*) have different sign. We use the

i-th component of the tangent vector v to the curve, normalized such that
| w ||= 1, (u® Y u) > 0, as the test function related to a local extremum
of variable y;. To analyze local extrema for all variables (except the leading
one which is supposed to behave monotonically on the segment), one clearly
needs s — 1 different test functions defined similarly as above. In LOCBIF,
only those components of the continuation problem (7.1) which represent
system parameters, are examined with respect to extrema.

To locate roots of external functions defined on the curve, we use these
functions directly as the corresponding test functions. It is required therefore
that these functions are continuous and change sign at their roots.

Notice that for general usage of the continuation code, external functions
are to be defined by the user. In LOCBIF however, these functions are
defined inside the program. They are treated as bifurcation functions which
depend on the curve type (see Section 6).

The user defined parameters Epscrs, Epsext, Epszer provide tolerances
for computing the three types of special points described above. The user
can suppress the calculation of special points (for each type independently).

7.1.4 Determining systems and bifurcation functions

The continuation code requires an (external) procedure for the evaluation of
the functions (; in (7.1). Recall (see Section 6) that system (7.1) represents
a determining system for equilibrium and bifurcation curves. Such a system
is built automatically from the ODE system (6.1), which is provided by the
user. This procedure depends on a curve type and involves the right-hand-
sides of (6.1) and bifurcation functions corresponding to the curve type.
Numerical computation of the bifurcation functions 1y — 5, defined by
(6.3)-(6.7), is implemented in a more or less straightforward way (see also
additional remarks in Section 6.11). The functions i1, 12, 13 require the lin-
earization matrix which is computed by numerical differentiation (see above)
and some standard operations from linear algebra. In addition, the functions
4, s require higher derivatives. Numerical differentiation is used in this
case as well. The number of higher derivatives required for the evaluation of
thy, 5 is not high (of order n) due the use of directional derivatives in (6.6)
and (6.28). (The evident drawback of this approach is that the accuracy
of the computations might decrease when higher derivatives are involved.
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However, our experience in this respect is quite good.)

The calculation of nontransversal bifurcation curves requires special con-
sideration since it involves additional information. This concerns the so called
nongeneric parameters. One can have one or two such parameters depending
on the curve type. The parameter Iprsng which is to be set by the user deals
with the indices of nongeneric parameters in the list of all system parameters.

7.1.5 Corrector iterations

Let §® be a point obtained by the predictor, and y; is the local leading
variable. We use the following standard Newton iteration procedure:

G — gk L AGH) g 1

where AU = —(H,)" H(g*"), H(y) = (G(y),y; — 3 ), and 0 = 54,

The stopping criterion involves two conditions:

NGRS
max :

‘Séc

Sk

and
max |G(gj£k’l+1)) ‘ <e,

Here €. is the given tolerance (parameter Epscrv). If the maximal number of

iterations Maxit is exceeded, or AU+1) ”substantially” grows with /, or func-

tions G(gjfk’lﬂ
without accepting the current point.
The Jacobian matrix H, of map H = H(y) is reevaluated during the first

Modit corrector steps; it is kept fixed during the following iterations.

)) become "large enough”, the corrector iterations terminate

7.1.6 Locating root of test function

Let ¢ = g(y) denotes a test function defined along the curve. Suppose that
a root of ¢ is detected between the two regular points y*~1) and y*). This
means that ¢ has different sign at these points. Moreover, for detection of
the root we impose the following additional conditions:

19(y* )| > € or [g(y™®)] > e, and
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(g(y™) = g N/ =y V) > 01 ¢,

Here ¢, is the given tolerance for root finding (parameter Epscrs or Epszer
or Epsext), and y; is the local leading variable. Notice that if ¢ changes
slowly along the curve or if ¢ is "badly scaled”, i.e. it always has small
values, the above conditions do not allow us to detect the root. From the
other side, we are saved from finding false roots which may occur due to the
computational error in the evaluation of g¢.

Once the root is detected, the standard secant method is used to find the
root. By this, we assume the curve is locally parametrized by y;,y = y(y,),
and therefore ¢ = ¢(y;). Then, one iteration of the secant method involves
three steps:

(1) calculating initial guess for Newton corrector iterations:
( (k) y(k,l) _ y(k,l—l)
P gy @) = g(y®)

are points on the curve obtained in the previous step

~ (k,l+1)

i (k1) _

=Y
where y(®) and y*-1)
of the secant method;
(2) the computation of point y
tions described above;

(54+1) on the curve using the corrector itera-

(3) the evaluation of the function g at point y*/+1).

Assume that ¢ changes sign between points y*! and y**1) otherwise

1=1) " The stopping criterion requires that at least one of the

two conditions is satisfied:

set y(kvl) = y(

ki ki
| ylE D <

Loy D) [(al™*) = gy )/ (" =] <016,

k+1) 5 treated as the found root of the test function.

In this case y!
The secant method may fail due to the following reasons:
(a) the corrector iterations fail;
(b) function ¢g can not be evaluated at the current point;
(c) the maximal allowed number of secant iterations is exceeded.

In all these cases the procedure for locating roots terminates. However,
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it returns the best found approximation to the root and a warning indicating
that the desired accuracy hasn’t been achieved. The corresponding message
contains in such a case a question mark, for example:

Zero eigenvalue (?): a = value

The maximal number of secant iterations is equal to 10. For corrector
iterations used in the root finding the standard maximal value of corrector
iterations (Maxit) is used. However, in case of locating a self-crossing point
this value is increased by factor 5 due to slow convergence near such a point.

7.1.7 Searching first point

To search for the first point, the corrector iterations are used. The given
initial point y(®) serves as the initial guess. Recall that corrector iterations use
the leading variable y;. When searching the first point the leading variable
is computed through the tangent vector at y(® as usual. By this, we neglect
the fact that G(y(®) may not be equal to zero (formally we compute the
tangent vector to the curve given by G(y) = G(y)).

If the corrector iterations do not succeed starting from the given initial
point and using the leading variable chosen as described above, the program
retrieves corrector iterations with all other possible choices of the leading
variable (i.e. all other variables are tested sequentially as leading variables).

7.1.8 Step size control

The concept of the step size control in LOCBIF has been already discussed
above. Here we present formulas used for choosing the next step size A(**1)
if the current step, with the step size h(*), is successful (recall that in case of
rejecting of the current point the step size is always reduced by factor 2).

Let o¥) be the angle between the secant and the tangent vectors at the
current point ¥*) and a be the desired angle. Introduce two values Angmin
= 0.6 - @ and Angmaz = 2 - o which have the meaning of the lower and
upper limits, respectively, for the angle between the secant and the tangent
vectors. The value Angmaz is used in the curvature test: if «®) > Angmaz
the current point is rejected. Consider now three strategies of the step size
control.

Doubling/halving. 1If a'®) < Angmin, the step size is increased by factor
2, Bkt = 2. p(¥),
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Ezxplicit dependence on local curvature. Let 4®) be the secant vector.
Then AF+Y) = sina- || a® || /(2sin o).

Implicit dependence on local curvature. Let v = max(1—x-(a®)—a),0.3).
Then AF+1) = . A(F), Here & is a parameter of the algorithm. We use the
value k = 0.1.

We should notice that there are some additional factors which may in-
crease or decrease the computed value of h*t1). This depends, in particular,
on that whether the step rejection has occured during the computation of
the current point.

7.2 Using the continuation code

7.2.1 Initial data

The continuation code is used in LOCBIF to compute curves listed in Sec-
tion 6.1 (except of Orbit type). To start the curve computations, the fol-
lowing initial data have to be provided:

a) curve type,

b) list of active parameters p;,, ..., p;,, where the number of active parame-
ters k should be in agreement with the chosen curve type (see Section 6.1),
¢) the initial point in a product space (i.e. initial values for all phase variables
and system parameters),

d) continuation parameters.

Recall that the values of the non-active parameters are kept fixed during
the computation. The role of these values it to define a slice in a product
space which is considered as the (continuation) state space of problem (7.1).
The continuation code deals with the phase variables x4, ..., x, and the active
parameters p; ,...,p;, only. The state vector y for the continuation is thus
given by (y1,...,¥s) = (€1, -, Tn, Piy,-- -, Pi)- Lhe dimension of y is equal
to s = n + k. Initial values for all components of the state vector ¥ must be
given.

All data a)-d) can be specified in LOCBIF by using the interactive win-
dow interface (see Section 5). We should emphasize the necessity of a careful
choice of the initial point. Otherwise the continuation code may fail to find
the first point on the curve, or may start tracing another branch than that
is actually desired. Some related issues are discussed in Section 7.2.5 below.
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7.2.2 Continuation parameters

The list of continuation parameters includes five groups of parameters regard-
ing the following aspects: (1) step size control, (2) tolerances, (3) control of
corrector iterations, (4) computing derivatives, (5) evaluating determining
system.

A. Step size control

HOcrv initial step size
Hmxcrv maximal step size
Angcrv  parameter used in the step size control algorithm
Algerv  type of step size control algorithm
+1 - doubling/halving
+2 - explicit dependence on local curvature
+3 - implicit dependence on local curvature

The initial step size HOcrv is used in the first predictor step. Sign of
HOcrv indicates (implicitly) in which direction a curve will be traced. Re-
call that the LOCBIF interface provides an easy way to choose one of two
possible directions which have conventional names forward and backward (see
Section 5). Computing a curve forward or backward means using a given step
size HOcrv or —HOcrv respectively.

The parameter Hmxcrv restricts a possible growth of a continuation step
size. Evidently it should be not smaller than the initial step size.

The parameter Angecrv measures (in degrees) a desired angle between
the tangent vector to the curve at a current point and a secant vector pass-
ing through the previous and the current points. One can get the initial guess
for a value of Angerv by trying to estimate a desirable number of continu-
ation points on unit cycle. If ¢ is such number, than Angerva 180/¢. For
better tuning of Angcrv one might need a few experiments. The internal
parameters Angmin and Angmaz which define maximal and minimal angles
respectively (see Section 7.1.8) are derived from Angecrv according to the
following formulas: Angmaz = 2.0-Angcrv, Angmin = 0.6-Angcrv.

