
tutorial v:

Codimension 2 bifurcations of limit cycles in matcont

Yu.A. Kuznetsov
Department of Mathematics

Utrecht University
Budapestlaan 6
3508 TA, Utrecht
The Netherlands

F. Della Rossa
DEI, Politecnico di Milano

Via Ponzio 35/5
20133 Milano

Italy

V. De Witte & W. Govaerts
Department of Applied Mathematics and Computer Science

Ghent University
Krijgslaan 281-S9
B-9000, Gent

Belgium

June 10, 2021

1



This session was tested on MatCont7.3 with MATLAB2020b, R9 9. It is devoted to the
numerical continuation of codim 1 bifurcations of limit cycles in systems of autonomous ODEs
depending on two parameters

ẋ = f(x, α), x ∈ Rn, α ∈ R2,

and detection of their codim 2 bifurcations. We will also switch at some codim 2 equilibrium
bifurcations to the continuation of codim 1 bifurcation curves rooted there. Simultaneously, we
will illustrate how MatCont can be used to study bifurcations of periodic solutions of periodically-
forced ODEs.

1 Introduction

In this tutorial, we will reconstruct the bifurcation diagram1 presented in Figure 1. This is a
partial bifurcation diagram for periodic solutions of the following periodically-forced system:{

ẋ = r
(

1− x

K

)
x− p(x, t)y,

ẏ = ep(x, t)y − dy,
(1)

where x and y are densities of individuals, respectively of prey and predator populations. The
parameters present in system (1) are the intrinsic growth rate r, the carrying capacity K, the

1Yu.A. Kuznetsov, S. Muratori, and S. Rinaldi. Bifurcations and chaos in a periodic predator-prey model,
Internat. J. Bifur. Chaos Appl. Sci. Engr., 2 (1992), 117-128.
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Figure 1: Bifurcation diagram of periodic solutions of model (1). Blue lines correspond to fold
bifurcations of cycles, green - to period-doubling bifurcations, and magenta - to Neimark-Sacker bi-
furcations. Continuous/dotted curves correspond to super-/sub-critical bifurcations, respectively.
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efficiency e and the death rate d of the predator. The function p(x, t) is a functional response,
for which the Holling type II is chosen, with constant attack rate a and half saturation b(t) that
varies periodically with period one (year), i.e.

p(x, t) =
ax

b(t) + x
, b(t) = b0(1 + ε cos(2πt)).

Instead of time-periodic system (1), we consider the extended autonomous system
ẋ = r

(
1− x

K

)
x− axy

b0(1 + εu) + x
,

ẏ = e
axy

b0(1 + εu) + x
− dy,

u̇ = u− 2πv − (u2 + v2)u,
v̇ = 2πu+ v − (u2 + v2)v,

(2)

where the last two equations are decoupled from the first two and have a stable limit cycle with{
u(t) = cos(2πt+ ϕ),
v(t) = sin(2πt+ ϕ),

and a phase shift ϕ depending on the initial conditions.
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Figure 2: Cascade of 1:2 resonances.

A zoomed-in part of Figure 1 is shown in Figure 2. System (2) was used as an example
in a recent paper2 devoted to the computation of critical normal form coefficients at codim 2
bifurcations of limit cycles. Test functions to detect codim 2 bifurcations of limit cycles are
described in a previous publication3.

2V. De Witte, F. Della Rossa, W. Govaerts, and Yu.A. Kuznetsov. Numerical periodic normalization for codim
2 bifurcations of limit cycles: Computational formulas, numerical implementation, and examples. SIAM J. Appl.
Dyn. Syst. 12 (2013), 722-788.

3Yu.A. Kuznetsov, W. Govaerts, E.J. Doedel, and A. Dhooge. Numerical periodic normalization for codim 1
bifurcations of limit cycles. SIAM J. Numer. Anal. 43 (2005), 1407-1435.

3



2 Specify the model in MatCont

We assume that MatCont is installed and is started. To specify system (2) in MatCont, click
Select|System|New in the main window, and then define the new system as in Figure 3.

