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We present new or improved methods to continue heteroclinic and homoclinic orbits to fixed points
in iterated maps and to compute their fold bifurcation curves, corresponding to the tangency of the
invariant manifolds. The proposed methods are applicable to general n-dimensional maps and are
implemented in matlab. They are based on the continuation of invariant subspaces (CIS) algorithm,
which is presented in a novel way. The systems of defining equations include the Riccati equations
appearing in CIS for bases of the generalized stable and unstable eigenspaces. We use the bordering
techniques to continue the folds, and provide full algorithmic details on how to treat the Jacobian
matrix of the defining system as a sparse matrix in matlab.

For a special – but important in applications – case n = 2 we describe the first matlab imple-
mentation of known algorithms to grow one-dimensional stable and unstable manifolds of the fixed
points of noninvertible maps.

The methods are applied to study heteroclinic and homoclinic connections in the generalized
Hénon map.

1 Introduction

The accurate computation of orbits connecting fixed points of an iterated map,
and the study of associated topological properties have long been recognized as
a very important problem both in the theory of nonlinear dynamical systems
and in a variety of applied problems, e.g. in models for economical, biological,
and physical phenomena. Indeed, as discovered by Poincaré and Birkhoff, such
orbits may generate rich dynamics. For example, an orbit that connects a
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hyperbolic fixed point to itself (a homoclinic orbit) generically implies the
existence of an infinite number of periodic orbits nearby, see [24, 30, 31] and
tutorial presentations in [17,26,32]. As discovered in [9,10,16], the appearance
of a pair of such homoclinic orbits is accompanied by an infinite sequence of fold
and period-doubling bifurcations of periodic orbits, for more details see [25,27],
as well as [22]. Moreover, since a homoclinic orbit of a planar map belongs to
the intersection of the stable and the unstable invariant curves of a saddle
fixed point, such orbits can be involved in the destruction of a closed invariant
curve which is born, for example, at a Neimark-Sacker bifurcation [23,28,29].
This destruction mechanism has been studied in [1, 4].

Numerical methods for bifurcation analysis of maps have received consid-
erable attention recently and are supported by existing software. Location,
analysis, and continuation of fixed-point and cycle bifurcations are imple-
mented, e.g. in content [13] and Cl MatContM [15]. Algorithms for the
computation of the one-dimensional manifolds are implemented in dstool

[8, 20] and dynamics [34, 35], while those for the continuation of homoclinic
orbits and their tangencies using the projection asymptotic boundary condi-
tions [2] are implemented in an auto-driver [33].

In this paper, we present new or improved methods to continue heteroclinic
and homoclinic orbits to fixed points in iterated maps and to compute the
tangencies of their invariant manifolds. In contrast with [33], the projection
asymptotic boundary conditions are formulated using the continuation of in-
variant subspaces method [7], which we present in a novel way, using only linear
algebra arguments. Moreover, in our approach the Riccati equation is included
into the defining system and the continuation of the tangencies is based on the
bordering technique. We revisit known algorithms to grow stable and unstable
invariant 1D manifolds of cycles in a 2D map without using its inverse [8,20].
We discuss the implementation of all mentioned above methods in matlab as
a part of Cl MatContM. In particular, we provide full algorithmic details
on how to treat the Jacobian matrix of the defining system as a sparse matrix
in matlab. Therefore Cl MatContM becomes a unique integrated toolbox
for the numerical bifurcation analysis of maps and difference equations, that
covers both local and global phenomena. To illustrate its strength, we compute
heteroclinic and homoclinic connections in the generalized Hénon map.

We consider the J -th iterate of a smooth map at some parameter as follows:

x 7→ fJ(x, α) = f(f(f(· · · f
︸ ︷︷ ︸

J times

(x, α), α), α), α), f : R
n × R

nα → R
n. (1)
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A sequence (xk)k∈Z is called a connecting orbit of the map f J(·, α) at α = ᾱ if

lim
k→−∞

xk = x−∞,

fJ(xk, ᾱ) = xk+1, for all k ∈ Z,

lim
k→+∞

xk = x+∞.

(2)

Due to the continuity, points x±∞ are fixed points of fJ(·, ᾱ). A connecting
orbit is called homoclinic if x−∞ = x+∞ and heteroclinic otherwise. From
a geometrical point of view, the connecting orbit lies in the intersection of
the unstable manifold W u

−∞ of x−∞ and the stable manifold W s
+∞ of x+∞.

A connecting orbit is regular if x−∞ and x+∞ are hyperbolic and the stable
manifold W u

−∞ and the unstable manifold W s
+∞ have transversal intersections

at xk for all k ∈ Z.
Degenerate cases occur when either one of its fixed points becomes nonhy-

perbolic or the connecting orbit loses transversality. In the former case the
unstable and center-stable manifolds have a transversal intersection, which
produces a connecting orbit with a singular endpoint. In the simplest case
there is precisely one multiplier 1 or −1, or one conjugate pair of multipli-
ers of fJ(x, α) on the unit circle. This gives us the saddle-fold, saddle-flip,
saddle-Neimark-Sacker connecting orbits, respectively, see e.g. [3,18]. We will
not treat such cases and deal only with the latter case, i.e. the case of non-
transversality.

The corresponding numerical problem, for a regular heteroclinic connection
between hyperbolic fixed points x1 and xN of (1), is that of finding a solution
(xk)k=1,2,...,N of the following system [2]:

x1 = fJ(x1, α),
xk+1 = fJ(xk, α), k = 2, . . . , N − 2,
xN = fJ(xN , α),

(3)

such that (xk)k=2,...,N−1 leave x1 along its unstable manifold and approach
xN along its stable manifold. These requirements are then substituted by pro-
jection boundary conditions which place x2 and xN−1 into the corresponding
tangent spaces, i.e. unstable and stable invariant subspaces of the Jacobian
matrices of fJ at x1 and xN , respectively [2].

2 Continuation of heteroclinic connections

We use an improved algorithm [2] for locating and continuing connecting or-
bits, which is based on an algorithm for the continuation of invariant subspaces
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(CIS) [5,7]. Assume the eigenvalues of the Jacobian matrices (f J(x1, α))x and
(fJ(xN , α))x, where the subscript denotes differentiation, are ordered, respec-
tively, as follows:

|λU
n | ≤ . . . ≤ |λU

nU+1| < 1 < |λU
1 | ≤ . . . ≤ |λU

nU
|,

|λS
1 | ≤ . . . ≤ |λS

nS
| < 1 < |λS

nS+1| ≤ . . . ≤ |λS
n |.

The algorithm requires the evaluation of various projections associated with
the eigenspaces of (fJ(x1, α))x and (fJ(xN , α))x. These projections are con-
structed using the real Schur factorizations.