The parameter Algerv allows the user to choose a type of step size control
algorithm (see Section 7.1.8). Besides, it also has to do with enabling or
disabling a curvature test. The curvature test is enabled (disabled) if Algerv
is positive (negative).

Notice that a minimal step size isn’t included in the list above. We
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assume its value is linked with the tolerance parameter Epscrv (see below).
In particular we assign a minimal step size equals to 10~2-Epscrv.

B. Tolerances

Epscrv tolerance for Newton corrector iterations
Epscrs tolerance for selfcrossing point location
Epszer tolerance for location of roots of bifurcation functions
Epsext tolerance for location of extremal values of the
parameters
Note that a zero value of the parameters Epscrs, Epszer, Epsext has a
conventional meaning: it suppresses detecting and locating the corresponding
special points on a curve.

C. Control of corrector iterations

Maxit maximal number of Newton corrections
Modit number of Newton corrector steps with Jacobian
reevaluation

D. Computing derivatives

Dherv  increment for numerical evaluation of Jacobian matrix of
the system defining a curve

Dhjac increment for numerical evaluation of Jacobian matrix of
the right hand sides of ODE system with respect to phase
variables

E. Evaluating determining system

Iprsng ordering number(s) of a non-generic parameter(s) for the
continuation of nontransversal curve types
It indicates active parameters (by their ordering numbers in the current
list of active parameters) which are considered as non-generic (nontransver-
sal) parameters for singularity under consideration. If one has two such
parameters, then Iprsng is a two-digit number each digit of which is inter-
preted as the ordering number above.

The following list shows recommended parameter settings used as de-
faults, along with their range allowed:
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HOcrv = 0.1 (HOcrv # 0 )

Hmxcrv = 1.0 ( Hmxcrv >| HOcrv | )
Angerv =100 (0 < Angcrv < 90)
Dherv = 1.0e-7 (| Dherv [>0)

Dhjac = 1.0e-7 (| Dhjac |>0)

Maxit =1 ( Maxit >0 )

Modit =2 (0 < Modit < Maxit )
Epscrv. = 1.0e-4 (Epscrv >0)

Epscrs = 1.0e-3 (Epscrs >0 )

Epszer = 1.0e-3 (Epszer >0)

Epsext = 1.0e-3 (Epsext>0)

Iprsng =1 (Iprsng = 1,2,3,12,13,14,23,24,34 )
Algerv =2 (Algerv = £+1, 42, £3)

7.2.3 Standard output

The standard output of the continuation code has a form of a sequence of
regular and special points ordered along a curve. Each point may have ad-
ditional attributes (values and/or texts). Such attributes are in particular
values of user-defined functions on a curve, values of test functions, eigenval-
ues, type of a special point (including possibly some related values serving
to characterize it more completely), arclenght, current step size, etc.

In LOCBIF, the coordinates of a current point and other ”"standard”
numerical values are available via the Value Window, while texts and some
additional numerical values are interpreted as messages and forwarded to the
Message Window (see Section 5 for discussion of interface, and Section 6 for
messages related to special points).

Graphic output goes in parallel with the numerical and the text output.
This proceeds in the same point-by-point fashion: each newly computed
point appears on the Graphics Window. For drawing curves, points may be
sequantially connected by line since they are ordered already along the curve.
Still, the user has the choice to use "solid” or "dotted” mode ( see section
5).

Ordering points needs some remarks. This addresses also to the actual
procedure of their computations. The continuation code proceeds in such
a way that it first computes a next regular point y*) and only then starts
searching for special points on a curve’s segment between the last and the
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preceeding regular points, y*) and y*~Y. In particular this means that the
output of the last point is delayed until all intermediate special points will be
computed. After this is done, the last regular and all special points found on
the segment are ordered using the leading variable as a local parameter. And
only then the output actually starts. This makes clear that several newly
computed (ordered) points may appear more or less at once, sequentially
though. The latest in this sequence is the last regular point y¥).

7.2.4 Control of the continuation flow

The standard output from the continuation code produces the most massive
data which describe the curve itself. Above this, the program sends so called
control messages. They report about that how the continuation code is pro-
ceeding along in time. The most important part of this information concerns
the program interruptions which may arise due to several reasons.

After the curve computation is invoked, the message

”The first point”

says that the first point on a curve is found successfully. This is a remarkable
moment since only after that one can actually start curve tracing.
Alternatively, one of the following messages appears:

ncorrect number of active parameters
1)”1 t b f acti ters”
rror in initial data
2)”E in initial data”
(3) ”Undefined function values at the initial point”
annot find Jacobian matrix at the in initial poin
4) ” Cannot find Jacobi trix at the in initial point”
(5) ?Cannot find tangent vector at the initial point”
(6) ”Cannot find the first point”
(7) ?Cannot find tangent vector at the first point”

They report about failures which occur at the initialization stage. In any
case, the computations are terminated.

Message (1) means the number of parameters activated by the user doesn’t
satisfy the current curve type (see Section 6.1).

Message (2) indicates possible inconsistency in the continuation parame-
ters settings. A particular though typical mistake of this sort is making an
initial step size larger than maximal.

Message (3) is much more serious. It means the determining system for
a curve type specified by the user, can not be evaluated at the initial point.
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In such a case, it is advisable to recall constraints related to a domain of
definition of the determining system. Indeed, the appearance of the message
means that the point does not lie in this domain. Remark that the constraints
may originate either from the RHS program or from particular algorithms
for evaluating bifurcation functions. In practice, it is recommended to ex-
amine first the ODE system specifications, the curve type chosen and the
coordinates of initial point.

Messages (4) and (5) are both related to the linearization matrix of the
determining system at the initial point. The message (4) may have the same
reason as (3) except that a point at which a "non-evaluating” situation arises
is not the initial one but close to it (due to numerical differentiation). Once
the linearization matrix is computed successfully, the program searches for
its null (tangent) vector, and if it fails, the message (5) appears. Three
typical reasons may be relevant to the case: (a) bad initial point, (b) the
ODE system is non-generic (in particular, symmetry or first integral could
be involved), and (¢) the linearization matrix itself is not reliable (this reveals
substantial errors in numerical differentiation; the related increment should
be checked anyway).

Message (6) indicates the most typical problem: the program fails to
find the first point on the curve. Searching the first points involves some
iterations which use the initial point given by the user for the initial guess.
Exceeding a maximal number of iterations allowed on this stage (typically
10), is a common reason for this error. It is worthwile to stress once more
the importance of the proper choice of the initial point. However, revision
of all data (initial point, curve type, system specifications, computational
parameters) might be needed in difficult cases, especially when starting the
analysis of a new system.

The last message (7) reports that after the first curve has been found
successfully, the programs fails to compute a tangent vector to the curve at
this point. Hence the continuation can not be started. This failure indicates a
degeneracy of the system under consideration or problems with computation
of the linearization matrix (see above).

Assume now that the first point has been found, and then the continuation
procedure has been started. The question we address now is completing or
terminating computations. Basically, there are three ways the computations
could be finalized:

a) The computations are interrupted by the user. This can be done
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explicitly, by pressing the corresponding key (see Section 5), or implicitly, by
means of the ABORT statement in RHS specifications (see section 4).

b) The computations complete since the specified number Maxnpt of
continuation points is computed (see Section 5), or the curve turns out to
close on itself (i.e. it comes back to the first point). The first and second
cases respectively are reported as

”Last point in buffer”
”Closed curve”

c¢) The computations are terminated because of the program can not find
the next point on the curve. Recall that the step size is halved after each
unsuccessful step. When the step size becomes smaller than the minimally
allowed value, the message appears

”Current step size is too small”

and the computations get terminated.

Three typical reasons for this failure are: approaching the curve end
point, approaching singular or nearly singular point on a curve, accuracy
or step size control problems. It might be expected that the program fails
near an end point. Indeed, typically end point lies on a boundary of a
domain of definition of the determining system for the curve. Intermediate
computations (at predictor or corrector steps) may produce a point which
lies outside this domain, and each time this occurs, the program reduces the
step size.

Another possibility is that continuation points approach a singular point
on a curve such that the branch can not be extended smoothly through this
point. This is the case when a geometric singularity occurs. It is also pos-
sible that because of large curvature (which may be interpreted as "near
singularity”) the curve can not be continued further. The parameters con-
trolling maximal curvature allowed and the accuracy of computations should
be examined in the last case.

If two reasons above do not provide a key to the problem, it might make
sense to consider more thoroughly the current settings for continuation pa-
rameters. Attention should be paid first to the tolerance, the maximal num-
ber of corrector iterations and the increment for numerical differentiation.
Note that parameter settings which are well suited for one part of a curve,
may become unsatisfactory or even wrong for another part! A ”"quality” of
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continuation parameters may decrease gradually while the computations pro-
ceed. This is a hidden process, which create a feeling that the computations
interrupt ”suddenly”.

We should outline that the proper handling problems causing program
interruptions reveals a great deal of practical experience.

If one selects nonzero value of service parameter Messng (see Section
5) then more details about the continuation process become available. In
this case each corrector iteration is reported (namely, the ordering number,
accuracy achieved and a norm of the determining system functions at the
current corrector point. Moreover, the user is informed about accepting or
rejecting a continuation step and a value of the step size chosen.

7.3 Orbit computation
7.3.1 Conventions

Orbit computation is organized in LOCBIF similarly to tracing curve de-
fined implicitly by means of determining systems. The evident difference
is in the numerical algorithms used in both cases. For orbit computation
we mostly use standard integration routines RADAU5 and DOPRI5 from
(Hairer, et al., 1987; Hairer and Wanner, 1991).

The integration proceeds from ¢ = 0 without limitation of time interval
in forward or backward directions, which means forward and backward time
respectively. The integration may be terminated by the user explicitly, by
pressing the corresponding key, or implicitly, via RHS specifications (see
Section 7.2). If not interrupted by the user, the integration will be completed
when a given number of points on the orbit (Maxnpt) is computed. The
integration may be also terminated if the integration routine cannot find the
next point. Then the message appears:

”Cannot continue integration”.