Figure 3: The System window. Click OK to process the system.

3 Find an initial solution

First, we need a periodic solution to start the continuation analysis. To get such a solution, we
start numerical integration at some initial point, hoping that the orbit will converge to a stable
limit cycle. When clicking the menu Type|Initial Point|Point, two windows are opened, the
Starter and the Integrator windows. In the Starter window, set t = 0 (actually, it is default)
and input the following initial phase and parameter values

X = Y = 0.1, U = 1, V = 0, K = 1, r = 6.28, a = 12.56, b0 = 0.25, e = 1, d = 6.28, ε = 0.2,

and set Interval to 100 in the Integrator window, see Figure 4.
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Figure 4: Initial data for integration in the Starter and Integrator windows.

Open a plot window, through the menu Window/Output|Graphic|2D plot, which (by
default) visualizes the plane of the first two phase variables within the range [0, 1] for both variables.
By computing the orbit with the time-integration, through the menu Compute|Forward, we
obtain the result shown in Figure 5. Close the Control window. We now want to select the

Figure 5: The Plot2D window showing the orbit converging to a stable cycle with period 2.

asymptotic cycle in order to start its continuation with respect to a parameter. First we select the
Last Point of the computed orbit, through the MatCont menu Select|Initial Point that opens
a Data Browser window, see Figure 6. Note this window can also be opened directly from the
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Figure 6: The Data Browser window with several points in the computed orbit O P(1); highlight
Last Point and click Select Point.

Control window by pressing View result when the computation is finished. Then clear the plot
with MatCont|Clear menu in the Plot2D window. Change the Interval in the Integrator
window to 1, and compute the new orbit through Compute|Forward. In order to obtain a closed
orbit, the integration should be extended once, by clicking the Compute|Extend in the main
window. Now we can select the obtained limit cycle through the Data Browser window that
opens, e.g. with Select|Initial Point menu. Choose Select Cycle, and then press Select Point
button. A small window shown in Figure 7 will appear. Click OK to use the default tolerance

Figure 7: The default discretisation parameters are OK.

and the number of test intervals (ntst). After that, two windows will open automatically to
prepare for the continuation of the limit cycle: new Starter and Continuer windows.
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4 Continuation of periodic solutions

Check the parameter b0 and the period of the limit cycle as free (active) parameters in the Starter
window (note that Period is approximately equal to 2). Turn on the detection of all singularities
except Branch Point of Cycle, and change MaxStepsize to 0.5 and MaxNumPoints to 30 in the
Continuer window, see Figure 8.

Figure 8: The Starter and Continuer windows to initialize the cycle continuation in b0.

Start continuation as usual with Compute|Forward in the main window, and observe a
family of limit cycles in the Plot2D window. There will be a special cycle detected, and in the
MATLAB Command window the following message will appear

Limit point cycle (period = 2.000000e+00, parameter = 3.399917e-01)

Normal form coefficient = 1.341555e+09

that indicates a fold (limit point) bifurcation of cycles (LPC). This will be the first point to
compute the bifurcation diagram. Note that (in general) the normal form coeffcients depend very
much on the details of the computations and can be reliably used only if the bifurcation points
are computed to high accuracy. Resume the computation and extend it once to detect another
LPC bifurcation:

Figure 9: Layout window.
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Figure 10: The Starter window to initialize the cycle continuation w.r.t. ε.

Limit point cycle (period = 2.000000e+00, parameter = 2.213011e-01)

Normal form coefficient = -1.621661e+10

Stop the computation, close the Control window, and save the computed curve LC LC(1) as
LC1with2LPC via Select|Curve and using the Rename button in the Data Browser window
that can be closed afterwards. Change the variables on the axes of the Plot2D window using
MatCont|Layout and selecting the two system parameters ε and b0 as Abscissa and Ordinate,
see Figure 9. Change the ranges into ε ∈ [0, 1.2] and b0 ∈ [0.16, 0.45] and clear the Plot2D window
through MatCont|Clear.