(fJ(x1, α))x = Q(1)R(1)[Q(1)]T , (fJ(xN , α))x = Q(N)R(N)[Q(N)]T ,

where Q(1), R(1), Q(N) and R(N) are n × n-matrices.
The first factorization has been chosen so that the first nU columns

qU
1 , . . . , qU

nU
of Q(1) form an orthonormal basis of the right invariant subspace

S1 of (fJ(x1, α))x, corresponding to λU
1 , . . . , λU

nU
and the remaining n − nU

columns qU
nU+1, . . . , q

U
n of Q(1) form an orthonormal basis of the orthogonal

complement S⊥
1 . Similarly, the first nS columns qS

1 , . . . , qS
nS

of Q(N) form an

orthonormal basis of the right invariant subspace SN of (fJ(xN , α))x, corre-
sponding to λS

1 , . . . , λS
nS

and the remaining n − nS columns qS
nS+1, . . . , q

S
n of

Q(N) form an orthonormal basis of the orthogonal complement S⊥
N .

When dealing with heteroclinic connections, we want to find a sequence of
points (xk)k=1,...,N satisfying:

• Stationary state conditions for the initial fixed point:

fJ(x1, α) − x1 = 0; (4)

• The iteration conditions

fJ(xk, α) − xk+1 = 0, k = 2, 3, . . . , N − 2; (5)

• Stationary state conditions for the final fixed point:

fJ(xN , α) − xN = 0; (6)

• The left projection boundary conditions

(x2 − x1)
T qU

nU+i
= 0, i = 1, . . . , n − nU ; (7)
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• The right projection boundary conditions

(xN−1 − xN )T qS
nS+i

= 0, i = 1, . . . , n − nS . (8)

A regular zero of a system of equations (4), (5), (6), (7), and (8) corresponds
to an approximation of a transversal heteroclinic orbit with hyperbolic fixed
points. Thus, a zero for this system can be continued in one parameter, for
example, using the standard pseudo-arclength continuation algorithm [19].

In the computational process the conditions in (7) and (8) imply that we
need to access the unstable and stable eigenspaces of the linearization of the
map (1) at the fixed points x1 and xN at each step of the continuation, re-
spectively. It is not efficient to recompute these spaces from scratch in each
continuation step. In the next section we explain an algorithm for continuing
the invariant subspaces S1 and S2 effectively. Contrary to [5,7], our algorithm
is purely based on linear algebra arguments.

2.1 Continuation of invariant subspaces

Let A(α) ∈ R
n×n denote (fJ(x1, α))x. The basic continuation algorithm re-

quires at each pseudo-arclength continuation step the computation of the or-
thogonal complement of the right invariant (unstable) nU -dimensional sub-
space S(α) of A(α). In general, the function A(α) is smooth in α, and it is
important that S(α) is smooth as well, as otherwise convergence difficulties
can be expected. We show how to constructively obtain smooth bases for the
unstable eigenspace and its orthogonal complement.

Continuation of invariant subspaces was introduced in [5]. We formulate it in
a novel way, using only linear algebra arguments. To justify our construction,
we recall that in our continuation procedure we parametrize a solution branch
in terms of so called pseudo-arclength; let s denote the pseudo-arclength vari-
able. Thus, both fixed points x1 and xN as well as the parameter(s) α are
smooth functions of s. The matrix-valued function A : α ∈ R

nα → R
n×n can

thus be viewed as a smooth function of s ∈ R. As a consequence, we consider
the continuation of invariant subspaces with respect to the scalar pseudo-
arclength variable s. For this reason, we use the notation A(s) for A(α).

We first consider x1 and its unstable eigenspace. Suppose that initially we
have the (real) block Schur factorization

A(0) = Q(0)R(0)QT (0), Q(0) = [Q1(0) Q2(0)], (9)

where A(0), R(0) and Q(0) are n × n-matrices, Q(0) is orthogonal, Q1(0) has
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dimensions n × nU and R(0) is block upper triangular

R(0) =

[
R11(0) R12(0)
0 R22(0)

]

, (10)

where R11(0) and R22(0) are nU × nU - and (n − nU) × (n − nU )-matrices,
respectively; Rii(0), i = 1, 2, are not required to be triangular. The columns
of Q1(0) span the unstable invariant subspace S(0) of A(0), and the columns
of Q2(0) span the orthogonal complement S⊥(0). We want to obtain a block
Schur factorization for the matrix A(s), close to A(0).

Suppose that the matrix A(s) has two groups of eigenvalues, Λ1(s) (with
modulus > 1) and Λ2(s) (with modulus < 1), which stay disjoint for all s
around 0. Then, in a neighborhood of s = 0, we need a smooth factorization

A(s) = Q(s)R(s)QT (s), Q(s) = [Q1(s) Q2(s)], (11)

where R(s) is in block Schur form

R(s) =

[
R11(s) R12(s)
0 R22(s)

]

. (12)

Here, R11 has eigenvalues Λ1(s) and R22 has eigenvalues Λ2(s). As shown in [6],
it is always possible to obtain a smooth path of block Schur factorizations that
satisfies (11) and (12). However, this smooth path is usually not unique.

Thus we can write

Q(s) = Q(0)U(s), with U(0) = I, (13)

so that we only need to compute the n×n-matrix U(s). We partition U(s) in
blocks of the same size as R(0) in (10):

U(s) = [U1(s) U2(s)] =

[
U11(s) U12(s)
U21(s) U22(s)

]

, (14)

so that U11(s) and U22(s) are nU × nU - and (n − nU ) × (n − nU )-matrices,
respectively.

We now show that we can always assume that U11(s) and U22(s) are sym-
metric positive-definite by redefining Q(s) and R(s) if necessary and that this
defines Q(s) and R(s) in a unique way.

Proposition: Suppose Q(0) and R(0) are chosen such that (9) and (10)
hold. Then for all s sufficiently close to 0 there exist a unique orthogonal
matrix Q(s) = [Q1, Q2] of size n × n such that the columns of Q1 span the
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unstable invariant subspace of A(s) and the columns of Q2 span the orthogonal
complement of the unstable eigenspace, and a unique block triangular matrix

R(s) =

[
R11(s) R12(s)
0 R22(s)

]

(15)

of size n × n where R11 has eigenvalues Λ1(s) with modulus > 1 and R22 has
eigenvalues Λ2(s) with modulus < 1, such that

A(s)Q(s) = Q(s)R(s) (16)

and

Q−1(0)Q(s) =

[
U11(s) U12(s)
U21(s) U22(s)

]

, (17)

where the blocks U11 and U22 are symmetric positive definite (SPD).

Proof Suppose that Q(s) and R(s) satisfy (15) and (16). Let Q
′

(s) and R
′

(s)
be any other pair that satisfies (15) and (16). Then we must have

Q
′

(s) = Q(s)T (s) = Q(s)

[
T1 0
0 T2

]

, (18)

where T is orthogonal, and also block diagonal.
Suppose also that in

Q−1(0)Q
′

(s) =

[
U

′

11 U
′

12

U
′

21 U
′

22

]

(19)

both U
′

11 and U
′

22 are SPD. By (18) and (19), we have

Q−1(0)Q
′

(s) = Q−1(0)Q(s)

[
T1 0
0 T2

]

=

[
U

′

11 U
′

12

U
′

21 U
′

22

]

, (20)

or, equivalently,

Q−1(0)Q(s) =

[
U

′

11T
−1
1 U

′

12T
−1
2

U
′

21T
−1
1 U

′

22T
−1
2

]

. (21)
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According to the polar decomposition of matrices [11], §4.2.10, A1 and A2,
the upper left and lower right blocks of Q−1(0)Q(s) respectively, are uniquely
presented as a product of an SPD matrix and an orthogonal matrix. This
implies that T1 and T2 are uniquely defined. �

Since U(0) = I, there is an open interval about 0, call it I0, where we can
require that U1 has the structure

U1(s) =

[
I

U21(s)U
−1
11 (s)

]

U11(s). (22)

Next, for all s ∈ I0, we define

YU (s) = U21(s)U
−1
11 (s). (23)

The orthogonality relation UT
1 U1 = I implies:

UT
1 (s)U1(s) = UT

11(s)U11(s) + UT
21(s)U21(s) = I. (24)

Using (24), we obtain

I + Y T
U YU = I + U−T

11 (s)UT
21(s)U21(s)U

−1
11 (s)

= I + U−T
11 (s)

[
I − UT

11(s)U11(s)
]
U−1

11 (s)

= I + U−T
11 (s)U−1

11 (s) − I

= U−T
11 (s)U−1

11 (s).

