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This session was tested on MatCont7.3 with MATLAB2020b, R9 9. MatCont provides several
tools for the initialization and continuation of connecting orbits. Orbits homoclinic to saddle
equilibria can be initialized from Bogdanov-Takens points. Orbits homoclinic to hyperbolic and
to saddle-node equilibria can be initialized from periodic orbits with a large period, typically in
cases where the period tends to infinity when a system parameter converges to a homoclinic value.

Orbits homoclinic to saddles can be initialized by homotopy, starting from a saddle equilibrium.
This method is summarized in Appendix. Orbits homoclinic to saddle-nodes can also be initialized
by homotopy, starting from a limit point (LP) equilibrium. Heteroclinic connections can be
initialized from pairs of hyperbolic equilibria (under conditions that involve the dimensions of the
stable and unstable manifolds of these equilibria)1.

In the present tutorial we consider in detail the homotopy method to initialize and continue
homoclinic connections to hyperbolic equilibria.

1 Traveling pulses in the FitzHugh-Nagumo model

The following system of partial differential equations is the FitzHugh-Nagumo model of the nerve
impulse propagation along an axon:

∂u

∂t
=

∂2u

∂x2
− fa(u)− v,

∂v

∂t
= bu,

(1)

where u = u(x, t) represents the membrane potential; v = v(x, t) is a phenomenological “recovery”
variable; fa(u) = u(u− a)(u− 1), 1 > a > 0, b > 0, −∞ < x < +∞, t > 0.

Traveling waves are solutions to these equations of the form

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x+ ct,

where c is an a priori unknown wave propagation speed. The functions U(ξ) and V (ξ) satisfy the
system of three ordinary differential equations

U ′ = W,
W ′ = cW + fa(U) + V,

V ′ =
b

c
U.

(2)

System (2) is called a wave system. It depends on three positive parameters (a, b, c). Any bounded
orbit of (2) corresponds to a traveling wave solution of the FitzHugh-Nagumo system (1) at
parameter values (a, b) propagating with velocity c.

For all c > 0 the wave system has a unique equilibrium 0 = (0, 0, 0) with one positive eigenvalue
λ1 and two eigenvalues λ2,3 with negative real parts. The equilibrium can be either a saddle or
a saddle-focus and has in both cases a one-dimensional unstable and a two-dimensional stable
invariant manifold Wu,s(0). The transition between saddle and saddle-focus cases is caused by
the presence of a double negative eigenvalue; for fixed b > 0 this happens on the curve

Db = {(a, c) : c4(4b− a2) + 2ac2(9b− 2a2) + 27b2 = 0}.

A branch Wu
1 (0) of the unstable manifold leaving the origin into the positive octant can return

back to the equilibrium, forming a homoclinic orbit Γ0 at some parameter values.

For b > 0, these parameter values form a curve P
(1)
b in the (a, c)-plane that can only be found

numerically. As we shall see, this curve passes through the saddle-focus region delimited by Db.

1The homotopy method for connections homoclinic to saddle-node starts by selecting Type|Initial point|Limit
point and Type|Curve|ConnectionSaddleNode in the MatCont main panel. The homotopy method
for heteroclinic connections is another variant and starts by selecting Type|Initial point|Equilibrium and
Type|Curve|ConnectionHet in the MatCont main panel.
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Any homoclinic orbit defines a traveling impulse. The shape of the impulse depends on the type
of the corresponding equilibrium: It has a monotone “tail” in the saddle case and an oscillating
“tail” in the saddle-focus case.

The saddle quantity σ0 = λ1 + Re λ2,3 is always positive for c > 0. Therefore, the phase por-

traits of (2) near the homoclinic curve P
(1)
b are described by Shilnikov’s Theorems. In particular,

near the homoclinic bifurcation curve P
(1)
b in the saddle-focus region, system (2) has an infinite

number of saddle cycles. These cycles correspond to periodic wave trains in the FitzHugh-Nagumo
model (1). Secondary homoclinic orbits existing in (2) near the primary saddle-focus homoclinic
bifurcation correspond to double traveling impulses in (1). An infinite number of the correspond-

ing secondary homoclinic bifurcation curves P
(2)
b,j in (2) originate at each point A1,2, where P

(1)
b

intersects Db.
We will locate a critical value of c for a = 0.15 and b = 0.0025, at which (2) has a homoclinic

orbit, continue this homoclinic orbit with respect to the parameters (a, c), and detect the codim

2 bifurcations points A1,2 in P
(1)
b .

1.1 System specification

Specify a new ODE system with the coordinates (U,W,V), parameters (a,b,c), and time xi:

U’=W

W’=c*W+U*(U-a)*(U-1.0)+V

V’=b*U/c

Generate the derivatives of order 1,2, and 3 symbolically.

1.2 Location of a homoclinic orbit by homotopy

This consists of several steps, each presented in a separate subsection.