The evident possible reason for this failure is that given accuracy cannot
be achieved. For more details, see references cited above.

Points obtained by integration are processed in the same way as contin-
uation points. For orbits, a notion of special points is different, however.
These are just points t = 7% T'max, where j is integer and Tmaz is a time
interval defined by the user (see below). As it has been already explained
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above, there is no limit on total time interval for integration except maximal
number of points which is also defined by the user. Continuing orbit com-
putation after a pause at special point means continuing integration for the
same time interval Tmaz.

7.3.2 Orbit parameters

Orbit parameters may be displayed and modified through the Orbit Window
(see Section 5). These parameters have the following meaning:

Itmap iteration number
Tint length of the sample time interval for integration

Time interval T'maz between standard pauses in orbit computation is
Tmaz=Itmap*Tint.The Initial Value Problem for ODE system is assumed
to be solved initially on interval [0, T'maz]| or on interval [— T'maz,0] (back-
ward in time) and then continued in the same direction if necessary. There
is a special convention for assigning time intervals linked with #: if a value
6.28 ... is assigned to Tint, the program automatically reassigns it to the
value 27 up to a machine accuracy.

HOint initial step size for integration
Hmxint maximal step size for integration
Dhint increment for numerical evaluation of Jacobian matrix of
the RHS used by a stiff ODEs solver
Epsint  absolute step tolerance for integration
Epsrel  relative step tolerance for integration
Solver  type of ODE solver
1,2,3 - non-stiff fifths-order solver (DOPRI5)

4 - non-stiff forth-order solver (RKGS-type)
-1 - stiff fifths-order solver (RADAUS5)
Isec integer parameter (not used in this version, see Appendix
C)
Irhs parameter used for integration of differential-algebraic
systems

The last parameter indicates the number of algebraic equations in the
system. Positive value of Irhs means that first Irhs equations are algebraic.
Negative Irhs means that last |Irhs| equations are algebraic. The parameter
is meaningful only for RADAUS5 solver (i.e. if Solver = -1).
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Torbit orbit type (not used in this version, see Appendix C)

The following values of orbit parameters are recommended; they are used
as defaults:

Itmap =1
Tint =10.0
HOint =0.1
Hmxint = 1.0
Dhint = 1.0e-7
Epsint = 1.0e-7
Epsrel = 1.0e-9
Solver =1
Isec =1
Irhs =0
Torbit =1

7.4 Problems and hints
7.4.1 Initial point

It has been stressed repeatedly above that the choice of the initial point for
continuation is a rather delicate problem for which no general and evident
solution exists. In this respect, using a continuation strategy as explained in
Section 6) is one useful idea to help in this choice. Another idea is to provide
an initialization procedure whenever possible.

This procedure attached to the RHS specifications can contain calcula-
tions required to set up the initial point. For example, if one has an explicit
formula allowing to compute coordinates of an equilibrium point provided
that parameter values are given (or vice versa), it may be included in the
RHS specifications as an INIT procedure. See description of INIT state-
ment in Section 4.The actual execution of this procedure is controlled by
the user. Namely, this procedure may be invoked manually, by pressing the
corresponding key, or it may be executed each time the computations start.
In the latter case the appropriate value of service parameter Init must be
set. See Section 5 for details.
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7.4.2 Using homotopy

The homotopy method provides another possibility to search for the initial
point. This method suggests "to connect” by a smooth path the unknown
point that we are searching for and some given point being a solution of
another ”similar” problem. This idea may be implemented manually, by
creating a relevant artificial continuation problem and by using the LOCBIF
continuation code to compute the connecting path. However, this may be
arranged also by using certain LOCBIF conventions, as explained below.

Let ¥ be a given initial point. Set the service parameter Init to -1.
This means that function G(7.1) will be replaced by the function

Gly) =6-G(y) + (1 -8) (Gy) — Gy™)) (7.2)

where § is a so called homotopy parameter. For § = 0 the point y© is
clearly a solution of the modified continuation problem. If, by varying 6,
and tracing a solution to (7.2), one can achieve the target value § = 1, this
provides an initial point for the original problem. To implement this idea,
include 6 in the list of active parameters (see below). Make sure that you
have the proper number of active parameters corresponding to the selected
curve. Start the computation of the chosen curve and try to reach the target
6 = 1. Computations in both directions might be needed. Remark that even
when this method succeeds, it may provide a wrong solution, in the sense
that the target point might lie on another branch than expected.

To have the homotopy parameter available for the required manipulations
(setting values, activating/desactivating etc.), it has to be included formally
in the list of system parameters under the fized name HOMPAR. However,
it is not required and even not recommended to involve this parameter into
the system specifications. Provided the parameter Init has the appropriate
value which enables homotopy continuation, the transformation from (7.1)
to (7.2) proceeds automatically, so that the continuation code will use the
modified function é(y), instead of G/(y). One should keep in mind however,
that the above modification makes the meaning of the computed curve dif-
ferent from the original one (although formally this name remains the same).
This requires the careful interpretation of results.

By LOCBIF conventions, all parameters declared in system specifica-
tions may be monitored by means of the user interface (actually some of
them may not be used in the specifications). This allows the user to arrange
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computations in which the homotopy parameter is involved explicitly and
even to use it as a plotting coordinate if needed.

As a side effect, the modification (7.2) provides the possibility to compute
”isolines”.

7.4.3 Isolines

Assume that modification (7.2) is enabled as explained before, but now the
homotopy parameter 6 is non-active. Set, for example, 6 = 0. Then, instead
of computing the original curve with determining system G/(y) = 0, another
curve will be computed, which provides solutions to the equation

Gly) - Gy®) = 0 (7.3)

Provided G(y®)) is small enough, this new curve should be close to the
previous one. Notice that the initial point y(® lies exactly on this new curve.

One can suggest different ways how to exploit this possibility. A trivial
but useful application is the computation and the plotting of isolines in the
plane. We will mention also two other approaches, less evident.

Sometimes the initial point is assumed to be good enough, but never-
theless the program fails when seeks for the first point. Then it might be
recommended to compute one or several curves of a family of curves given
by (7.3), where y(© plays the role of the parameterization parameter. Since
y(® lies exactly on the curve it defines, all difficulties are shifted from the
computation of the first point on the curve to the computation of another
curve. Experiments of this kind may help to visualize the geometry of the
original curve and to understand why the search of the initial point fails.
The failures may be related in particular to the fact that the underlying de-
termining system is degenerate (nearly or exactly) along the curve or just
near the initial point.

Another application which uses to the same modified determining system
(7.3), is inspired by numerical problems which may be caused by self-crossing
points. One could be interested in the analysis of the branching behaviour
of solutions to the determining system near a self-crossing point, or one may
like to switch from one branch to another. Given an initial point in the
neighbourhood of the self-crossing point (but not exactly on the branches),
one can start the continuation from this point and use the determining system
(7.3). In most cases, this simple device unfolds the original system (7.1) such
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that the self-crossing point disappears. In particular, if symmetry is the key
for the branching behaviour, using (7.3) with the proper choice of the initial
point enables us to destroy the symmetry.

The branch started from the chosen point and defined by (7.3) with small
G(y©), will first follow one branch of the original problem, and after passing
close to the "ghost” of the self-crossing point, it "switches” smoothly to the
other branch. With several different choices of y(%), one can expect to reveal
all branches and choose those of them which appear of particular interest.
Disabling the usage of (7.3) brings us back to the original problem and to the
computation of "standard” curves, but probably with a good enough starting
point for the new branch. This trick may be particularly recommended for
handling self-crossing points on a Hopf bifurcation curve.

7.4.4 Testing the current point

If the curvature test causes problems, e.g. leads to substantial reduction of
the step size, the user can suppress this test by setting Algerv = -i where
i=1,2,3 has the same meaning as before (see Section 7.2.2).
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Part 111
APPLICATIONS

8 Example 1: Normal form for cusp bifur-
cation

In this section we will illustrate how to use LOCBIF for existence and
stability analysis of equilibria in a simple dynamical system.

8.1 System description

Consider the following simple ODE with one phase variable x and two pa-
rameters a and f3:

t=a+ fz—2 (8.1)

The problem is to analyze the number of equilibria in (8.1) for various pa-
rameter values («, ) and to determine their stability.
Equation (8.1) is a normal form for cusp bifurcation (cf. Arnold, 1982).

8.2 System specification

Invoke LOCBIF, press a key to leave the Initial screen, type a name for
the system, for example CUBIC, and press Enter. The Equation Window
appears with dummy right hand sides. Type in the system specification, for
example:

PHASE X
PAR ALPHA,BETA
X’'= ALPHA + BETA *X — X"3

and erase all the rest of the dummy specification.
Press the Alt+X keys. You will leave the Equation Window and return
to the Archive Window. The archive now contains the system CUBIC.
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8.3 Setting of computational parameters

Select the CUBIC system and press the Enter key. After a short delay you
will see the main LOCBIF screen. Select item Options and press Enter,
then select option Continuation Parameters and press Enter again. The
Continuation Parameter Window appears. Type in new parameter values:

HOcrv = 0.01, Hmxcrv = 0.05 (see Figure 15).

Figure 15: Continuation Parameter Window after input of new values of
HOcrv and Hmxcrv

Press Esc to leave the window and Esc again to return to the Command
Line.

8.4 Equilibrium continuation

Let us find an equilibrium for (8.1) for several fixed values of 5 and compute
its dependence upon parameter a. Make sure that curve type is Equilib-
rium. Enter into the Value Window by selecting and activating item Values
in the Command Line. Move the cursor to parameter ALPHA and press the
Alt+F keys. Now ALPHA is activated. Input the following initial values:
X =1.0, ALPHA = 1.0, BETA = -1.0 (Figure 16).

Leave the Value Window by pressing the Esc key and activate the Op-
tions item (you can do this directly by pressing F2 key inside the Value
Window). Select option Axis Parameters inside the Option Window (you
can also do this immediately by pressing Alt+G). The Axis Parameter Win-
dow will appear. Select ALPHA as abscissa and X as ordinata (press En-
ter/Ctrl+Enter to list variables forward/backward). Type in minimal and
maximal values of ALPHA and X:
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alt+F: Activate Ctrl+PglpsPgln: Chang Equilibrium

Figure 16: New initial values. Notice, parameter ALPHA is activated

ALPHA,.;, = —1.0, ALPHA ... = 1.0, X,nin = —2.0, X0 = 2.0.