Now because U11 is symmetric positive definite, U−1
11 is the unique square root

of I + Y T
U YU . This implies that we can rewrite (22) in terms of YU and choose

U11 symmetric, to obtain

U1 =

[
I

YU

]

(I + Y T
U YU )−

1

2 . (25)

Similarly, using UT
2 U2 = I and UT

1 U2 = 0 for U2, so that eventually we obtain
for every s ∈ I0,

U(s) =

[(
I

YU

)

(I + Y T
U YU )−

1

2

(
−Y T

U

I

)

(I + YUY T
U )−

1

2

]

. (26)
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Hence, the columns of

QU (0)

[
I

YU

]

(27)

form a base for the unstable eigenspace at x1 and the columns of

Q⊥
U (s) = QU (0)

[
−Y T

U

I

]

(28)

form a base for the orthogonal complement of the unstable eigenspace. We
note that these bases are in general not orthogonal.

Thus, we need to find the matrix YU ∈ R
(n−nU)×nU in (26). For any given

s ∈ I0, define R̂11, R̂12, E21 and R̂22 by

QT (0)A(s)Q(0) =

[
R̂11 R̂12

E21 R̂22

]

, (29)

where R̂11 is of size nU × nU and R̂22 is an (n − nU ) × (n − nU ) matrix.
By (11) and (12) we obtain the invariant subspace relation

QT
2 (s)A(s)Q1(s) = 0. (30)

Now we substitute Q(s) given by (13) and (26) and A(s) obtained from (29)
into (30)

[−YU I]QT (0)Q(0)

[
R̂11 R̂12

E21 R̂22

]

QT (0)Q(0)

[
I

YU

]

= 0 (31)

to obtain the following algebraic Riccati equation for YU :

F (YU ) = 0, F (YU ) := R̂22YU − YU R̂11 + E21 − YU R̂12YU . (32)

We now look at xN . In the same way we can compute a right invariant
(stable) nS-dimensional subspace S(α) of A(α). First, we consider Q(α) =
[Q1(α) Q2(α)] ∈ R

n×n, Q1(α) ∈ Rn×nS , Q2(α) ∈ Rn×(n−nS) so that Q1(α)
spans S(α) and Q2(α) spans the orthogonal complement S⊥(α).

Using the same procedure as used in the computation of the unstable sub-
space for x1, we can obtain the relations

Q(s) = Q(0)U(s), with U(0) = I, (33)
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and

U(s) =

[(
I

YS

)

(I + Y T
S YS)−

1

2

(
−Y T

S

I

)

(I + YSY T
S )−

1

2

]

, (34)

and eventually the algebraic Riccati equation for YS

F (YS) = 0, F (YS) := R̂22YS − YSR̂11 + E21 − YSR̂12YS (35)

to compute the stable invariant subspace and its orthogonal complement for
xN . Solving (35) for YS of size (n−nS)×nS, enables us to compute the span of
the stable invariant subspace of xN and its orthogonal complement. If QS(0)
is the orthogonal matrix from the starting heteroclinic orbit, related to the
stable invariant subspace, then a basis for the stable eigenspace in the new
step at xN is given by the columns of

QS(0)

[
I

YS

]

. (36)

A basis for the orthogonal complement of the subspace in the new step Q⊥
S , is

given by the columns of

Q⊥
S (s) = QS(0)

[
−Y T

S

I

]

. (37)

These bases are in general not orthogonal.

2.2 Implementation

We now discuss the implementation of the algorithm in Cl MatContM to
continue the heteroclinic connection from the fixed point x1 to the fixed point
xN .

• Continuation variables
The continuation variables are stored in a K-vector, where K = Nn +

(n − nU )nU + (n − nS)nS + 1, containing:
• A n-vector with the coordinates of the initial fixed point.
• (N − 2) n-vectors with the coordinates of the mesh points x2, . . . , xN−1.
• A n-vector xN with the coordinates of the final fixed point.
• The vector Y v

U , i.e. columnwise vectorized YU .
• The vector Y v

S , i.e. columnwise vectorized YS.
• An active parameter ap, i.e. αa.
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• Defining system
The defining systems consists of Nn+(n−nU)nU +(n−nS)nS equations:

• The initial fixed point constraint f J(x1, α) − x1 = 0.
• The constraints fJ(xj−1, α) − xj = 0, j = 3, . . . , N − 1.
• The final fixed point constraint f J(xN , α) − xN = 0.
• The rowwise vectorized Riccati equation (32) for YU .
• The rowwise vectorized Riccati equation (35) for YS .
• The initial boundary conditions (7).
• The final boundary conditions (8).

• Initialization
To implement the algorithm in CL MatContM [14], we need to initialize

the connecting orbit, i.e. we set the problem parameter vector α, mesh points
x1, . . . , xN , compute Q1(0) and Q2(0) corresponding to x1 and xN by (9) and
initialize the vector YU = 0 and YS = 0 corresponding to the unstable and
stable eigenspaces of x1 and xN of sizes ((n−nU)×nU ) and ((n−nS)×nS),
respectively. We also set a global structure hetds containing the following
fields:
• Dimension of the state space (hetds.nphase).
• Number of mesh points, including the two fixed end points

(hetds.npoints).
• The iteration number of the map J (hetds.niteration).
• Mapfile where the map is defined (hetds.mapfile).
• Vector of starting values of parameters and index of the active parameter

(hetds.P0 and hetds.ActiveParams ).
• Dimensions of the stable and unstable manifolds (hetds.nu and

hetds.ns).
• The matrices QU and QS, bases for unstable and stable subspaces respec-

tively (hetds.QU and hetds.QS).

• Adaptation
At each continuation point a basis for the unstable eigenspace of x1 is given

by hetds.QU

[
I

YU

]

and for its orthogonal complement by hetds.QU

[
−Y T

U

I

]

.

However, these bases are not orthogonal. To restore orthogonality we must
adapt QU from time to time. The base QU can be adapted using the singular
value decomposition (SVD)

[U, S, V ] = svd

(

hetds.QU

[
I

YU

])

, (38)

where U and V are unitary matrices of sizes n×n and nU ×nU , respectively,
and S is a diagonal matrix of size n × nU . An adapted orthogonal base of
the unstable subspace is given by U . Then, the vector YU is set to zero.
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By using a similar procedure we can adapt the matrices QS and YS.