1.2.1 Approximating the unstable manifold by integration

Select Type|Initial point|Equilibrium and Type|Curve|ConnectionSaddle.

Figure 1: Starter and Integrator windows for the integration of the unstable manifold.

In the appearing Integrator window, increase the integration Interval to 20 (see the right
panel of Figure 1).

Via the Starter window, input the initial values of the system parameters
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a 0.15

b 0.0025

c 0.2

as well as

Uparam1 -1

eps0 0.01

that specify direction and distance of the displacement from the saddle

U 0

W 0

V 0

along the unstable eigenvector2. The Starter window should look like in the left panel of Figure
1.

Open a 2Dplot window with Window/Output|Graphic|2Dplot. Select U and V as variables
along the corresponding axes and input the following plotting ranges

Abscissa: -0.2 0.5

Ordinate: -0.05 0.1

Start Compute|Forward. You will get an orbit approximating the unstable manifold that
departs from the saddle in a non-monotone way, see Figure 2. This orbit does not resemble a
homoclinic orbit.

Now press the View Result button in the Control window. This opens a Data Browser
window as shown in Figure 3.

2Uparam2 is only used when dimWu ≥ 2. On some platforms, Uparam1=1 should be used to select the correct
direction.

Figure 2: A segment of the unstable manifold of the saddle at the initial parameter values.
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Figure 3: Data Browser window with highlighted HTHom Select Connection.

Click the HTHom Select Connection and then select is as initial point by clicking Select
Point at the bottom of the Data Browser window.

MatCont will search for a point in the computed orbit where the distance to the stable
eigenspace of the Jacobian matrix of the saddle is stopped decreasing for the last time. This
point is selected as the end-point of the initial connecting orbit (as we shall see, it corresponds to
the time-interval T=8.40218). The program will ask to choose the BVP-discretization parameters
ntst and ncol that will be used in all further continuations. Set ntst equal to 50 and keep ncol

equal to 4 (Figure 4). Press OK.

Figure 4: The discretization parameters for homotopy BVPs.

1.2.2 Homotopy towards the stable eigenspace

In the new Starter window, activate the parameters c, SParam1, and eps1 (see Figure 5), and
Compute|Backward. A family of curves will be produced by continuation (see Figure 6) and
the message

SParam equal to zero

will indicate that the end-point has arrived at the stable eigenspace of the saddle (i.e. reached
the plane tangent to the stable invariant manifold at the saddle and given by the condition
SParam1=0). The corresponding orbit segment is labeled HTHom.

Stop the continuation there.

5



Figure 5: Starter window for the homotopy towards the stable eigenspace.
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Figure 6: The unstable manifold with the end-point in the stable eigenspace of the saddle.

1.2.3 Homotopy of the end-point towards the saddle

The obtained segment is still far from the homoclinic orbit but can be selected as the initial point
for a homotopy of the end-point towards the saddle. Select

HTHom: SParam equal to zero
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via the Data Browser window.
In the Continuer window, set MaxStepsize to 0.5, see in the right panel of Figure 7.

Figure 7: Starter and Continuer windows for the homotopy towards the saddle.

In the Starter window, SParam1 now equals to zero, while the parameter c is adjusted. Acti-
vate parameters c, T, and eps1 there. Set eps1tol equal to 0.01; this will be used as the target
distance eps1 from the end-point to the saddle.

Open a Numeric window to monitor the values of the active parameters. Clean the Plot2D
window and Compute|Forward. You should get Figure 8, where the last computed segment is
again labeled by HTHom. The message

eps1 small enough

appears indicating that a good approximation of the homoclinic orbit is found. The begin- and
the end-points are now both located near the saddle (at distance 0.01). The Numeric window at
the last computed point is presented in Figure 9. It can be seen that eps1 became 0.01, while the
time-interval T increased to 36.6206. Stop the continuation.

1.3 Continuation of the homoclinic orbit

Select the just computed point

HTHom: eps1 small enough

via Control|View Result and Data Browser windows as initial point.
Select Type|Curve|Homoclinic to Saddle and check that the curve type is Hom, while the

initial point is of type HTHom.
In the new Starter window, activate two system parameters: a and c as well as the homoclinic

parameter T (see Figure 10). These parameters will vary along the homoclinic curve, while both
eps0 and eps1 (the begin- and end-distances to the saddle) will be fixed. Also, opt to detect
the singularity Double Real Stable leading eigenvalue (DRS) along the homoclinic curve,
see Figure 10.
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Figure 8: The homotopy results in the manifold segment with both the begin- and the end-points
near the saddle.

Figure 9: Numeric window at the last point of the homotopy towards the saddle.
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Figure 10: Starter window for the two-parameter homoclinic continuation.

To terminate the continuation at a = 0, add via Select|System| Manage Userfunctions a
user function STOP with the associated label O and res=a in the edit field of the User functions
window. Check in the Starter window that the user function STOP is monitored.