(see Figure 17).

Press Esc twice to leave the window and return to the main LOCBIF
screen. Select and activate item Commands and press Enter to refresh the
axis names (you can also do it directly by pressing Alt+D). Now you are
ready to start the equilibrium continuation.

Select item Compute and press the Ctrl+Enter keys to start computa-
tions backward. The first point will appear on the right boundary of the
Graphics Window. Press the same keys to continue computations. A mono-
tonic equilibrium curve will be computed. When the curve cross the left
boundary, press the Esc key to terminate calculations. The corresponding
message will be displayed in the Message Window.
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Figure 17: Visibility limits

Change the BETA value to BETA = 0 through the Value Window and
repeat the calculations (you can use the same initial point as before). The
equilibrium curve shape will change.

Repeat calculations once more for BETA = 1. Several messages ap-
pear in the Message Window which report about special points found on the
curve. After each message press Ctrl+Enter to continue the curve computa-
tion. Each of the fold points on the curve is reported as an extremum with
respect to ALPHA, and as non-generic equilibrium with eigenvalue zero. By
monitoring eigenvalues the stability change may be detected at these points.
Each of them may be used as an initial point to start the continuation of
Fold curve. The equilibrium curve has S-shape. The resulting Graphics
Window is presented in Figure 18.

This computation reveals that for BETA=1.0, the interval [-1, 1] of pa-
rameter ALPHA is divided by critical parameter values into three subin-
tervals. For the parameter values within two of them equation (8.1) has
one stable equilibrium, while for the parameter values lying between critical
values there are three equilibria: two stable and one unstable.

8.5 Bifurcation analysis

The critical parameter values correspond to bifurcations in which two equi-
libria appear or disappear. Let us compute a bifurcation curve on the (AL-
PHA, BETA)-plane on which this bifurcation takes place. More precisely,
we compute Fold curve in (X, ALPHA, BETA) active phase-parameter
space. The locus of critical points is a projection of this curve onto (AL-
PHA, BETA)-plane.

Take one of the special points computed as the initial point for Fold curve
continuation. For this, clean the Graphics Window and initialize browsing
backward by selecting Browse item and pressing the Ctrl+Enter keys. To
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Figure 18: Equilibrium curve for BETA=-1.0 (monotonous), BETA=0.0
(with a vertical tangency) and BETA=1.0 (S-shaped)

continue browsing, press the same keys after each message. When the mes-
sage

?Zero eigenvalue: a = -3.46405”

appears, press the Ins key. The browsing is terminated and an initial point
for Fold curve is now selected.

Activate parameter BETA through the Value Window. Also invoke the
Axis Parameter Window through the Option Window and select parameter

BETA as the ordinate. Type in
ALPHA,,;, = —-2.0, ALPHA,, . = 2.0

and return to the Command Line by pressing Esc twice. Clean the Graphics
Window and see the new axis names. Finally, change the curve type by
selecting type Fold inside the Curve Select Window (see Figure 19).

Now you are ready to start Fold curve computations. Press F4/Ctrl4+F4
to initialize computations forward /backward and to continue after a message.
The computed curve will have another special point: a Cusp bifurcation
point. At this point, the Fold curve projection onto parameter plane has a

geometric singularity of cusp type (see Figure 20). The (ALPHA, BETA)
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Figure 19: Curve Select Window with Fold curve selected

plane is divided into two regions by the Fold curve projection. In the first
(larger) region, equation (8.1) has only one and stable equilibrium point,
while in the second (smaller region) it has three equilibria, one unstable and
two stable.

It is interesting to notice that bifurcation curve Fold in the corresponding
active phase-parameter space with coordinates (X, ALPHA, BETA) is
smooth and has no geometric singularities. To see this, browse the computed
curve in the (BETA X) coordinates. Select BETA as the abscissa and X

as the ordinate and check if

BETA,,;, = —2.0, BETA,,.. = 2.0, X,in = —2.0, X0 = 2.0

through the Axis Parameter Window.

Clean the Graphics Window and browse the curve forward and backward
by pressing the F5 and the Ctrl+F5 keys. You will see a simple parabola
(Figure 21).
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Figure 20: Cusp singularity

9 Example 2: Ecological modelling

In this section we will illustrate how to use LOCBIF for existence, stability
and bifurcation analysis of equilibria in a model with two phase variables.

9.1 System description

Consider a system of differential equations with two phase variables (z,y)
depending upon four parameters (o, 3,7, ¢)(see Bazykin, 1985):

t = z—ay/(l+ az)— fa?

y = —yy+ay/(l+az)— by (5:1)

Here  and y are scaled prey and predator population densities respectively.
Parameter o determines the saturation of predator, 3 and é are the prey and
predator competition rates and + is the predator natural mortality rate. For
a = 3 =6 = 0 we obtain the original Lotka-Volterra model. We shall study
equilibria of (9.1) with the help of LOCBIF.

Input system (9.1) into LOCBIF, for example, in the following form:
PHASE X,Y
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Figure 21: Parabola in (BETA X)-plane

PAR ALPHA,BETA,GAMMA ,DELTA
FUN F,F1,F2

F=X*Y/(1.0+ ALPHA*X)

F1=X-F- BETA*X"2
F2=-GAMMA*Y+F- DELTA*Y "2

X’ = F1

Y' = F2

9.2 Finding of an equiliblum by integration
Set ALPHA = 0.3, BETA = 0.01, GAMMA = 1.0 and DELTA = 0.5.

Note that we have no apriori information on equilibrium coordinates. In
such a case we may try to find an equilibrium of (9.1) by integration from
arbitrary chosen initial conditions, e.g. X = 100.0,Y = 10.0. Only a stable
equilibrium may be approached in this way.

Input the initial values into the Value Window, check all parameters are
inactive. Set the curve type Orbit. Select X as the abscissa and Y as
ordinate in the Axis Parameter Window and type in limits

Xonin = 0.0, X,z = 100.0, Y i = 0.0, Y,naw = 10.0.
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If you have a color monitor, select the desired background and curve colors
through the Option Window. Being inside the same Option Window, set the
No-pause mode.

Compute the orbit forward (F4). You may see that the trajectory tends
to a limit position which is an equilibrium point. You can press the Space
key to pause and notice that the F1,F2 function absolute values become
less and less (they are equal to zeros in equilibrium). Press F4 to continue
computations.

When the trajectory converges to the equilibrium, pause by hitting the
Space key and press the Ins key to accept the current point as an initial point
for equilibrium continuation. You can see that the point has coordinates:
X =8297...,Y =4.409.... These values were used in Section 2.

9.3 Equilibrium continuation

We have found an equilibrium. Let’s compute the dependence of the equi-
librium upon parameter 6 and analyse its stability.

Activate parameter DELTA through the Value Window and set the curve
type to be Equilibrium through the Curve Select Window. Select DELTA
to be plotted as the abscissa and input

DELTA,.., = 0.0, DELTA,,.. = 1.0.

inside the Axis Parameter Window.

Clean the Graphics Window and set the pause mode to Special through
the Option Window. Now you are ready to start computations.

Press F4 to start computations forward. When the first point is found,
it will be displyed in the Value and Graphics Windows. The equilibrium is
stable. Press F4 for continuation and Esc to terminate computations when
the curve leaves the Graphics Window.

Use Ctrl+F4 keys to compute the curve in the opposite direction. Ter-
minate computations when the curve leavs the window by pressing the Ecs
key. You should have a screen like presented in Figure 22.

There is an interval of DELTA within which the system (9.1) has three
equilibria: two stable and one unstable. The limit points of the interval,

DELTA,; = 0.263...,DELTA, = 0.436.. . .,
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4 Conpute 5

Equilibrium

Figure 22: Equilibrium curve

are tangent bifurcation points corresponding to equilibria appearance or dis-
appearance. These points may be used as initial points for Fold bifurcation
curve continuation.

9.4 Fold curve continuation

Clean the Graphics Window by pressing the Alt+D keys and start backward
browsing of the computed equilibrium curve by pressing the Ctrl+F5 keys.
Press the same keys until the message

”Zero eigenvalue : a = -.918... E-02”

appears in the Message Window. Terminate browsing and take the last point
as the initial point for Fold curve continuation by pressing the Ins key.
Activate parameter ALPHA and select Fold as the curve type. Select
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parameter ALPHA as the abscissa and parameter DELTA as the ordinate
through the Axis Parameter Window and set

ALPHA,;, = 0.0, ALPHA,,,. = 1.0,
DELTA,.;, = 0.0, DELTA,.... = 3.0.

Clean the Graphics Window. Press F4 to start computations and to
continue after each message. Note that the Fold curve is closed. Press Esc
after the final message.

The projection of the Fold curve onto the (ALPHA DELTA )-plane has
two geometrically singular points of a Cusp type and two singular points
where the Neutrality condition holds. Within a region bounded by the
projection, system (9.1) has three equilibria: two stable and one unstable
(saddle type). Outside the boundary system (10.1) has one stable equilibrum.
You may erase the curve by pressing the Alt+D keys and browse it again by
pressing the F5 key.

Let us store the computed curve on a disk. To invoke a Curve Archive
Window press F7. Type a name for the stored curve, for example FOLD,
and press Enter. The curve is stored on a disk and will appear in the archive
list. To leave the Curve Archive Window, press Esc.

9.5 Hopf curve continuation

There were two Neutrality points on the Fold curve. For corresponding
parameter values, system (9.1) has an equilibrium with two zero eigenvalues.
Each of these points may be used as the initial point for a Hopf curve
continuation. Let us compute this curve.

Clean the Graphics Window. Browse the Fold curve (F5) and select
the first Neutrality point as the initial point using the Ins key. Clean the
window again and select Hopf as the curve type.