2.3 Computing the Jacobian matrix

To continue a connecting orbit, we need to compute the Jacobian matrix of
the corresponding defining system. The Jacobian matrix can be computed by
a finite difference approximation or by symbolic derivatives. However, con-
tinuation that uses finite differences is much slower in comparison with the
symbolic Jacobian.

To compute the Jacobian matrix, we first initialize the Jacobian matrix J as
a zero sparse matrix of size k×(k+1), where k = Nn+(n−nU)nU +(n−nS)nS .
We then compute the nonzero entries of J by taking the derivatives of the
system of defining equations with respect to the continuation variables.

• For the constraints in (4) we set J(1 : n, 1 : n) = A(x1) − I where A(x1) is
the Jacobian of (1) at x1 and I is an identity matrix of size n. For derivatives
of (4) w.r.t. the control parameter we set

J(1 : n, k + 1) = (Aα)1(:,hetds.ActiveParams),

where (Aα)1 is the Jacobian of fJ w.r.t. the parameter at x1.

• For the (N − 3) constraints defined in (5), we get for j = 3, . . . , N − 1,
J((j−2)n+1 : (j−1)n, (j−2)n+1 : (j−1)n) = A(xj−1) and J((j−2)n+1 :
(j − 1)n, (j − 1)n + 1 : jn) = −I.

For derivatives of (5) w.r.t. the control parameter we set

J((j − 2)n + 1 : (j − 1)n, k + 1) = (Aα)j(:,hetds.ActiveParams),

where j = 3, . . . , N−1 and (Aα)j is the Jacobian w.r.t. the control parameter
at xj.

• For the final fixed point constraint (6), J is computed as: J((N − 2)n +
1 : (N − 1)n, (N − 1)n + 1 : Nn) = A(xN ) − I. For derivatives of (6)
w.r.t. the control parameter we set J((N − 2)n + 1 : (N − 1)n, k + 1) =
(Aα)N (:,hetds.ActiveParams), where (Aα)N is the Jacobian of fJ w.r.t. the
parameter at xN .

• Now we compute the entries of J corresponding to (32) at x1. First we
consider the derivatives with respect to the components of YU . For simplicity
of the computations we divide (32) into 3 terms D1 = R̂22YU , D2 = −YUR̂11,

D3 = −YU R̂12YU .

• We start with D1 whose derivatives with respect to the components of
YU are written into a block matrix of size ((n − nU ) × nU) × ((n −
nU) × nU). D1 is an (n − nU) × nU matrix with general form (D1)(j,i) =
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∑n−nU

l=1 (R̂22)(j,l)(YU )(l,i), j = 1, . . . , n − nU , i = 1, . . . , nU . Hence all
nonzero derivatives arise from the fact that the derivative of (D1)(j,i)
with respect to (YU )(s,i) is (R̂22)(j,s), 0 ≤ s ≤ n−nU . Now if l = n(N −1)
and h = Nn, then
• (D1)(j,i) is at row position rp = l + i + (j − 1)nU .
• (YU )(s,i) is at column position cp = h + s + (i − 1)(n − nU ).
Therefore we set

J(rp, cp) := (R̂22)(j,s),

whenever 1 ≤ j ≤ n − nU , 1 ≤ i ≤ nU and 1 ≤ s ≤ n − nU .
• D2 is an (n − nU ) × nU matrix with general form

(D2)(j,i) = −

nU∑

l=1

(YU )(j,l)(R̂11)(l,i), j = 1, . . . , n − nU , i = 1, . . . , nU .

Hence all nonzero derivatives arise from the fact that the derivative of
(D2)(j,i) with respect to (YU )(j,s) is (−R̂11)(s,i), 1 ≤ s ≤ nU . Now if
l = n(N − 1) and h = Nn, then
• (D2)(j,i) is at row position rp = l + i + (j − 1)nU .
• (YU )(j,s) is at column position cp = h + j + (s − 1)(n − nU ).
Therefore we update

J(rp, cp) := J(rp, cp) − (R̂11)(s,i),

whenever 1 ≤ j ≤ n − nU , 1 ≤ i ≤ nU and 1 ≤ s ≤ nU .
• D3 = −YUR̂12YU is an (n−nU)×nU matrix. We introduce D31 = −YUR̂12

and D32 = −R̂12YU . With this notation, we have D
′

3 = D31Y
′

U + Y
′

UD32

where the apostrophe denotes derivation with respect to an unspecified
component of YU .

First we consider D31Y
′

U that is a (n − nU ) × nU matrix with the gen-

eral form (D31Y
′

U)(j,i) =
∑n−nU

l=1 (D31)(j,l)(Y
′

U )(l,i). This contributes to the
derivative with respect to (YU )(r,s) if i = s with the term (D31)(j,r). Now
if l = n(N − 1) and h = Nn, then
• (D31Y

′

U )(j,i) is at row position rp = l + i + (j − 1)nU ;
• (YU )(r,i) is at column position cp = h + r + (i − 1)(n − nU ).

Therefore we update J(rp, cp) := J(rp, cp) + (D31)(j,r), whenever 1 ≤
j ≤ n − nU , 1 ≤ i ≤ nU and 1 ≤ r ≤ n − nU .
Now we consider Y

′

UD32 that is a (n−nU)×nU matrix with general form
(Y

′

UD32)(j,i) =
∑nU

l=1(Y
′

U )(j,l)(D32)(l,i). This contributes to the derivative
with respect to (YU )(r,s) if r = j with the term (D32)(s,i).
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Now if l = n(N − 1) and h = Nn, then
• (Y

′

UD32)(j,i) is at row position rp = l + i + (j − 1)nU ;
• (YU )(j,s) is at column position cp = h + j + (s − 1)(n − nU ).

Therefore we update

J(rp, cp) := J(rp, cp) + (D32)(s,i),

whenever 1 ≤ j ≤ n − nU , 1 ≤ i ≤ nU and 1 ≤ s ≤ nU .

• We compute the derivatives of F (YU ) in (32) with respect to the components
of x1. If 1 ≤ i ≤ n, then the derivative of QT (0)A(s)Q(0) w.r.t. x(1,i) is

given by Di = QT (0)hess(:, :, i)Q(0) where hess is the Hessian of f J . Then
D1i = Di(1 : nU , 1 : nU), D2i = Di(1 : nU , nU + 1 : n), D3i = Di(nU + 1 :

n, 1 : nU) and D4i = Di(nU + 1 : n, nU + 1 : n) are derivatives of R̂11, R̂12,

E21 and R̂22, w.r.t. x(1,i), respectively. Derivatives of F (YU ) w.r.t. x(1,i) are
hence given by

(F (YU ))x(1,i)
= D1iYU − YUD2i + D3i − YUD4iYU .

All nonzero derivatives arise from the fact that the derivative of (F (YU ))(j,s)
w.r.t. to x(1,i) is

(D1i)(j,:)(YU )(:,s) − (YU )(j,:)(D2i)(:,s) + (D3i)(j,s) − (YU )(j,:)(D4iYU )(:,s).