Figure 11: Plot2D window showing the cycle continuations and the detected bifurcations.
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Activate now parameter ε in the Starter window, while keeping the Period active. Turn
on the detection of all singularities as shown in Figure 10, and start the continuation with
Compute|Backward.

After some continuation steps, a period-doubling bifurcation will be detected with the message

Period Doubling (period = 2.000000e+00, parameter = 3.417832e-01)

Normal form coefficient = -2.749889e-01

Depending on details of the computations, it can be necessary to compute Forward to find
this point. Stop computation, and save this curve as usual under the name LC2withPD through
Select|Curve and the Data Browser. If we redraw the bifurcation diagram obtained so far
(MatCont|Redraw Diagram in the Plot2D window), we obtain the lines shown in Figure 11.

5 Continuation of LPC curves

Load the LC2with2LPC via Select|Curve menu in the Data Browser window. Select the first
fold (LPC) bifurcation point in the limit cycle curve LC2with2LPC as a starting point for the two-
parameter continuation using Select|Initial Point menu that opens the Data Browser window,
see Figure 12. The Curve Type field in the main window automatically changes to LPC (with the

Figure 12: Select first LPC bifurcation.

Initializer set to init LPC LPC). Activate the parameters b0 and ε in the Starter window, and
check that monitoring of all singularities is on. Set MaxStepsize equal to 0.1 in the Continuer,
and compute the LPC curve both forward and backward until it leaves the Plot2D window, or the
computations stop. Extend computations, if necessary. One of these computations may lead to the
Current step size too small error message. Save the two obtained LPC LPC curves as LPC1for
and LPC1back, respectively. Select now the second LPC point in the curve LC2with2LPC as the
new starting point and perform the (ε, b0)-continuation of LPC curve as above (with Maxstepsize

equal to 0.1). Extend each computation twice. Save the two obtained LPC LPC curves as LPC2for
and LPC2back, respectively. Figure 13 shows these LPC-curves.
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Figure 13: Two LPC bifurcation curves added.

Note that

1. The error message Current step size too small pops up during an LPC continuation,
which in this case indicates that a codim 2 point is encountered. We will see later that there
are Generalized Period Doubling (GPD) points (for a cycle with period one).

2. The two LPC curves meet at ε = 0. This is typical for periodically forced systems: At this
point the unforced ODE has a limit cycle with period that equals 2.

3. By monitoring the test function for the resonance 1:1 along the lower LPC branch, a change
of sign can be observed around ε = 0.6. We will return to this later.

6 Continuation of the primary PD and NS curves

A robust way to find the first period doubling bifurcation curve is to start with a period-1 limit
cycle, that can be found by integration as in Section 3. Note that ε = 0.2 and change b0 to 0.4.
Using X = Y = 0.1, U = 1, V = 0 and Interval equal to 100, we see (in a separate Plot2D
window) that the corresponding orbit rapidly converges to a stable limit cycle with period 1.
Selecting this cycle as in Section 3 and continuing it backward in ε (keeping Period active, but not
monitoring for BPC singularity), we find a PD bifurcation of the period-1 cycle at ε = 0.30509 . . .:

Period Doubling (period = 1.000000e+00, parameter = 3.050914e-01)

Normal form coefficient = 6.270372e-01

After that the continuation can be stopped.
Select the PD bifurcation point in the computed limit cycle curve as a starting point for the

two-parameter continuation using Select|Initial point menu that opens the Data Browser
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Figure 14: Select the Period Doubling bifurcation point.

window, see Figure 14. In order to start the two-parameter continuation of the PD curve, click
Type|Curve|Period-doubling in the main MatCont window. Make necessary changes in the
appearing Starter and Continuer windows as indicated in Figure 15. Compute the period-

Figure 15: The Starter and Continuer windows to initialize the continuation of the PD curve
for the period-1 cycle.
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Figure 16: The bifurcation curves of the period-1 cycle added: PD (with two GPD and R2 points)
and NS (rooted at R2).

doubling curve forward and backward. During the computations we obtain the following messages
in the MATLAB Command Window:

Generalized period doubling(period = 1.000000e+00, parameters = 4.117418e-01, 3.182303e-01)

e = -5.859322e+01

Resonance 1:2 (period = 1.000000e+00, parameters = 3.401303e-01, 3.362213e-01)

(a,b)=(3.400441e+00, -1.292211e+01)

Generalized period doubling(period = 1.000000e+00, parameters = 2.183705e-01, 1.092944e+00)

e = 4.155484e+01

The result of the redrawing is presented in Figure 16. Notice that we have found two Generalized
Period Doubling (GPD) and one Resonance 1:2 (R2) codimension 2 bifurcation points. Save
the two obtained bifurcation branches as PD1with1GPD and PD1withR2GPD. Notice that these two
branches are parts of a closed PD-curve that contains another R2 point far away.

The normal form analysis tells us that the R2 point is always a starting point for a Neimark-
Sacker (NS) bifurcation curve of cycles with the same period. To start such an NS curve, select
R2 Resonance 2:1 point in the PD1withR2GPD curve using Select|Initial Point and the Data
Browser window, see Figure 17. The Curve Type automatically switches to the NS continuation
(init R2 NS). Ensure that b0 and ε are selected as active parameters and turn on detection of all
singularities, see Figure 18. Do not forget to set MaxStepsize equal to 0.05. Start computations
with Compute|Forward and stop them when the NS curve leaves the window at ε = 0 (see
Figure 16). At the corresponding value b0, the unperturbed system has a Hopf bifurcation. Save
the obtained Neimark-Sacker curve as NS1.
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Figure 17: Select R2.

Figure 18: The Starter and Continuer windows to initialize the continuation of the Neimark-
Sacker bifurcation curve from the resonance 2:1 point R2.

7 Continuation of the secondary PD and NS curves

The period-doubling bifurcation curve for cycles with period 2 can be started at the PD bifurcation
point in the limit cycle curve LC2withPD computed in Section 4. Select this point as in Section 4 and
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Figure 19: The Starter and Continuer windows to initialize the continuation of the PD curve
for the period-2 cycle.

click Type|Curve|Period-doubling in the main MatCont window. Active the parameters b0
and ε and make necessary changes in the appearing Starter and Continuer windows as indicated
in Figure 19. Notice that Period is equal to 2 now.

Compute the period-doubling curve forward and backward (see Figure 20). Save the computed
curves as PD2for and PD2back, respectively. During the continuation, another codim 2 point is
found:

Resonance 1:2 (period = 2.000000e+00, parameters = 1.838264e-01, 7.431615e-01)

(a,b)=(-6.554884e+01, 1.623625e+01)

As we have already mentioned, this point can be used as a starting point of a Neimark-Sacker
bifurcation curve, in this case for cycles with period 2. Now proceed as in Section 6, i.e. select R2
Resonance 2:1 point in the PD2for curve using Select|Initial Point and the Data Browser
window. The Curve Type automatically switches to the NS continuation (init R2 NS). Activate
parameters b0 and ε, and turn on detection of all singularities. Compute|Forward will produce
an NS curve connecting the lower R2 point with the lower branch of the LPC curve, see Figure
20. Save this curve as NS2.

While continuing the NS2, several messages appear in the MATLAB Command window, indi-
cating the detection of codim 2 bifurcations:

Resonance 1:3 (period = 2.000000e+00, parameters = 1.798043e-01, 7.084323e-01)

(b,Re(c))=(6.213391e+00 + (1.363706e+00) i,9.133716e+00)

Resonance 1:4 (period = 2.000000e+00, parameters = 1.772744e-01, 6.740362e-01)

(A,d)=(1.032144e-01+ (-7.519275e-01) i, 4.459229e+01+ (-1.030700e+02) i)

Resonance 1:1 (period = 2.000000e+00, parameters = 1.771951e-01, 6.029715e-01)

ab=4.925658e+02

These messages indicate strong resonances in the NS2 curve.
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Figure 20: The secondary period-doubling curve with the resonance 1:2 point R2 and the Neimark-
Sacker bifurcation curve rooted there are added.

