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This session was tested on MatCont7.3 with MATLAB2020b, R9 9. It illustrates how to
input a system of autonomous ordinary differential equations (ODEs)

ẋ = f(x, α), x ∈ Rn, α ∈ Rm,

into MatCont and numerically integrate it with simultaneously visualizing orbits in graphic
windows.

It is not possible to load into MatCont a system without any parameters. However, you can
introduce a dummy variable to perform time-integration.

We will study the Rössler chaotic system: ẋ = −y − z
ẏ = x+Ay
ż = Bx− Cz + xz,

where (x, y, z) are the phase variables, and (A,B,C) are the parameters.

1 Getting started

We assume that MatCont is placed into the directory MatCont of your system and has been
installed properly1. Start MATLAB and change the current directory to MatCont. Start Mat-

1With this we refer to the compilation of the C-files in the subdirectory LimitCycle; for details see documentation
at https://sourceforge.net/projects/matcont/

Figure 1: A typical MatCont startup screen.
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Cont by typing

matcont

in the MATLAB command line window and press Enter.
You will get several windows related to a default ODE system, like in Figure 1. The position

of the windows might be rearranged if they do not fit the screen.
The main window is called MatCont and has several menus. For instance, to end your

MatCont session, choose the Exit item in the Select menu. Hereafter this operation will be
indicated with Select|Exit.

Note. It is sometimes desirable not to load a previously used system (e.g. because the last
used system was in some way corrupted). Then by typing

matcont clean

one gets a fresh start with a blank main MatCont window.

2 Input new system

The command Select|System|New opens the System window, which contains several fields and
buttons. To identify the system, type for example

Rossler

in the Name field (it must be one word).
Input names of the Coordinates: x,y,z, the Parameters: A,B,C, and the name for Time:

t (default).
If shown, select symbolic generation of the 1st order derivatives by pressing the corresponding

radio-button 2.
Finally, in the large input field, type the RHS of Rössler’s system as

x’=-y-z

y’=x+A*y

z’=B*x-C*z+x*z

Avoid typical mistakes:

• Make sure the multiplication is written explicitly with ∗.

• Specify differential equations in the same order as the coordinates.

Now the System window should look like in Figure 2, and you can press OK button.
If you made no typing mistakes, the System window disappears, and you will see in the

main MatCont window that Rossler becomes the current System of MatCont. If selected,
the information field Derivatives shows the string SNNNN meaning that the symbolic 1st order
derivatives of the RHS will be used.

If you want to change or correct an existing system, click Select|Systems|Edit/Load/Delete,
select this system in the appearing Systems window, and press Edit button. The inputed system
can be completely erased by selecting Delete instead of Edit there.

2If the MATLAB Symbolic Toolbox is present, there will be buttons indicated ‘symbolically’. The first-order
derivatives are used in some of the integration algorithms, the first- and second-order derivatives are used in the
continuation, while the third-order derivatives are employed in the normal form computations.
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Figure 2: Specifying a new model.
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3 Selection of solution type

To tell MatCont that we want to integrate the system, i.e. to numerically solve the initial
value problem for it, we have to specify the type of the initial point and the type of the curve to
compute. To select the initial point type, input Type|Initial Point|Point, which means that
the initial point has no special properties. To select the curve type, click Type|Curve|Orbit3.
The information fields in the MatCont main window will reflect the selections, and two more
windows appear. These are the corresponding Starter and Integrator windows. Move them, if
necessary, to make both visible.

4 Setting initial data for integration

The Starter window is curve-dependent and is used here to specify initial data for the integration.
Let us input the following initial coordinate and parameter values:

Figure 3: Starter window for integration.

x -5.0

y 5.0

z 10.0

A 0.0

B 0.4

C 4.5

(see Figure 3).
We will use the default numerical parameters of the Integrator, except of the Interval.

Input in the Integrator window:

Interval 100

to get Figure 4. Check that the default method of integration is ode45. You can inspect available
methods by clicking the Method menu button.

5 3D visualization

To visualize the orbits, we have to open at least one more window and setup plotting attributes.

3Actually, it is default.
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Figure 4: Integrator window.

5.1 3D graphic window

In the main MatCont window, select Window/Output|Graphic|3D plot. The first Plot3D
window appears.

Plot3D windows are used to represent solution curves by their projections to 3-dimensional
spaces endowed with right-handed rectangular Cartesian coordinate systems. 3D space is specified
by three variables whose values are plotted along axes. The visible part of the space is given by
minimum and maximum values for each axis. By default, the visibility limits are from 0 to 1 for
all axes.