Now if l = n(N − 1), then
• (F (YU ))(j,s) is at row position rp = l + s + (j − 1)nU ;
• x(1,i) is at column position cp = i.

Therefore we set

J(rp, cp) := (D1i)(j,:)(YU )(:,s) −

(YU )(j, :)(D2i)(:,s) + (D3i)(j,s) − (YU )(j,:)(D4iYU )(:,s),

whenever where j = 1, . . . , n − nU , s = 1, . . . , nU , i = 1, . . . , n.

• We now compute the derivatives of F (YU ) in (32) with respect to the control
parameter αa. The derivative of QT (0)A(s)Q(0) w.r.t. the control parameter
is given by D = QT (0)hessp(:, :,ActiveParams)Q(0) where hessp is the
Hessian of fJ w.r.t. αa. Then D1 = D(1 : nU , 1 : nU), D2 = D(1 : nU , nU +
1 : n), D3 = D(nU + 1 : n, 1 : nU ) and D4 = D(nU + 1 : n, nU + 1 : n) are

derivatives of R̂11, R̂12, E21 and R̂22, w.r.t. αa, respectively.
Derivatives of F (YU ) w.r.t. the control parameter are hence given by

(F (YU ))αa
= D1YU − YUD2 + D3 − YUD4YU .



Connecting orbits of maps 15

All nonzero derivatives arise from the fact that the derivative of (F (YU ))(j,s)
w.r.t to αa is

(D1)(j,:)(YU )(:,s) − (YU )(j, :)(D2)(:,s) + (D3)(j,s) − (YU )(j,:)(D4YU )(:,s).

Now if l = n(N − 1), then
• (F (YU ))(j,s) is at row position rp = l + s + (j − 1)nU ;
• αa is at column position cp = k + 1.

Therefore we set

J(rp, cp) := (D1)(j,:)(YU )(:,s) −

(YU )(j, :)(D2)(:,s) + (D3)(j,s) − (YU )(j,:)(D4YU )(:,s),

whenever where j = 1, . . . , n − nU , s = 1, . . . , nU .
The derivatives that correspond to (35) can be obtained similarly as those

of (32).

• We consider conditions (7) which consists of (n−nU ) equations of the form

Bi =

n∑

k=1

(x2 − x1)(1,k)(q
U
(nU+i))k = 0, i = 1, . . . , n − nU .

• All nonzero derivatives of Bi w.r.t. x(1,s) are of the form −(q(nU+i))s. Now
if l = n(N − 1) + nU (n − nU) + nS(n − nS), then
• B(1,i) is at row position l + i;
• x(1,s) is at column position s.

Therefore we set

J(l + i, s) := −(qU
(nU+i))(s),

whenever 1 ≤ i ≤ n − nU and 1 ≤ s ≤ n.

• All nonzero derivatives of Bi w.r.t. x(2,s) are of the form (qU
(nU+i))(s). Now

if l = n(N − 1) + nU (n − nU) + nS(n − nS), then
• Bi is at row position l + i;
• x(2,s) is at column position n + s.

Therefore we set

J(l + i, n + s) := (qU
(nU+i))(s),

whenever 1 ≤ i ≤ n − nU and 1 ≤ s ≤ n.
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• We now compute derivatives of (7) w.r.t. the components of QU . The
equations (7) have the following form

Bi = (x2 − x1)
T qU

nU+i = 0, for i = 1, . . . , n − nU . (39)

Here qU
nU+i are precisely the columns of QU (0)

[
−Y T

U

I

]

. Therefore it is

best to introduce the new vector H = (x2−x1)
T Q(0). With this notation

the i-th equation becomes

−

nU∑

j=1

Hj(Y
T
U )ji + terms without components of YU = 0.

This means that the i-th equation has derivatives with respect to (YU )ji
equal to −Hj (i = 1 . . . , n − nU , j = 1, . . . , nU ).
Let l = n(N − 1) + nU (n − nU ) + nS(n − nS), h = nN . Then the i-th
equation is at column position l + i. The variable (YU )ji is at column
position h + j + (n − nU)(i − 1). So we have to set

J(l + i, h + j + (n − nU)(i − 1)) := −Hj, for the relevant i, j.

The derivatives that corresponds to (8) can be computed as those that
correspond to (7).

3 Continuation of homoclinic connections

Assume that the eigenvalues of (f J(x1, α))x are ordered as follows:

|λ1| ≤ . . . ≤ |λm| < 1 < |λm+1| ≤ . . . ≤ |λn|.

The procedure to continue a homoclinic connection to x1 is similar to the
procedure used in Section 2. The algorithm now requires the evaluation of two
projections associated with the eigenspaces of (f J(x1, α))x. These projections
are constructed using the real Schur factorizations

(fJ(x1, α))x = Q(1)R(1)[Q(1)]T , (fJ(x1, α))x = Q(N)R(N)[Q(N)]T ,

where Q(1), R(1), Q(N), and R(N) are n×n-matrices. The first factorization has
been chosen so that the first m columns qS

1 , . . . , qS
m of Q(1) form an orthonor-

mal basis of the right invariant subspace S1 of (fJ(x1, α))x, corresponding to
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λ1, . . . , λm and the remaining n−m columns qU
m+1, . . . , q

U
n of Q(1) form an or-

thonormal basis of S⊥
1 . Similarly, the first l = n−m columns qU

1 , . . . , qU
l of Q(N)

form an orthonormal basis of the right invariant subspace U1 of (fJ(x1, α))x,
corresponding to λm+1, . . . , λn and the remaining n−l−m columns qU

l+1, . . . , q
U
n

of Q(1) form an orthonormal basis of S⊥
N .

When dealing with homoclinic connections, we want to find a sequence of
points (xk)k=1,...,N−1 satisfying

• Stationary state condition

fJ(x1, α) − x1 = 0; (40)

• The iteration conditions

fJ(xk, α) − xk+1 = 0, k = 2, 3, . . . , N − 2; (41)

• The left projection boundary conditions

(x2 − x1)
T qU

nU+i(α) = 0, i = 1, . . . , n − nU ; (42)

• The right projection boundary conditions

(xN−1 − x1)
T qS

nS+i(α) = 0, i = 1, . . . , n − nS. (43)

A regular zero of a system of equations (40), (41), (42) and (43) corresponds
to a transversal homoclinic orbit to a hyperbolic fixed point. Thus, a zero for
this system can be continued in one parameter.

The equations (42) and (43) imply that we should have the stable and un-
stable eigenspaces of the map (1) at the fixed points x1 available at each step
of the continuation. Using the same procedure, as in the computation of the
unstable subspace for x1, we can obtain relations analogous to (13), (26) and
(32) to compute the stable invariant subspace and its orthogonal complement
at x1.

4 Invariant manifolds of planar maps

Our main motivation for computing stable and unstable manifolds of a saddle
point is the role they play in the computation of connecting orbits. Intersec-
tions of stable and unstable manifolds give rise to homoclinic or heteroclinic
tangles. Stable and unstable manifolds are global objects that cannot be found
analytically and, hence, must be computed numerically. These manifolds must
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be grown from local knowledge, for example from linear information near a
fixed point.