Figure 21: The Starter and Continuer windows to initialize the continuation of the PD curve
for the period-4 cycle.

8 Cascade of 1:2 resonances

Actually, the computed normal form coefficients (a, b) at the resonance 1:2 in Section 7 indicate
that this R2 point is also a starting point for the Neimark-Sacker bifurcation curve of the period-4
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Figure 22: The Neimark-Sacker bifurcation curves rooted at the resonance 1:2 of the period-2
limit cycles; compare with Figure 2.

limit cycles. Indeed, we have a < 0 . To compute this NS curve, the easiest way is to continue
first the period-doubling curve for period-4 cycles, detect another R2 point in it, and compute the
NS curve for the period-4 cycles that is rooted there with the standard procedure.

Thus, select the PD bifurcation point in the limit cycle curve LC2withPD computed in Sec-
tion 4, and start the (default) continuation of the doubled limit cycle from this point with free
parameter b0 and ntst equal to 80. Another PD bifurcation will be detected, from which the
two-parameter continuation of the corresponding period-doubling curve can be started forward
and backward, see the Starter and Continuer windows in Figure 21. Compute|Forward and
Compute|Backward and save the obtained branches of the period-doubling curve as PD4for

and PD4back, respectively. The continuation revealed a resonance 1:2 point R2:

Resonance 1:2 (period = 4.000000e+00, parameters = 1.863585e-01, 7.422188e-01)

(a,b)=(-2.684191e+02, -1.815325e+01)

This R2 point can now be used to start the continuation of the NS curve for period-4 cycles. The
computations reveal the usual sequence of strong resonances along the NS-curve:

Resonance 1:2 (period = 4.000000e+00, parameters = 1.863585e-01, 7.422133e-01)

(a,b)=(-2.684286e+02, -1.810606e+01)

Resonance 1:3 (period = 4.000000e+00, parameters = 1.857078e-01, 7.424370e-01)

(b,Re(c))=(6.081223e+00 + (1.049292e+01) i,-8.800450e+00)

Resonance 1:4 (period = 4.000000e+00, parameters = 1.850691e-01, 7.426702e-01)

(A,d)=(-1.337785e-02+ (-6.454597e-01) i, 4.165935e+02+ (-4.857669e+02) i)

Figure 22 is a zoom in the bifurcation diagram that shows both period-2 and -4 NS curves rooted
at the resonance 1:2 of the period-2 limit cycles.
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Actually, there is an infinite accumulating sequence of 1:2 resonances in the period-doubling
curves, which are connected by the Neimark-Sacker curves of increasing periods.

9 Final picture

Removing now all auxiliary curves and making MatCont|Redraw Diagram in the Plot2D
window, one obtains Figure 23. This figure, that should be compared with Figure 1, also contains
the period-8 period-doubling curve. It can be further edited in MATLAB to (re)move labels and
change colors of the curves, and finally produce eps or pdf files.

Figure 23: All computed bifurcation curves.
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10 Additional Problems

A. Consider the following seasonnaly forced epidemic model
Ṡ = µ− µS − β(t)SI,

Ė = β(t)SI − (µ+ α)E,

İ = αE − (µ+ γ)I,

(3)

that describes the spread of a non-lethal disease in a large population. Here the fractions
of susceptible (S), exposed (E), and infective (I) individuals are the state variables, while
(µ, α, γ) are positive parameters. The value R = 1−S−E−I gives the fraction of recovered
(permanently immune) individuals, thus (3) is usually called the SEIR-model.

It is assumed that contact rate β(t) is periodic in time with period 1(year), namely

β(t) = β0(1 + δ cos(2πt)),

where β0 ≥ 0 is the mean contact rate and 0 ≤ δ ≤ 1 is the degree of seasonality.

The aim is to study with MatCont existence and stability of period-1,-2, and -3 cycles in
(3) for fixed

µ = 0.02, α = 35.842, γ = 100,

corresponding to measles, when (δ, β0) ∈ [0, 0.6] × [0, 6000]. This model was studied4 some
time ago using the interactive bifurcation software locbif.