Compute the Hopf curve forward and backward using the F4 and Ctrl4+F4
keys until the curve leaves the Graphics Window. You can see that the Hopf
curve goes through both the Neutrality points. Between the points, it corre-
sponds to the existence of an equilibrium with two real eigenvalues A\ = —\,.
It is not a bifurcation branch. The other parts of Hopf curve correspond
to the appearence of a limit cycle from the equilibrium with a pair of pure
imaginary eigenvalues A » = +iw(Hopf bifurcation). On the right Hopf bifur-
cation branch there is an additional singular point: Zero Lyapunov value.
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At this point the direction of appearence and the stability of the limit cycle
changes.
Store the computed curve into the archive, for example, under the name

HOPF.
Note:

There are some other (global) bifurcation curves which cannot be com-
puted by the equilibrium point version of LOCBIF. In system (9.1) there
are four curves of this kind: three homoclinic orbit curves and one double
cycle curve. Althougth, we have found initial points for some of these curves.
Two homoclinic bifurcation curves originate at Double Zero points. The
double cycle (fold) curve starts from a Zero Lyapunov value point.

9.6 Joined picture

Let us plot on the screen a final picture with two computed curves: Fold
and Hopf. These curves have already been stored in the archive.

Invoke the Curve Archive Window by the F7 key, move the highlight to
the FOLD curve name and press Enter. The message

”Loading...”

will appear and after a short delay the curve becomes available for browsing.
Note that the Value Window is updated and the relevant curve type (Fold)
is displayed in the Curve Window. Invoke the Axis Parameter Window by
pressing Alt+G and adjust the limits of visibility by pressing the Alt+L keys.
After the message

”Limits adjusted”

leave the window by pressing the Esc key, clean the Graphics Window by
hitting Alt+D and press F5 to browse the curve forward.

Invoke the Curve Archive Window again and load the HOPF curve by
the same procedure. Browse the curve forward and backward.

Now you have a screen like that shown in Figure 23 which you may copy
to your printer using a standard software.
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Browsing terminated Hopf

Figure 23: Fold and Hopf bifurcation curves

10 Example 3: Chemical kinetic model

In this section we will illustrate LOCBIF usage with a chemical kinetic
model.

10.1 System description

Consider the following ODE system with three phase variables and seven
parameters (Bykov et al., 1978, Khibnik et al., 1987):

T = 2k12% —2k_12? — ksxy
Yy = koz—k_oy — ksxy (10.1)
s = k4Z — k_48

where z =1 — 2 — y — s. The model describes CO oxidation on platinum:
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1) Oy + 2Pt «—— 2P0
2) CO + Pt «— PtCO

3) PtCO + PtO «— 2Pt + CO,
1) CO + Pt — (PtCO)

In system (10.1) z,z,y, s are (scaled) concentrations of Pt, PtO, PtCO and a
nonreactable form (PtCO) respectively, while k; stand for the corresponding
reaction rate constants. Several equilibrium and global bifurcations were
found analytically and numerically in the system, which has 23 topologically
nonequivalent phase portraits. The analysis has shown that the chemical
system can behave as either an oscillator or a trigger.

In this Section we will use the LOCBIF program to investigate equi-
librium existence, stability and bifurcations in system (10.1) and compute
relevant bifurcation curves.

Ratio K = k_4/k4 will be used in the result presentation. The parameters
ki, ko, ks, kg k_1,k_o and K will be denoted as Q1,Q2, ()3, Q4, Q5,6 and
K respectively.

Let us input equations (10.1) into LOCBIF in the following form:

PHASE X,Y,S

PAR Q1,Q2,Q3,Q4,Q5,Q6,K

FUN Z

Z=1-X-Y-S

X' =2xQ1+Z"2-2xQ5xX"2-Q3xX*xY
Y =Q2+Z-Q6xY —Q3xXx*xY

S =Q4+xZ -K=x+xQ4xS

10.2 The results

Some results of the investigation are shown in Figure 24 and Figure 25 as
they were produced by LOCBIF.
Figure 24 shows projections A, A; and Az of three Equilibrium curves

onto the (Q2, X)-plane for different values of K:

K = 0.3, 1.0, 3.0.

The values of the other parameters are fixed:
Q1=25Q3=10,Q4 =0.0675,Q5 =1,Q6 = 0.1.
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Figure 24: Equilibrium and bifurcation curves in model (10.1):A;, A2 and A
- Equilibrium; B - Fold; C' - Hopf

Initial values of the phase variables and parameter ()2 for these equilibrium
curves are

Xp = 0.00154,Y, = 0.927, S, = 0.0178,Q2, = 2.0.
The limits of visibility are

Q2,.. =050Q2 . =20 Xum=—0.01, X, = 0.2.

The projections B and C of the Fold and Hopf bifurcation curves respec-
tively are also plotted in Figure 24; they correspond to active parameters
Q2 and K. The relevant singular points (Zero eigenvalue and Neutral
saddle) on the Equilibrium curve A3 may be chosen as initial for Fold and
Hopf curve continuations. Computation of Fold curve was terminated at
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8 Browse

Figure 25: Bifurcation curves in model (10.1): B - Fold; C' - Hopf; G -
Cusp; E - Double Zero

some points corresponding to high values of K.

The Hopf bifurcation curve is closed; it consists of two connected parts
corresponding to Hopf and neutral saddle cases. These parts are separated
by two Bogdanov-Takens bifurcation points. The Hopf part contains also
two degenerate Hopf bifurcation points.

The Fold bifurcation curve contains two Bogdanov-Takens bifurcation
points mentioned before and one Cusp bifurcation point.

You will get corresponding messages while computing or browsing the
curves. We recommend you store all the computed curves into the archive.

In Figure 25 several bifurcation curves are represented as projections onto
the parameter plane (Q2,K). These are Fold and Hopf curves denoted by
B and (', as well as Cusp and Double Zero bifurcation curves denoted by
(G and FE respectively.
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Limits of visibility for parameters Q2 and K are

Q2,.. =05Q2, . =17 Kum=—0.01,K.. = 1.5.

To start computation of Cusp and Double Zero curves use relevant points
on Fold and Hopf bifurcation curves and activate the additional parameter
Q1.

Note that a degenerate Bogdanov-Takens bifurcation point has been lo-
cated on the Cusp and Double Zero curves. It is marked by [ in the
figure.
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Part IV
APPENDICES

A LOCBIF restrictions

LOCBIF allows you to study dynamical systems with no more than 10 phase
variables and 10 parameters.

The name of a system studied cannot be longer than 8 characters.

The names of phase variables, parameters, functions, local and common
variables in equation specifications cannot exceed 6 characters.

The names of curves cannot exceed 8 characters.

You cannot store more than 100 systems in the ODEs Archive and more
than 100 curves in the Curve Archive for each system.

System specifications cannot be too complex (see next Appendix B).
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B Error messages

B.1 RHS Editor error messages

”RHS file not found”

File RHS.DAT containing RHS specifications was not found (it may have
been accidentally deleted by the user).

”Can’t open output file”

”Can’t write output file”

These two messages mean that there may be not enough space on the
disk for the RHS.DAT file.

”Too many characters in file”

Number of characters in RHS specification exceeds 20 000.

”Too many lines in file”

Number of characters in RHS specification exceeds 500.

B.2 RHS Compiler error messages

"TIME redeclaration”

"PHASE redeclaration”

”PAR redeclaration”

?COMMON redeclaration”

"FUN redeclaration”

Any of above four messages indicates that the corresponding keyword
appears more than once in the RHS specification.

"TIME declaration is empty”

"PHASE declaration is empty”

"PAR declaration is empty”

PFUN declaration is empty”

PCOMMON declaration is empty”

Any of above four messages means that the corresponding keyword is not
followed by a name.

”Redeclaration of identifier”

Each name must be declared only once in the RHS specification.

"PHASE declaration is absent”

”Too many equations (more than 10)”

”Too many parameters (more than 10)”
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”Too many functions (more than 10)”

”Too many common variables (more than 10)”

”Too many local variables (more than 10)”

”Too many arguments (more than 10)”

”Function name is expected”

Number of function declared in FUN statement differs from number of
defined functions.

?) or '/ is expected”

7Identifier is expected”

”! ="is expected”

"Too complex RHS specification”

RHS Compiler can not process your equations due to internal limitations.

”Operator can not be recognized”

An operator is expected; the next symbol should be a variable name, IF,
WHILE, FOR or {.

”Natural number is expected”

”'" is expected”

”Relation sign is expected (<, <=,>,>=,=)”

”Undeclared identifier is used”

"FOR cycle parameter must be a variable”

The parameter should be either COMMON or VAR variable.

7' is expected”

”This variable can not be changed”

You must not change a phase variable or parameter values except inside
the INIT statement.

7" is expected”

777 is expected”

”Phase name is expected”

”Identifier, number or (' is expected”

?")" is expected”

”You should use neither [’ nor /(

The variable is neither an array nor a function.

?'(" is expected”

”Too many elements in array”

”Open failure (TS.DAT)”

”Open failure (IR.DAT)”

”Write error (TS.DAT)”

19
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”Write error (IR.DAT)”

?Close failure (TS.DAT)”

?Close failure (IR.DAT)”

”Function is defined twice”

”Invalid number of arguments in function call”

”Unnecessary character (delete up to EOF)”

7!{" is expected”

PINIT redefinition”

This message indicates that the corresponding keyword appears more
than once in the RHS specification.

B.3 RHS Computation error messages

”Error: square root of negative number”

7”Error: zerodivide”

”Error: overflow”

”Error: underflow”

7?Error: logarithm of negative number”

”Error: real degree of negative number”

”Error: index out of range”

”Error: invalid operation”

A coprocessor invalid exception was detected, for example an attempt to
compute 0/0 will result in the second message.

”Error: unknown type”

Internal error; please inform the authors.

”Cannot open file IR.DAT”

”File IR.DAT has invalid structure”

The former two messages mean that you have changed or deleted the
IR.DAT file.

”Run-time data memory size is too small”

Total size of COMMON and VAR variables exceeds 2K.