We concentrate here on the simplest case of planar maps when these man-
ifolds are one-dimensional. Most algorithms use the idea of computing the
manifold by starting from a local approximation near the saddle point. The
map that arises in a particular application does not necessarily have an ex-
plicit inverse or may not even be invertible, meaning that there may be several
branches of inverses. Consequently, the standard algorithms requiring the in-
verse cannot be used to compute stable manifolds of saddle points in this
case.

First we present a known algorithm to compute the stable manifold of a
saddle point of a planar map, without requiring any knowledge of its inverse
map, either explicitly or approximately. In particular, the algorithm can also
be used in the case where the map is noninvertible, so that multiple pre-images
may exist. Then we focus on the computation of the unstable manifolds.

We recall some definitions, mostly to fix the notation. We consider (1) when
n = 2 and assume that f has a fixed point x0 = fJ(x0) and that f is differen-
tiable in a neighborhood of x0, but may not have a single-valued inverse. The
fixed point x0 of f is a saddle if the Jacobian matrix (f J(x0))x has one stable
eigenvalue λs and one unstable eigenvalue λu. The stable manifold theorem [26]
guarantees that there exist local stable and unstable manifolds W s

loc(x0) and
W u

loc(x0) tangent at x0 to the stable and unstable eigenspaces Es(x0) and
Eu(x0), respectively. The global stable manifold W s(x0) of x0 is defined as
the set of points that converge to x0 under forward iteration of f ,

W s(x0) =
{
x ∈ R

2 : fJ(x) → x0 as J → ∞
}

. (44)

Similarly, the global unstable manifold W u(x0) of x0 consists of points that
converge to x0 under backward iteration of the invertible map f . In terms of
forward iterates, this is defined as

W u(x0) =

{

x ∈ R
2 : ∃ {qk} , q0 = x and fJ(qk+1) = qk, and lim

k→∞
qk = x0

}

.

(45)
The stable manifold W s(x0) is often defined as the union of the successive
pre-images of W s

loc(x0). However, if multiple inverses exist, then all pre-images,
even if disjoint from the main branch, are part of the stable manifold. Hence,
thus defined, the stable manifold may or may not be simply connected in phase
space.
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4.1 Computing a stable manifold

To compute the one-dimensional stable manifold of a saddle point of a planar
map, we use the Search Circle (SC) algorithm proposed in [8]. We assume
that f is orientation preserving; otherwise we consider its second iterate. We
briefly explain this algorithm that extends the one-dimensional manifold in
steps by adding new points according to the local curvature properties of the
manifold, and finds a new point close to the last computed point that maps
under f to a piece of the manifold that was already computed. SC produces
a piecewise linear approximation W s

pl of W s(x0) by computing an ordered list

of points M = {p0, p1, . . . , pn} at varying distance from each other. The first
point p1 is taken a small distance δ > 0 from p0 = x0 along Es(x0). The
distance between consecutive points is adjusted according to the curvature of
the manifold. To ensure an acceptable resolution of the curve according to
pre-specified accuracy parameters, we monitor αk, the angle between pk−1, pk

and pk+1, and the product αk∆k. The αk is approximated by

αk = 2 sin−1

(
‖p̄ − pk−1‖

2‖pk − pk−1‖

)

≈
‖p̄ − pk−1‖

‖pk − pk−1‖
, (46)

where

p̄ = pk +
‖pk − pk−1‖

‖pk − pk+1‖
(pk − pk+1) (47)

is the point on the line through pk and pk+1 that lies at the same distance
from pk as pk−1. We check the conditions

αk < αmax (48)

αk∆k < (α∆)max (49)

Condition (48) ensures that the resolution of the curve is maintained and
condition (49) controls the local interpolation error. The new point pk+1 is
accepted if it satisfies the above criteria. If one of the criteria is not satisfied,
then we replace ∆k by 1

2∆k and repeat the procedure to find a new candidate
for pk+1. We set ∆k+1 = 2∆k if both αk > αmin and αk∆k > (α∆)min for a
user-specified choice of parameters αmin and (αk∆k)min. This ensures that the
number of points used to approximate the manifold is in some sense optimized
for the required accuracy constraints, see [21] for more details.
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Figure 1. A graphical illustration of the SC algorithm. A new point pk+1 is found on the circle
C(pk, ∆K) centered at pk with radius ∆k such that f(pk+1) lies on a previously computed part of

W S(x0).

A pseudo-code representation of how the branch is grown can be found in [8].
A graphical illustration of the SC algorithm is given in Figure 1.

4.2 Computing an unstable manifold

We use the algorithm for computing the global one-dimensional unstable man-
ifold of a saddle point of a map proposed in [20]. To keep the exposition simple,
we consider a planar diffeomorphism and suppose f is orientation-preserving,
otherwise we consider its second iterate. Let x0 be a saddle point of f . The
unstable manifold of x0 can now be defined as

W u(x0) =
{
x ∈ R

2 : f−J(x) → x0 as J → ∞
}

. (50)

now Note that, since f is invertible, the stable manifold W s(x0) is simply the
unstable manifold of f−1 at x0. The unstable manifold theorem [26] guarantees
the existence of the local unstable manifold

W u
loc(x0) =

{
x ∈ W u(x0) : f−n(x) ∈ U for all n ∈ N

}
. (51)

in a suitable neighborhood U of x0. Furthermore, it states that W u
loc(x0) is

tangent to the unstable eigenspace Eu(x0) corresponding to λU .
Similar to the algorithm that is used for computing the stable manifold, the

idea is to grow the manifold independently of the dynamics in steps as a list of
ordered points. At each step a new point is added at a prescribed distance ∆k

from the last point. New points are found as f -images of suitable points from
the part already computed. The algorithm starts with a linear approximation
of the local manifold and grows the manifold up to a prespecified arclength l

with a speed depending on the local curvature of the manifold.
We now briefly describe a single step of the algorithm and suppose that the

piecewise-linear approximation W u
pl of the manifold defined by points M =
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L
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W u(x0)

∆k

pk−1
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f(q)

Figure 2. The next point pk+1 = f(q) is chosen at approximate distance ∆k from pk.

{p0, p1, . . . , pk} is already computed, where p0 = x0 and the point p1 is taken
at a small distance δ from x0 in the unstable eigenspace Eu(x0). The next
point pk+1 should have the property that the line segment [pk, pk+1] accurately
approximates W u(x0). In order to achieve a good approximation, the distance
∆k between pk and pk+1 must be adjusted from step to step according to the
curvature of the manifold.

We want to find pk+1 in a small annulus around the circle at pk with radius
∆k. To this end, we search in W u

pl(x0) a line L that is mapped by f to a curve
which intersects the circle with center pk and radius ∆k. We start with the
line segment in W u

pl(x0) that contains the preimage of pk and move linearly

through W u
pl(x0). Once L is found, we use bisection to find a point q ∈ L such

that

(1 − ε)∆k < ‖f(q) − pk‖ < (1 + ε)∆k

The point pk+1 = f(q) is a candidate for the next point in M , see Figure
2. If ∆k is acceptable ,then pk+1 = f(q) is added to M , [pk, pk+1] is added
to W u

pl(x0), and the step is completed. However, if ∆k was too large then we

reject f(q), half the estimate ∆k, and repeat the procedure. This algorithm is
presented in the pseudo-code in [21].