To analyse the model with MatCont, you could use the following strategy:

1. Consider an equivalent autonomous system
Ṡ = µ− µS − β0(1 + δu)SI,

Ė = β0(1 + δu)SI − (µ+ α)E,

İ = αE − (µ+ γ)I,
u̇ = u− 2πv − (u2 + v2)u,
v̇ = 2πu+ v − (u2 + v2)v,

and introduce new variables  s = lnS,
e = lnE,
ı = ln I,

to better handle very small values of S,E, and I.

2. Find by simulations a period-1 cycle in the (s, e, ı, u, v)-space at δ = 0 and β0 = 5000.
(Hint: Use a stiff integration Method, e.g. ode23s.)

3. Continue the found period-1 cycle w.r.t. δ and find its period-doubling (PD) bifurcation.

4. Starting from the obtained PD-point, compute the period-doubling curve PD(1) in the
(δ, β0)-plane and locate two different generalized period-doubling (GPD) points. Report
the parameter values corresponding to these codim 2 points.

5. Starting from the PD-point, continue the period-2 cycle and find two limit point of
cycles (LPC) bifurcations.

Use the found LPC points to compute the LPC
(2)
1,2 bifurcation curves in the (δ, β0)-plane

and locate a cusp point of cycles (CPC) where they meet. Report the parameter values
corresponding to this codim 2 bifurcation point. (Hint: MatCont will not detect CPC
in this case, so use the numerical output to locate it approximately.)

What are the other end-points of these curves ?

4Kuznetsov, Yu.A. and Piccardi, C. Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math.
Biol. 30 (1994), 109-121
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6. Compute the bifurcation curve PD(2) where the period-2 cycle exhibits a period-
doubling bifurcation. (Hint: To locate a point on this curve, continue w.r.t. β0 a
branch of the period-2 cycles, starting from the PD-point found in Step 3.)

7. Compute a curve LPC(3) where a stable and an unstable period-3 cycles are born via
the LPC-bifurcation. (Hint: To locate a stable period-3 cycle, simulate the system at
(δ, β0) = (0.1, 1200).)

Compute a curve PD(3) corresponding to the period-doubling bifurcation of the stable
period-3 cycle.

8. Classify cycles existing in various domains in the (δ, β0)-plane to the left from the curves
PD(2) and PD(3).

B. Consider a two-patch predator-prey model 5, where predators can migrate between the two
patches by diffusion. One of the patches experiences seasonal influences while the other can
be seen as a wild-life refuge where human intervention minimises seasonal influences. The
system is defined by

ẋ1 = r1x1(1− x1)− cx1x2
x1 + b1(1 + ε cos t)

,

ẋ2 = −x2 +
cx1x2

x1 + b1(1 + ε cos t)
+ γ(y2 − x2),

ẏ1 = r2y1(1− y1)− cy1y2
y1 + b2

,

ẏ2 = −y2 +
cy1y2
y1 + b2

+ γ(x2 − y2).

(4)

The variables of x1 and x2 denote the numbers of individuals (or densities) respectively of
prey and predator populations living outside the refuge and y1 and y2 are the corresponding
numbers or densities inside. The intrinsic growth rates ri and the constant attack rate c are
parameters of the model. For the predator outside the refuge, the Holling type II is chosen
as functional response with a half saturation which varies periodically with period 2π. The
terms with parameter γ describe the coupling of the two patches.

Fix the folllowing parameter values

r1 = 1, r2 = 1, b1 = 0.4, γ = 0.1, c = 2,

and use the half saturation b2 as a continuation parameter together with the amplitude of
the seasonal forcing ε.

Study 2π- and 4π-cycles of (4) within the parameter region (b2, ε) ∈]0, 0.4[×[0, 1]. In partic-
ular, compute relevant period-doubling and Neimark-Sacker bifurcation curves in the (b2, ε)-
plane.

5Jansen, V.A.A.. Regulation of predator-prey systems through spatial interactions: A possible solution to the
paradox of enrichment, Oikos 74 (1995), no. 3, 384-390.
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