”Run-time code memory size is too small”

Total size of generated machine instructions exceeds 4K.
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C LOCBIF versions for fixed points and pe-
riodic solutions

In this Appendix we briefly explain how to use new versions of the LOCBIF
program for fixed and periodic points of iterated maps and time-periodic
solutions of periodic and autonomous ODEs.

C.1 General information

Now three additional versions of the LOCBIF program are available: for
continuation and bifurcation analysis of the fixed points and periodic orbits of
maps (LBFP), for continuation and bifurcation analysis of periodic solutions
of periodically forced ODEs (LBPS) and for continuation and bifurcation
analysis of limit cycles of autonomous ODEs (LBLC). All these programs
have the same user interface as the LBEP version of LOCBIF described
in this manual. These programs use the same basic continuation code and
support a unified continuation strategy. The difference lies in the bifurcation
functions and in the meaning of the corresponding bifurcations.

The installation of these versions is similat to that for LBEP version (see
Section 2).To invoke a relevant version, enter one of the following commands:

LBFP, LBPS or LBLC.

C.2 LBFP version of LOCBIF
C.2.1 Basic definitions

In this Appendix the term iterated map or discrete time dynamical system
means a nonlinear mapping:

' = F(z,p) (C.1)

where ¢ = (21, 22,...,2,) € R"™ are phase variables, p = (p1,p2,...,Pm) €
R™ are parameters and F' is a smooth vector function. Here ’ means the
result of the action on point x of map F(-,p).

A fized point is a point x in the phase space which is not affected by the
map:
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z— F(x,p)=0 (C.2)

Multipliers of the fixed point are the eigenvalues of the linearization matrix
of (C.1) with respect to z at the fixed point.

An orbit or trajectory is a sequence of points in the phase space defined
by the recurrent formulas:

k1) F(a:(k),p), k=1,2,3,... (C.3)

An orbit is called periodic with period K if ) = 2. Multipliers of the
periodic orbit are eigenvalues of the Jacobian matrix of the K-th iterate of
map F. A fixed point or periodic orbit is stable if all its multipliers u;,z =
1,2,...,n, lie inside the unit circle | g |= 1. The fixed points bifurcate if
there are multipliers on the unit circle.

C.2.2 Bifurcation functions

Bifurcation functions are scalar-valued functions which are used to define bi-
furcation curves and to find special points on them. The following bifurcation
functions are involved in LBFP computations:

é1 = det(A—T)

¢2 = Dn—l
és = det(A+1)
¢s = Res(P(u),P'(n))

455:&

Here A = A(p) is the linearization (Jacobian) matrix of (C.1) at the fixed
(periodic) point (x,p). P(p) is the characteristic polynomial of matrix A
and P'(p) is its first derivative with respect to p. D,_1 denotes the Hurwitz
determinant of the order n — 1 of the polynomial

Qu) = (I—p)"P (i—ﬁ)

while Res stands for the resultant of two polynomials. Function a is deter-
mined by nonlinear (quadratic) terms of (C'.1). I denotes the unit matrix.
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Condition ¢; = 0 implies that the Jacobian matrix A has at least one
eigenvalue p; = 1. A fixed point which satisfies this condition generically has
multiplicity two and bifurcates into two simple fixed points (fold bifurcation).

Function ¢, is equal to zero if there are two multipliers p; and po with
unity product: pyps = 1. If a fixed point with this condition has two com-
plex multipliers, e.g. p12 = exp(fiw), we have the Hopf (Neimark-Sacker)
bifurcation and the appearance of a closed invariant curve. On the contrary,
if the multipliers are real, we have a saddle point which does not bifurcate.

Condition ¢3 = 0 implies the existence of a multiplier -1 which gives rise
to the period doubling (flip) bifurcation.

Condition ¢, = 0 means the existence of equal multipliers p; = ps.

The function a(p) is defined for a fixed point with py = 1, if the corre-
sponding eigenspace is one-dimensional. It is given by the expression

1 d?
a(p) = §d—52<6'7F($ + £e,p))le=o

where e and €’ are the eigenvectors of matrices A and AT corresponding to the
unity eigenvalue, with conditions (e,e) = 1,(e’,¢’) = 1. Here (-,-) denotes
the standard scalar product in R", and 7' stands for transposition.

C.2.3 Curve definitions

Bifurcation analysis in LBFP version of LOCBIF is performed by con-
tinuation of a curve (one dimensional manifolds) in an appropriate phase-
parameter space. The number of non-fixed (active) parameters depends on
the selected curve type. Continuation of the following curves is automatically

supported by LBFP:
Curves with one active parameter:

Fixed point (z — F(z,p) =0)
Curve (z — F(z,p) = 0 without bifurcation analysis)

Curves with two active parameters:
Fold (z — F(x,p) =0,¢; = 0)
Hopf (z — F(z,p) =0,¢, =0)
Flip (z — F(z,p) = 0,45 = 0)
Double Multiplier (z — F(z,p) = 0,¢4 = 0)
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The last curve is not a bifurcation curve but is useful in applications. The
bifurcations of the dynamical system near the first three curves are described

in (Arnold, 1982; Guckenheimer and Holmes, 1983).

Curves with three active parameters:
Double Fold (z — F(z,p) =0,¢1 = 0,¢2 = 0)
Double Flip (z — F(z,p) = 0,63 =0, ¢, = 0)

On these curves the system has a fixed point with double multiplier +1 (-1).
In the literature these bifurcation are also known as strong resonances 1:1

and 1:2 (Arnold, 1982).

Fold + Hopf (z — F(z,p) =0,¢; = 0,0, = 0)
Flip + Hopf (z — F(2,p) = 0,¢3 = 0,4, = 0)
Fold + Flip (z — F(x,p) =0,¢1 = 0,93 =0)

These curves are the result of the superposition of two of the simplest bifur-
cation conditions.

Cusp (z — F(z,p) =0,¢1 =0,¢5 = 0)
On this curve we generically have a fixed point of multiplicity three.

Fold + Extr
Hopf + Extr
Flip + Extr

These curves of nontransversal bifurcations arise from Fold, Hopf and Flip
curves in the same way as the corresponding curves in Section 6.

Note. The current version of LBFP does not support all possible two-
parameter bifurcations of fixed points. It does not deal with the following
bifurcations: two pairs of complex multipliers on the unit circle; degenerate
flip and degenerate Hopf bifurcations, strong resonances 1:3 and 1:4.

C.2.4 Specific features of LBFP

As was pointed out before, the user interface of the LBFP version is the
same as in the main part of the manual. The obvious difference is in the
meaning of the Orbit curve which now is a sequence of points and can be
computed only forward (we do not assume the invertibility of F'). Therefore,
almost all orbit parameters used in the numerical integration of ODEs have
no meaning in LBFP.
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The orbit parameter Itmap is the period of the studied orbit and should
be equal to 1 for fixed points, 2 for period two orbits, ete. For discrete orbits
the parameter Itmap plays almost the same role as the parameter Tmax
for continuous orbits of ODEs.

C.2.5 Example: Periodic orbits of a discrete time population
growth model

The model. Consider the following reccurence
T = rae(l —aiq) + € (C.4)

where z; is the density of a population at time ¢ and r, € are the growth and
immigration rates.
If we introduce y; = 241, the equation (C.4) can be rewritten as

g1 = ra(l—y) +e€

Y41 = Tt
which, in turn, defines a two-dimensional discrete time dynamical system:

! — —
CE/ = rae(l—y)+e (C5)
y = 2
Input system (C.5) into LBFP version of LOCBIF, for example, in the
following form:

PHASE X,Y

PAR R,EPS
X'=R*X*(1-Y)+EPS
Y'=X

Find a fized point. Set r = 1.9,¢ = 0. Select x and y as the abscissa
and the ordinate with the visibility limits from 0 to 1. Input initial values
xg = 0.5 and yg = 0.2. Set options: Pause=Update=Join=No. Select the
curve type Orbit, iterate the system and check if the orbit converges to a
fixed point. Try some other initial data. Select the last point as intial.

Continue the fized point. Activate r, select the curve type Fixed point,
set Update = Yes, Pause = Special and Join = Yes. Input HOcrv=0.01
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Figure 26: A closed curve of fixed points of the 7th-iteration of the map
(C.5)

and Hmxcrv=0.1. (Do not change the projection!). Compute the curve
and monitor the multipliers of the fixed point. Check, if message ”Hopf”
is reported which indicates the Neimark-Sacker bifurcation at r = 2.0. Find
the arguments of the critical multipliers: w = %’r (therefore, we have so called
weak resonance).

Find a closed invariant curve. Set No option for Pause, Update and Join
modes. Compute Orbit curves for r = 2.01,2.05,2.1,2.15,2.17 using various
intial data, and check if they converge to closed invariant curves giving rise
to quasi-periodic reccurences.

Find and continue a period-7 cycle. Set r = 2.177 and compute Orbit.
Select the last point, clean the screen and compute the orbit again. Reveal
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by the Pointwise browsing that a period-7 cycle is found. Select a point on
the cycle with maximal x.

Activate r, set Update=Yes, Join=Yes and Pause=Special. Put Hmx-
crv=0.01 and select r as the abscissa (with 7, = 2.17, e, = 2.21) and
z as the ordinate (with @i, = 0,2 = 1.0). Set Itmap=7, clean the
Graphics Window and compute a Fixed point curve. Interpret the result-
ing closed curve (see Figure 26) and store it as P7 in the archive. (Hint:
Each point of a period-7 orbit is a fixed point of the 7-th iteration of the
map (C.5).)

Figure 27: Arnold’s tongue (the fold bifurcation curves for period-7 cycle -
(7)
t

1.2) approaching a point of resonance 1:7 on the Hopf bifurcation curve RV

Hopf continuation. Select r and € as the abscissa and the ordinate with
the visibility limits from 1.5 to 3.0 and from -1.15 to 1.15 respectively. Load
P1 curve from the archive and select the Hopf bifurcation point as initial.
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Clean the Graphics Window. Activate €, select the curve type Hopf and
compute the Neimark-Sacker bifurcation curve within the visibility limits.
Store it.