5 Continuation of heteroclinic and homoclinic tangencies

Let F (X,α) = 0 be the defining system of the heteroclinic connection in-
troduced in Section 2.2, then a heteroclinic tangency satisfies the following
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limit-point conditions:

{
F (X,α) = 0,

det(FX (X,α)) = 0,
(52)

which is a system of K1 = n(N − 1) + nU (n − nU) + nS(n − nS) + 2n −
nU − nS + 1 equations in an K2 = (nN + nU(n − nU ) + nS(n − nS) + nα)-
dimensional space. We recall that X = (x1, . . . , xN , YU , YS , α).

If nU +nS = n and nα = 2, then (52) defines a generic continuation problem.
This system is natural from a theoretical perspective but may lead to numerical
scaling problems. If the Jacobian has eigenvalues of large magnitude, then
these eigenvalues contribute to the determinant (which is the product of all
eigenvalues) and may make it difficult to satisfy the defining equations to a
desired tolerance. The larger the system, the worse this problem becomes.
Thus there are circumstances in which it is desirable to seek alternate defining
equations that avoid calculation of the determinant. Bordered matrices allow
us to find a substitute function of the determinant.

We define a curve of heteroclinic tangencies by the following system

{
F (X,α) = 0,
g(X,α) = 0,

(53)

where g(X,α) is computed as the last component of the solution vector in the
K1-dimensional bordered system:

(
FX(X,α) b

cT 0

)(
v

g

)

=

(
0(K1−1)

1

)

, (54)

for suitable vectors b, c ∈ R
K1−1.

If c is close to the nullvector of FX(X,α) and b is close to the nullvector of
F T

X(X,α), then the matrix

M =

(
FX(X,α) b

cT 0

)

(55)

is nonsingular at (X,α) and (54) has a unique solution. In practical com-
putations, c and b are approximations of the null vectors of FX(X,α) and
F T

X(X,α), respectively.
In the continuation of heteroclinic tangencies b and c are computed in

the curve initializer init HetT HetT and stored in the fields hetTds.b and
hetTds.c of the global variable hetTds.
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The vectors b and c must be adapted during the continuation of heteroclinic
tangencies to keep the matrix M nonsingular. Towards this end we use the
SVD decomposition [U, S, V ] = svd(full(FX(X,α))) where U, V are orthogo-
nal matrices and S is a diagonal matrix, and FX(X,α) = USV T . Using the
fact that c is a normalized right nullvector of FX we have:

FX(X,α)c = USV T c = 0.

By the orthogonality of U , we get SV T c = 0. The only possibility for the null
vector of S is V T c = [0, . . . , 0, 1]T . Sine V is an orthogonal matrix, we finally
obtain: c = V [0, . . . , 0, 1]T . That means c is the last column of V .

For the left nullvector b, we have

bT FX(X,α) = bT USV T = 0.

By the orthogonality of V , we get bT US = 0. The only possibility for the null
vector of S is bT U = [0, . . . , 0, 1]. Since U is an orthogonal matrix, we finally
obtain: b = U [0, . . . , 0, 1]T . That means b is the last column of U .

By now it is fairly clear that homoclinic tangencies can be computed in
essential the same way.

6 Examples and applications

We consider the generalized Hénon map (GHM)

F :

(
x1

x2

)

7→

(
x2

α − βx1 − x2
2 + Rx1x2 + Sx3

2

)

, (56)

which appears in numerous theoretical studies of homoclinic bifurcations, see
[12]. In what follows we set S = 0.

6.1 Heteroclinic connection

For α = 0.3, β = −1.057, and R = −0.5, F has two fixed points, namely

X0 = (0.4666170238049, 0.4666170238049),

X1 = (−0.4286170238049,−0.4286170238049),

with multipliers −1.662111803, .4955692430 at X0 and multipliers
1.784113932, −.7125713719 at X1. Since F is now orientation-reversing, we
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will consider the second iterate F 2 to compute heteroclinic connections and,
in particular, λU

2 = 2.762615646.
We use the algorithm for computing the unstable manifold as described in

Section 4.2, to construct the one-dimensional manifold of the saddle point X0,
by calling the newly implemented matlab function Umanifold.m. To this end,
first we set amax, amin, dmax, dmin, damax, damin, dk and epsb corre-
sponding to αmax , αmin, ∆max, ∆max, (∆α)max, (∆α)min,∆k and εb, re-
spectively, as described in §4.2. The input commands are:

epsb=1e-10; Arc=8.6; dk=1e-3; amax=0.6; amin=0.2;

dmin=0.001; damax=0.07; damin=1e-4; dmax=0.2;

p0=[0.46661702380495;0.46661702380495];

p=[0.3;-1.057;-0.5;0];%alpha,beta,R,S

lambda=2.76261564458262; del=1e-2;

v=[0.51553133957551;-0.85687072415592];

M1=Umanifold(p0,Arc,amax,amin,dmax,dmin,damax,damin,

dk,p,epsb,lambda,del,v);

for i=1:size(M1,2) hold on, plot(M1(1,i),M1(2,i),’r.’), end

del=-1e-4;

M2=Umanifold(p0,Arc,amax,amin,dmax,dmin,damax,damin,

dk,p,epsb,lamb,del,v);

for i=1:size(M2,2) hold on, plot(M2(1,i),M2(2,i),’r.’), end

plot(0.46661702380495,0.46661702380495,’--sk’)

where p0 represents the saddle point X0, p is the vector of parameters
(α, β,R, S), λ is the unstable multiplier of Fx at X0 and Arc is the total
length of the unstable manifold to be computed. The plot of the two unstable
manifolds was given in Figure 3. The elapsed time to compute 215200 points
was 1470 seconds on a AMD Athlon XP 2800+ processor. We note that a
continuation run to compute 100 period-2 cycles of F takes about 2.4 seconds.

We now use the algorithm for computing the stable manifold as described
in Section 4.1, to obtain the stable manifold of X1. The commands are:

epsb=1e-7; Arc=5; dk=1e-4; amax=0.5; amin=0.2;

dmin=0.01; damax=0.7; damin=1e-3 ;dmax=1e-2;

p0=[-0.42861702380495;-0.42861702380495];

p=[0.3;-1.057;-0.5;0];%alpha,beta,R,S

p1=p0-1e-3*[-0.81439328674458;0.58031334165721];%p0-1e-3*v

M1=Smanifold(p0,p1,Arc,amax,amin,dmax,dmin,damax,damin,

dk,p,epsb,n);

for i=1:size(M1,2) hold on, plot(M1(1,i),M1(2,i),’k.’), end
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Figure 3. The transversal intersection of unstable and stable manifolds of F at X0 and X1,
respectively.

p1=p0+1e-3*[-0.81439328674458;0.58031334165721];%p0+1e-3*v

M2=Smanifold(p0,p1,Arc,amax,amin,dmax,dmin,damax,damin, dk,p,epsb,n);

for i=1:size(M2,2) hold on, plot(M2(1,i),M2(2,i),’k.’), end

plot(-0.42861702380495;-0.42861702380495,’--sk’)

The plot of the two stable manifolds is given in Figure 3. The elapsed time
to compute 92000 points was 560 seconds.