5.2 Variables on axes

First, we need to choose the variables along the axes and the ranges of displayed values along
these axes. This can be done by selecting the coordinates x, y, and z and the ranges

−9 ≤ x ≤ 9, −9 ≤ y ≤ 9, −2 ≤ z ≤ 11.

in the Layout window (see Figure 5). This window is accessible via the menu MatCont|Layout
in the Plot3D window. Click OK to confirm the choice of variables and ranges.

Figure 5: Selecting variables and ranges along the axes.

The graphics window Plot3D is updated automatically with the input and the new names of
the axes become visible.
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6 Integrating orbits

Now we are ready to start numerical integration. We will perform multiple simulations of the
Rössler system at different values of a parameter. We will see that the behaviour of the orbits
changes qualitatively, suggesting that bifurcations happen in between these parameter values.

6.1 Start computation

Input the Compute|Forward menu command in the main window to start integration. A Con-
trol window is opened automatically. The computation can be paused or stopped by clicking the
corresponding button in that window. If paused, the computation can be resumed by clicking the
corresponding button as shown in Figure 6.

Also, you can interrupt the computation at any time by pressing the Esc key on the keyboard.

Figure 6: Control window.

The integration will start and shortly after produces Figure 7. The orbit tends to a stable
equilibrium.

Figure 7: An orbit in the Plot3D window converging to a stable equilibrium.

When the computation is finished, the Control window looks like Figure 8. You can now either
close the Control window or press the View Result button to inspect the output in a Data
Browser window, see Figure 9. By pressing the View CurveData button in the Data Browser
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window one obtains a spreadsheet view of all points computed during the time integration, see
Figure 10.

Figure 8: The Control window when the computation is finished.

Figure 9: Inspect the output of the computation in a Data Browser window.

6.2 Other parameter and coordinate values

Clear the Plot3D window by selecting MatCont|Clear menu option there. Change the param-
eter A value to 0.2 – while keeping all other parameters unchanged – and the initial value of z
to 1. Start the new integration by Compute|Forward. The computed orbit now tends to a
stable periodic orbit (limit cycle), see Figure 11. This stability loss by the equilibrium with the
generation of a limit cycle is called the (supercritical) Andronov-Hopf bifurcation.

Repeat the integration at A equal 0.25. You should get Figure 12 showing another orbit tending
to a limit cycle but slowly.

When we now repeat the integration for A equal to 0.3, we notice that the orbit tends to a
limit cycle making two turns before closure. The appearance of a stable cycle with approximately
doubled period, while the primary cycle becomes unstable, is called the (supercritical) period-
doubling bifurcation. To erase transient behaviour, select MatCont|Clear in the Plot3D window
and then continue the integration via the menu selection Compute|Extend in the main window.
You should obtain Figure 13 (left panel after the initial integration and right panel without showing
the transient).
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Figure 10: A spreadsheet view of the points computed by time integration.

Figure 11: An orbit in the Plot3D window converging to a stable limit cycle at A = 0.20.
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Figure 12: An orbit in the Plot3D window converging to a stable limit cycle at A = 0.25.

Figure 13: An orbit in the Plot3D window converging to a stable 2-cycle at A = 0.3.
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Increasing the parameter A to 0.315, results in a more complicated cycle making four global
turns before closure, see and reproduce Figure 14. We can conclude that the doubled cycle
undergoes the next period-doubling bifurcation from a cascade of such bifurcations.

Figure 14: An orbit in the Plot3D window converging to a stable 4-cycle at A = 0.315.

Finally, change A into 0.36, set the Interval in the Integrator window to 500, clear the graphic
window, and start computation. After some time, you should see a chaotic attractor as in Figure
15.

7 Plot manipulation

7.1 Another viewpoint

You can change the viewpoint in the Plot3D window using the standard MATLAB facilities. If
you press the Rotate 3D button in the Tools section of the menu bar of the Plot3D window,
then the coordinate system can be rotated with the help of the mouse. A rotated orbit is shown
in Figure 16.

To view the orbit in the original projection, use the standard MATLAB tools.

7.2 Redraw

The computed orbit (including the transient) can be redrawn without recomputation using com-
mands from the Plot3D window, namely: Plot|Clear followed by Plot|Redraw Curve.