Tangent bifurcation continuation for period-7 cycle. Load P7 curve and
select a ”Multiplier = 1” point corresponding to a higher value of r, set
the increments Dherv=Dhjac=0.1E-06. Activate ¢ and compute the Fold
curve in the both directions and store it. Load the P7 curve once more and
select a fold bifurcation point with the lower value of r, input the same values
of the increments as before. Activate € and compute Fold curve starting at
this point. Store the curve. Clean the Graphics Window and browse the
stored bifurcation curves (see Figure 27).

Notice, the fold curves form the so called Arnold’s tongue which ap-
proaches a point on the Hopf curve. Find the corresponding argument value
of the critical Hopf multipliers by browsing the Hopf curve using a different

27

color (w = ). Try to explain where are the period-6 cycles.

C.3 LBPS version of LOCBIF
C.3.1 General features of LBPS
This version of iILOCBIF is used for the analysis of periodically forced ODEs:

&= F(t,z,p) (C.6)

where F'is assumed to be 2x-periodic in ¢t. (This can be easily achived by
time rescaling. You can also choose another sample period.) For system (C.6)
the period return or Poincaré map is defined (see Guckenheimer and Holmes,
1983) by the solution of the Initial Value Problem in the interval [0, 27]. This
map defines a discrete time dynamical system for which continuation and
bifurcation analysis can be performed as described above in this Appendix.
Periodic orbits of period K of this dynamical system correspond to time-
periodic solutions (so called subharmonics) with period 27 K of (C.6) they
are called Periodic Solutions in the curve type list.

Using LBPS you have to specify 2x-periodic RHS of your ODEs and
set the orbit parameter Tmax equal to 6.28... .While selecting Orbit type
for computations, parameter Iorbit should be chosen +1 or -1 regarding
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whether you would like to see the complete trajectory of (C.6) in the interval
[0, Tmax*Itmap] or only discrete orbit of the Poincaré map.

C.3.2 Example: Periodic solutions of a periodically forced predator-
prey model

The model. Let us analyze the following time-periodic system of ODEs
(Kuznetsov et al., 1992):

. cry
= 1 — —
T ra( ) o) 1
. cry
= —d
y y+ a(t) +x

where a(t) = b(1 + esint), and parameters r, b, ¢, d are positive while 0 <
e < 1. If e = 0, the system becomes a classical predator-prey model. The
periodic function a(t) describes seasonal variation in the predator searching
time.

To analyze periodic solutions of the system, input the equations into

LBPS version of LOCBIF, for example, in the following form:

TIME T
PHASE X,Y

PAR R,B,C,D,EPS
FUN A,F
A=B*(1+EPS*sin(T))
F=C*X*Y /(A+X)
X'=R*X*(1-X)-F
Y'=-D*Y+F

Find an equilibrium in the unperturbed system. Set r = 1,b = 04,¢ =
2,d =1,e = 0. Input z¢ = 0.1 and yo = 0.4 as initial data. Select z and
y as the abscissa and the ordinate with the visibility limits from 0 to 1 and
from 0 to 0.4 respectively. Set Update=No and compute Orbit forward.
The orbit tends to a stable equilibrium point with coordinates: (z(®),y(©)) =
(0.4...,0.24...). Select this point as the initial one.

Continue the equilibrium in the unperturbed system. Activate parameter

b, set Messag=1, Epsint = 107° and check if Tint = 6.28. Modify the
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continuation parameters by setting HOcrv=0.01 and Hmxcrv=0.05. Select
e and b as the abscissa and the ordinate with the visibility limits from 0 to
1 and from 0 to 0.55 respectively. Continue the Periodic solution curve
forward and backward and find a Hopf (Neimark-Sacker) bifurcation point.
Select the Hopf point.

Continue the Neimark-Sacker bifurcation. Activate b and e, select the
curve type Hopf, set Epsext=0 (to suppress extremum location) and con-
tinue the bifurcation curve h(Y) for ¢ > 0 until a codimention two point A,
with a double multiplier -1 will be approached ( strong resonance 1:2 (see,

Arnold, 1982)). Store the curve as H1.

Figure 28: Bifurcation curves of the periodically forced predator-prey system:
hR(12) - Hopf fo(r)period—27r and -4x solutions; f(?)- Flip for period-27 and
2

-47 solutions; ;7 - Fold for period-27 solutions
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Continuation of the flip bifurcation. Browse the Hopf curve and select the
point of 1:2 resonance. Select the curve type Flip and continue the period
doubling bifurcation curve f() in the both direction within the visibility
limits (see Figure 28). Store the curve as F1 in the archive.

Find a period-2 - 27 solution near the flip bifurcation. Browse the flip
curve and stop at the upper point with € = 0.50.... Select the point. Select
the curve type back to Periodic solution, deactivate ¢ and continue the
period-27 solution curve into the unstable region. Take a point near the flip
bifurcation and find a period-2-27 solution by integration (deactivate all the
parameters, select the curve type Orbit and set Iorbit=-1 to look at an
orbit generated by the 2r-map). Select a point on the found periodic orbit.

Continue the period-2 - 2w solution. Activate b and select the curve type
Periodic solution. Set Itmap=2. Continue the period-2-27 solution with
respect to b until the next period doubling point will be found and reported as
”Multiplier = -1” (the message ”Selfcrossing” obtained while computing
the curve forward means approaching the flip bifurcation point for the period-
27 solutions). Store the curve as P21 into the archive.

Take the last point as the initial and activate now only the parameter e.
Continue the periodic solution and monitor the messages. Notice, there were
no messages when the curve crossed the flip curve since this part of the flip
curve corresponds to the appearence of an unstable period-2 - 27 cycle under
decrease of the parameter €. Continue until message: ”Multiplier = 1” will
appear which corresponds to the fold bifurcation of the period-2 - 27 orbits.
Store the curve as P22. Select the last found point as initial, activate again
only parameter b and continue the periodic solution until another tangent
bifurcation point will be found at relatively low value of b. Store the curve
as P23.

Continue flip, fold and Hopf bifurcation curves for the period-2 - 2w so-
lutions. Load the curve P21 from the archive and select the flip point for
continuation of the Flip curve f(). Activate the parameters b and ¢, com-
pute the curve and store it as F2 into the archive. Notice, another point of
codim 2 was found, namely, the point A, of resonance 1:2 for period-2 - 27
cycle.

Load in the same way the curves P22 and P23 and compute the Fold
curves for the period-2 - 27 solutions. The upper branch t§2) of the fold curve
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terminates at a codim 2 point D (degenerate flip, see: Afrajmovich et al.,
1985; Kuznetsov & Rinaldi, 1992 ) on the flip bifurcation curve f() and on
the axis € = 0 at a point where the limit cycle in the unperturbed system
has period 47. Store this branch under name T21. The lower branch tgz) of
the Fold curve (for its computation, set Epsint=0.1E-06) terminates at the
same point on the vertical axis and passes through another codim 2 point
B with a double +1 multiplier (strong resonance 1:1, Arnold(1982)) of the
period-2 - 27 cycle. Store the curve as T22.

Select the resonance 1:1 point B as the initial one for Hopf bifurcation
curve h(? continuation and compute it. Notice, it terminates at the point A,
in the flip curve f®. Store the curve as H2. Clean the Graphics Window
and plot all the bifurcation curves in one figure (see Figure 28).

C.4 LBLC version of LOCBIF
C.4.1 General features of LBLC

This version is designed for the analysis of isolated periodic solutions (limit
cycles) of autonomous ODEs. For this problem the Poincaré map can also
be defined. Consider the system of differential equations

&= F(z,p) (C.7)

Finding out periodic solutions with period Ty of this system is equivalent to
finding out periodic solutions with period 1 for the following extended system:

& =ToF(z,p) (C.8)

where T is an extra parameter. A fixed point of time-one transformation
of the phase space defined by (C.8) corresponds to a limit cycle with period
Ty of the original system (C.7) (they are called Limit Cycles in the curve
type list). Specifying RHS of your system, you have to reserve one more
parameter in your parameter list for this extra parameter 7T (you can use
an arbitrary name for it but must place it as the last parameter in the list).
Recall, that the total number of parameters (including 7p) should not exceed
ten.

To avoid a phase shift along the cycle, you have to specify a Poincaré
section ((n — 1)-dimensional manifold H = 0 transversal to the limit cycle).
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For this, orbit parameter Isec is used. If positive, Isec is a number of an
equation in RHS which zero defines the secant surface (H = FJg,.). If Isec
is negative, |Isec| is an ordering number of a user-defined function zero of
which defines the secant surface. Finally, Isec = 0 means that a secant plane
will be initially chosen and then traced automatically to keep it orthogonal
to the limit cycle.

Except one multiplier of a limit cycle which is always equals one (numer-
ically it may be close to one), all other multipliers determine stability and
bifurcations of the limit cycle. The bifurcation functions described above are
used for definition and continuation of bifurcation curves for limit cycles as
well.

The meaning of parameters Itmap and Iorbit is similar to that for

LBPS.

Note.  The period T of the limit cycle is generically varying under
parameter variations. Therefore, in the continuation of a limit cycle or while
tracing its bifurcations, parameter T, must be active.

You can also compute an isochrone of constant cycle period by fixing Tg
and activating an extra system parameter.

C.4.2 Example: Limit cycle bifurcations in a Lur’e type feedback
control system

The model. Consider the following nonlinear differential equation:
2" +az" +b2' +2(1—2)=0

which is a Lur’e type feedback control model (see, Siljak (1969)). Rewrite
this system as the third order system of differential equations:

=Y
y = z (C.9)
2 = —az—by — x4+ 2?

Input system (C.9) into LBLC version of LOCBIF (do not forget to
include the time scaling factor ¢g into the parameter list as the last parameter
and multiply all the equations by to):

PHASE X,Y,Z
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PAR A,B,T0

X'=Y*T0

Y'=Z*T0
Z'=(-A*Z-B*Y-X+X*X)*T0

Limit cycle location and determination of its period. Input a = 0.8,b =1
and find a stable limit cycle in the model starting from the inital point
xo = 0.1,y0 = 0,20 = 0.1 . Select the last point in the buffer as inital, clean
the Graphics Window and continue Orbit computation several times. Use
No Pause and No Update options.