We will now continue w.r.t. parameter β the heteroclinic orbit in
Cl MatContM, using the transversal intersection of invariant manifolds
at X0 and X1, as an initial approximation. The set of intersection points
{x5, x6, . . . , x10} from Figure 4 is an initial approximation. To get a more ac-
curate heteroclinic orbit we extend it by adding more points. To this end, we
use iterations of F−1 and F and project the resulting points on Eu(x0) and
Es(x1), respectively.

We start from x5 and compute the point F−1(x5). By projecting the result-
ing point on Eu(x0), we compute x4 as an approximation of a new intersection
point of W u(x0) and W s(x1). We then apply F−1 on x4 and by projecting the
new point on Eu(x0) we compute x3. We proceed with the same steps to
compute the points x2 and x1.

We now use the same procedure by applying F on x10. By projecting the
resulting point on Es(x1) we compute x11 as an approximation of an intersec-
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Figure 4. The transversal intersection of the unstable and stable manifolds of F at X0 and X1,
respectively.

tion point of W u(x0) and W s(x1). We repeat the same steps to compute the
points x12, x13, . . . , x16.

The resulting initial approximation is given by

C = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16} ,

where

x1 = (0.4666171; 0.4666171), x2 = (0.519502; 0.376394),
x3 = (0.483172; 0.439158), x4 = (0.4731169; 0.456962),
x5 = (0.612300; 0.206700), x6 = (0.841195;−0.276064),
x7 = (1.229904;−1.332700), x8 = (0.641982;−1.093020),
x9 = (0.134731;−0.799843), x10 = (−0.143457;−0.623386),

x11 = (−0.333799;−0.495162), x12 = (−0.380621;−0.462550),
x13 = (−0.404242;−0.445916), x14 = (−0.416213;−0.437437),
x15 = (−0.422303;−0.433111), x16 = (−0.428617;−0.428617).

The code below is the implementation into Cl MatContM:

C={x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16}

p=[0.3;-1.057;-0.5;0]; ap=[2]; opt = contset;

[x0,v0]=init_HE_HE(@Ghmap,C, p, ap,2);

opt=contset(opt,’MaxNumpoints’,30);

opt=contset(opt,’Singularities’,1);
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Figure 5. Tangential intersection of the invariant manifolds of (56) for
α = 0.3; β = −1.009322; R = −0.5; S = 0

opt=contset(opt,’Backward’,1);

[xhet,vhet,shet,hhet,fhet]=cont(@heteroclinic,x0,[],opt);

We detect two limit points (LP) on the heteroclinic orbit:

label = LP , x = ( 0.450332 0.450332 0.464235 ... -1.009322)

label = LP , x = ( 0.471227 0.471227 0.487755 ... -1.070206)

elapsed time = 1.8 secs

npoints curve = 30

In the computed LP points the first 32 components indicate the coordinates
of the mesh points x1, . . . , x16, the following 2 (not shown) indicate YU and
YS in the Riccati equations (32) and (35), respectively, and the last shown
component is the value of the control parameter β. A picture of the computed
branch of heteroclinic orbits is given in Figure 6.

For the parameter values of the fold points, i.e., α = 0.3, β = −1.009322, R =
−0.5, and α = 0.3, β = −1.070206, R = −0.5, we have a tangential intersection
of the invariant manifolds. A tangential intersection of invariant manifolds is
shown in Figure 5.

Next we continue the limit points in two parameters, starting from the LP
on the heteroclinic connections. This curve is shown in Figure 7. The elapsed
time to compute 40 points was about 109 seconds.

6.2 Homoclinic connection

Now we consider the parameter values α = −0.4, β = 1.03, and R =
−0.1. Here F preserves orientation and has a saddle fixed point X0 =
(−1.62114638486,−1.62114638486) with the multipliers 0.2775591559 and
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3.1268482523.
We compute W u(X0) and W s(X0) and determine their intersection points

to be used as initial data for the homoclinic continuation. Figure 8 depicts
W u(X0) and W s(X0) along with their intersection points. We continue the

−3 −2 −1 0 1
−2

−1.5

−1

−0.5

0

0.5

1

x
1

x 2

x
2

x
3

x
4

x
5

x
6

x
7

 x
8 x

9X
0

 Ws(X
0
)

Wu(X
0
)

Figure 8. Transversal intersection of
the invariant manifolds of (56) for
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Figure 9. Orbits of (56) for α = −0.4,
β = 1.03, R = −0.1 and S = 0,

superposed on Figure 8

homoclinic orbit w.r.t. parameter β in Cl MatContM, using the transversal
intersection of invariant manifolds at X0, as an initial approximation. The
initial approximation is given by

C = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} ,
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where

x1 = (−1.62114638;−1.62114638), x2 = (−1.56200000;−1.44300000),
x3 = (−1.4430000;−1.09878560), x4 = (−1.09878560;−0.27959456),
x5 = (−0.27959456; 0.62285460), x6 = (0.62285460;−0.48255079),
x7 = (−0.48255079;−1.24433961), x8 = (−1.24433961;−1.51139945),
x9 = (−1.51139945;−1.59072793), x10 = (−1.59072793;−1.61409646).

In Figure 9, obtained by simulations, we present a destructed closed invari-
ant curve for α = −0.4, β = 1.03, R = −0.1, superposed on Figure 8. This
invariant curve is born via the Neimark-Sacker bifurcation and is destructed
by approaching the homoclinic tangle.

We detect two limit points (LP):

x = ( -1.704631 -1.704631 -1.668284 ... 1.109749 )

x = ( -1.586188 -1.586188 -1.559729 ... 0.996984 )

elapsed time = 1.3 secs

npoints curve = 35

In the computed LP points the first 20 components indicate the coordinates of
the mesh points x1, . . . , x10, the following 2 indicate YU and YS in the Riccati
equations (32) and (35), respectively and the last component is the value of
the control parameter β. The computed branch of homoclinic connections is
presented in Figure 10.

Now we can continue the curve of limit points in two parameters, starting
from the LP on the homoclinic connections. This curve is given in Figure 11.
The elapsed time to compute 53 points was about 42 seconds.
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7 Discussion

We have presented new matlab tools to continue heteroclinic and homoclinic
orbits to fixed points of iterated maps, as well as to compute their fold bifur-
cation curves, corresponding to the tangencies of the invariant manifolds. The
proposed methods work for general n-dimensional maps. For the special, but
important in applications, case n = 2 we described the first matlab imple-
mentation of known algorithms to grow one-dimensional stable and unstable
manifolds of the fixed points of noninvertible maps.

All algorithms are implemented in Cl MatContM, a noninteractive tool-
box for the bifurcation analysis of maps in matlab. We expect to present an
interactive version of this software soon.

Currently, before starting a continuation, the user has to extract manually
approximations to the homo-/heteroclinic orbits from the computed stable
and unstable manifolds. This procedure has to be automated in the future.

Finally, at least for the one-dimensional unstable manifolds, an algorithm
exists that can grow them in n-dimensional maps. This may also be imple-
mented in Cl MatContM.
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