7.3 Export a figure

You can save the produced figure in various formats using the standard MATLAB tools. For
example, to produce an Encapsulated PostScript file corresponding to Figure 16, click File|Save
As.. button in the Plot3D window and select EPS type. Then specify the file name and location
in the appearing dialog box, and press Save.

8 2D visualization

Let us plot the time series corresponding to the computed chaotic orbit for 0 ≤ t ≤ 250. For
this, open another graphic window via the Window/Output|Graphic|2D plot in the main
MatCont window.
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Figure 15: A chaotic attractor in the Plot3D window at A = 0.36.

Figure 16: Another viewpoint on the chaotic attractor at A = 0.36.
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A new window Plot2D appears that has a structure similar to the Plot3D window.
Using MatCont|Layout, set time t as the Abscissa and coordinate x as the Ordinate and

input new visibility limits along the axes:

t 0 250

x -8 8

The layout window is presented at the right of Figure 17.

Figure 17: Coordinates and range limits in a 2D plot.

Close the Plot3D window. In the Plot2D window, you can get with MatCont|Redraw
Curve a time series shown in Figure 18. You may need to resize the window for a better view.
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Figure 18: The first solution component versus time in the Plot2D window.

9 Another method of integration

The method of integration can be changed. For example, one can select ode23s as Method in
the Integrator window. After selection, the Integrator window will be updated.
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To display the new orbit in red click MatCont|Options|Plot Properties. On the O: line in
the Plot Properties window replace the default ’blue’ by ’red’ and close the Plot Properties
window.
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Figure 19: Two numerical solutions obtained with different integration methods. The second (red)
curve was computed with ode23s. The color of the second curve has been set to red to accentuate
the difference.

Repeat computations with Compute|Forward. Notice in Figure 19 a change in the time
series for big values of t due to a difference in the accuracy of the methods. This shows that one
has to be careful with numerical solutions of ODEs.

Restore the default fields in the Plot Properties window.

10 Archive of computed solutions

By default, MatCont keeps only a certain number of computed curves (e.g. orbits) under the
standard names corresponding to their Point type and Curve type. This number is determined
by the Archive Filter which can be seen and adapted by the user by pressing the Options|Archive
Filter button, see Figure 20. With this setting, only two curves of each type are preserved.

You can manipulate the curves via Select|Curve menu in the main MatCont window. This
opens a Data Browser window as displayed in Figure 21.
It is now possible to load a curve (for example to redraw it separately), view, rename or delete it.

As an exercise, inspect a spreadsheet view of the computed points of the highlighted curve by
pressing the View button in the Data Browser window.

If a curve is renamed, it will be stored permanently. As an exercise rename the two remaining
orbits into orbit1 and orbit2, respectively. By pressing the New button one returns to an empty
curve in the diagram that is open in the Data Browser window.

Close the Data Browser window.
All currently available curves form a diagram that can be redrawn in a graphic window via

MatCont|Redraw Diagram. If you do this in the Plot2D window, you should get Figure 19
again.
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Figure 20: The Archive Filter is set to 2.

Figure 21: The Data Browser window opened by pressing the Systems|Curve button.
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11 Additional Problems

A. Consider the logistic equation

ẋ = x
(

1− x

α

)
with positive α, e.g. α = 2. Plot solutions (t, x(t)) with different initial conditions x(0).

B. Van der Pol’s equation is given by

ẍ− α(1− x2)ẋ+ x = 0.

Rewrite the equation as a system of two first-order ODEs by introducing y = −ẋ. Plot its
orbits for α = 0 and α = 0.5 in the phase space (x, y).

C. Simulate the Lorenz chaotic system ẋ = σ(y − x),
ẏ = rx− y − xz,
ż = −bz + xy,

for σ = 10, b = 8
3 , r = 28. Maks 3D phase plots as well as plot time-series of z for various

initial conditions.

D. Consider the following Langford system ẋ = (λ− b)x− cy + xz + dx(1− z2),
ẏ = cx+ (λ− b)y + yz + dy(1− z2),
ż = λz − (x2 + y2 + z2),

where b = 3, c = 1
4 and d = 1

5 .

1. Integrate this system in MatCont for λ = 1.5, 1.9, 2.01. Always start from x0 = y0 =
0.1, z0 = 1.

2. Briefly describe what you see in each case.

3. Could you support your conclusions by some other numerical and/or analytical argu-
ments ? Hint: Introduce cylindrical coordinates (r, ϕ, z) so that x = r cosϕ, y = r sinϕ.
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