Find the period of the cycle. For this, select a point on the cycle and
recompute it with the Pause option Pointwise. Stop the computation when
the orbit becomes (approximately) closed and estimate the period by reading
the value of time in the Value Window. Set now Tint=1 but fix the param-
eter ty at the estimated value (6.34...). Set Pause to Special and recompute
the cycle. Adjust ¢ty to get the most exact closure. Browse the cycle once
more and make a pause at the maximal value of z. Select the pause point.

Limit cycle continuation. Select the curve type Limit cycle and activate
parameters a and ty. Set Flash=>500, Messag=1 and check if Isec=1 (the
plane y = 0 will be used as a secant plane to construct the Poincaré map).
Input HOcrv=0.01 and Hmxcrv=0.1. Select a as the abscissa (with @i, =
0 and @pmer = 1.5) and b as the ordinate (with bp; = 0 and by = 2).
Clean the screen. Set Update option Yes and continue the cycle curve in the
both directions until the massges ” Minimum of parameter a=...”
?Multiplier = -1” will be found. The first message, actually, corresponds
to the disappearence of the limit cycle through the Hopf bifurcation (check

and

this!), while the second reveals the flip bifurcation. Compute a point on the
curve corresponding to the unstable cycle (for this, change Pause option to
Poinwise and let LOCBIF to find the next point after the flip). Store the
cycle curve into the archive as LC1.

Flip continuation. Browse the cycle curve and select the flip point. Set
Epsext=0 to supperss extremum location and select the curve type Flip.
Acticate parameter b and continue the flip curve within the visibility limits.
Store it as F1.
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Figure 29: Bifurcation curves in model (C.8): Hy - the Hopf bifurcation for
the equilibrium; F} 5 - the flip bifurcation curves

Continue the Hopf bifurcation of an equilibrium. lLoad LC1 curve and
select the minimum of the parameter a point. Select the curve type Fold
(explain, why), activate b and compute an approximation of the Hopf bifur-
cation curve for equilibrium (0,0,0) in system (C.8). Store it as HOPF.

Find and continue a double period cycle. Load LC1 curve and select the
last point corresponding to the unstable cycle. Set Iorbit=-1 and integrate
Orbit with all the parameters deactivated. Make a pause when a double
period cycle will be found. Set Torbit=1 and repeate computation. Select a
point with y = 0 (approximately).

Select the curve type Limit cycle, Itmap=2 and start continuation of
the double period cycle with active a. Select a point reported as ” Multiplier
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= -1” as the initial for the flip continuation.

Continue the flip bifurcation for the double period cycle. Activate a and b,
select the curve type Flip, set Epsext=0 to supperss extremum location and
continue the flip curve within the visibility limits. Store it as F2. Clean the
Graphics Window and plot the curves HOPF, F1 and F2 together (Figure
29).

140



D Mouse support

In this Appendix you will be informed how to use the mouse, if present, to

operate LOCBIF'.

D.1 Mouse installation

If your computer has a mouse and the Micrisoft mouse driver, you can use
this pointer device to operate LOCBIF (all four versions: LBEP, LBFP,
LBLC and LBPS). Before starting LOCBIF, you have to install the mouse

driver by performing the command
MOUSE

Note.lf your computer uses some other Microsoft-compatible mouse driver,
the installation command may be slightly different (see your mouse manual).

Once the mouse driver is present and installed, LOCBIF will automati-
cally detect it and allow you to operate with the mouse, as well as with the
keyboard. When LOCBIF is invoked in the standard way, a mouse pointer
appears over the Opening screen: it is a one-symbol rectangle which you can
move within the screen while moving the mouse on the desk. Over the Main
LOCBIF screen the pointer becomes a small arrow.

D.2 General conventions

The mouse has several buttons which can be pressed, or clicked on. In
LOCBIF only the left and right buttons are used. Although your mouse
might have a central button, it is ignored. In most situations only the left
button is used. However, there are cases where clicking on the right button
is meaningful.

LOCBIF detects the pointer position only at the moment when a mouse
button is clicked on. Users can select various objects on the screen by moving
the pointer to an appropiate position and clicking on a mouse button. These
objects are the following:

- items of the Main Menu;
- entries in windows appearing over the main screen (i.e., commands,
options, names and values);
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- parts of hints (i.e., texts in the Message Window or some symbols);
- positions in the Graphics Window.

Pointing and clicking an object can result either in relocation of the highlight,
or in an immediate action. In the first case, to perform an action you have
to click on the button once more at the same mouse position.

If you are working in a window, you can close it either by clicking on the
left mouse button when the pointer is outside the window, or by clicking on
the right button anywhere. Notice, that in the first case clicking on some
of the objects can cause another window to be opened or an action to be
performed. (Rigorously speaking, in the second case you can also start some
actions; see below.)

During the computation or curve browsing the pointer is disabled (invis-
ible on the screen). It becomes visible again during pauses or if the com-
putation or browsing are terminated. Nevertheless, during the computa-
tion/browsing the mouse reacts to button pressing.

D.3 LOCBIF management through mouse

Using the mouse you can perform many of the same operations as with the
keyboard. It should be noted that there are text operations that can be done
only using the keyboard. Nevertheless, the mouse allows you to operate
quickly and more effectively.

Initial screen

You can use the mouse to select a dynamical system within the ODEs
Archive Window. To do this, move the pointer to the name of the system
and click on the left button. The highlight will be placed at this system
name. If there are more systems than lines in the window, you can scroll the
name list in the window by clicking on the up/down arrow symbols.

When a system is selected, you can proceed with its analysis by clicking
on the button once more keeping the pointer at the same position. You
can also perform one of the listed actions (edit, delete, etc.) by putting the
pointer at a relevant text and clicking on the mouse button.

You cannot use the mouse inside the Equation Window to edit the system
specification.

Main menu
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Using the mouse to select and activate items of the Main Menu is straight-
forward and equivalent to using function keys F1-F7. But you can access the
Value Window by simply moving the pointer inside the window and click on
the left mouse button.

Command Window

If you have clicked on the Commands item of the Main Menu, the
Command Window appears and you can perform directly one of the listed
commands by pointing at it and pressing the left mouse button. The only
exception is the Exit command. In this case, you have to click twice to
confirm your intention to return to the Initial screen.

In accordance with the general conventions, you can leave the window
by pressing the right button or the left button (outside the window). If you
press the left button keeping the pointer at an item of the Main Menu, you
will leave the Command Window and immediately activate the pointed item
as if you had used function keys F2-F7.

If you point out a position inside the Value Window, the window will be
activated (see section Value Window below).

Option and related Windows

If you have clicked on the Options item of the Main Menu, the Option
Window appears and you can set one of the listed options directly or invoke
one of the option parameter windows by selecting it with the left mouse
button.

When the Axis Window is invoked, you can change the visibility limits by
pointing at corresponding numerical values and using the keyboard. You can
select a variable to be plotted along the abscissa(ordinata) axis in two ways.
You have to point at the abscissa(ordinata) entry within the Axis Window,
and either press the left mouse button several times until the desired name
appears, or point at the desired name directly in the Value Window and click
on the left button. To adjust the visibility limits automatically, select the
corresponding part of the hint text using the left mouse button.

When the Continuation (Orbit or Service) Parameter Window is invoked,
you can change the numerical values of the parameters by selecting them with
the mouse and then using the keyboard.

You can leave the window as described in the previous section.

Clurve Select Window
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If you have clicked on the Curves item of the Main Menu, the Curve
Select Window appears and you can select one of the listed curves using the
left mouse button.

You can leave the window as usual. In this case the old curve selection
will be preserved.

Value Window

If you have clicked on the Values item of the Main Menu, the Value
Window becomes active and the cursor will appear inside it. If you select
a position within the numerical value field the cursor will relocate to the
selected position. Now you can modity the corresponding value immediately.

If you click at a name of a parameter its highlight status changes. It
becomes highlighted if it was not highlighted previously, and not highlighted
if it was. Therefore, this action is equivalent to (de)activation of a parameter
with the Alt4+F keys. It is possible to (de)activate a parameter by pointing
at the corresponding part of the hint in the Message Window and pressing
the left button. In the same way you can change lines Up/Down in the Value
Window.

Note, that you can access the Value Window directly from the Main Menu
or from the Command, Option and Curve Windows.

Curve Archive Window

If you have clicked on the Archive item of the Main Menu, the Curve
Archive Window appears at the place of the Value Window. You can select
one of the stored curves by pointing at it and pressing the left button. When
the curve is selected, you can load it back into the memory for browsing by
clicking on the left button once more. If a stored curve is selected, you can
delete it by clicking on the corresponding part of the hint in the Message
Window.

If there are more stored curves than lines in the Curve Archive Window,
you can scroll the curve name list by selecting the corresponding Up/Dn
symbol in the Message Window.

To store a curve, you can input its name using the keyboard and press
the left mouse button keeping the pointer at the first window line. Clicking
on this line with the void name results in the leaving the window.

Computation and browsing control
Note that clicking on the left button, if the Compute item in the Main
Menu has been selected, results in starting the computation forward, while
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clicking on the right button starts computation backward. The same is true
for the Browse item.

During the computation/browsing the pointer is invisible, but you can
click on the left button to make a pause, and click on it once more to con-
tinue computation/browsing. Clicking on the right button terminates the
computation/browsing process.

Once a pause is initialized, the pointer appears again. You can change
some of the selected options by pointing at the Options item of the Main
Menu and clicking on the left mouse button. The Pause Option Window will
appear and you can proceed as described before.

The current point can be selected as initial ("inserted”) by pointing at
the Values item of the Main Menu and pressing the left mouse button.

To continue computation/browsing, put the pointer at the relevant item
in the Main Menu line and click on the left button if you compute/browse
forward and the right button to compute/browse backward.

Setting initial point for orbit computation

If the selected curve is Orbit and some of the phase variables are used as
the abscissa and the ordinata, it is possible to use the mouse to assign initial
values to these variables and start the orbit computation. While working
within the Main Menu or inside the Value Window, you can point at a point
in the Graphics Window and click on the left/right mouse button to start
the computation forward/backward. You can then proceed as usual.
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