In the Continuer window, increase the MaxStepsize to 1.
Change the layout of the Plot2D window via MatCont|Layout: Select a and c as the abscissa

and ordinate with the visibility ranges

Abscissa: 0 0.3

Ordinate: 0 0.8

Now you are ready to start the continuation. Compute|Forward and Backward, resume
computations at the DRS-points, and stop when a zero of the user-defined function STOP is de-
tected. Two DRS-points will be located, where the equilibrium undergoes the saddle-to-saddle-
focus transition:

Double real stable leading eigenvalues, parameters = 0.131821 and 0.217156.

Double real stable leading eigenvalues, parameters = 0.107654 and 0.532073.

These are codim 2 bifurcation points A1,2 introduced in Section 1.

Delete all previously computed curves except the last two, namely

HTHom_Hom(1)

HTHom_Hom(2)

and click MatCont|Redraw Diagram. This should produce Figure 11.
To verify that that all computed points indeed correspond to homoclinic orbits, open a 3Dplot

window and select U,W and V as variables along the coordinate axes with the visibility limits
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Figure 11: The homoclinic bifurcation curve in the (a, c)-plane. The saddle to saddle-focus tran-
sitions A1,2 are labeled by DRS, while the labels O indicate a = 0, where the continuation is
terminated. The values of c at fixed a are possible propagation velocities of the impulses.

Abscissa: -0.4 1.2

Ordinate: -0.2 0.2

Applicate: -0.01 0.2

respectively. MatCont|Redraw Diagram in this new window should produce Figure 12.
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Figure 12: The family of homoclinic orbits in the phase space of system (2) for b = 0.0025.

2 The Hopf-Hopf normal form with broken symmetry

We start with the truncated normal form of the Hopf-Hopf codimension-2 bifurcation in polar
coordinates: 

ṙ1 = r1(µ1 + p11r
2
1 + p12r

2
2 + s1r

4
2)

ṙ2 = r2(µ2 + p21r
2
1 + p22r

2
2 + s2r

4
1)

ϕ̇1 = ω1

ϕ̇2 = ω2.

2.1 System specification

We rewrite this system in the cartesian (x1, y1, x2, y2)-coordinates (replacing µ by u and ω by w
for simplicity in MatCont) and add order-6 terms so that we obtain the following equations:

ẋ1 = x1(u1 + p11(x21 + y21) + p12(x22 + y22) + s1(x22 + y22)2)− y1w1 + 3y6
1

ẏ1 = y1(u1 + p11(x21 + y21) + p12(x22 + y22) + s1(x22 + y22)2) + x1w1−2x6
2

ẋ2 = x2(u2 + p21(x21 + y21) + p22(x22 + y22) + s2(x21 + y21)2)− y2w2−7y6
1

ẏ2 = y2(u2 + p21(x21 + y21) + p22(x22 + y22) + s2(x21 + y21)2) + x2w2+x6
1.
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The initial parameter values are: u1 = 9.7, u2 = −50, p11 = 1, p12 = 1.5, p21 = −2, p22 = −1, s1 =
1.3, s2 = 1.7, w1 = 0.001, w2 = 0.00235.

2.2 Location of a connecting orbit by homotopy

2.2.1 Approximating the unstable manifold by integration

Point (0, 0, 0, 0) is an equilibrium of this system with the eigenvalues
9.7 + 0.001i
9.7− 0.001i
−50 + 0.00235i
−50− 0.00235i

 ,

so we have a two-dimensional unstable manifold and a two-dimensional stable manifold where
in both cases the eigenvalues consist of a conjugate complex pair. This gives us an interesting
example for the application of the homotopy method.

Since the eigenvalues with smallest positive real part constitute a conjugate complex pair, both
UParam1 and UParam2 play a role in the initialization, we set them equal to −1 and 1, respectively.
The unstable parameters are now automatically rescaled: UParam1 = -0.7071, UParam2 = 0.7071.
For the value of epsilon 0 we take 1.4142e-4. Therefore we start time integration from the point

x(0) =


0
0
0
0

 + 1.4142e-4(−0.7071q
(0)
0,1 + 0.7071q

(0)
0,2),

where q10 = (1, 0, 0, 0) and q20 = (0, 1, 0, 0) span the two-dimensional eigenspace corresponding to
the eigenvalues 9.7± 0.001i.

We start by selecting Type|Initial point|Equilibrium and Type|Curve|ConnectionSaddle
in the MatCont main panel. After setting the integration interval to 1.04 we get the Starter
and Integrator windows shown in Figure 13. We note that the value for eps0 can be input as
sqrt(2)*1.0e-4.

When we execute time-integration, we obtain Figure 14.

2.2.2 Homotopy towards the stable eigenspace

From Figure 14 we guess that initially eps1 increases, then it decreases, and we take the point
where eps1 stops decreasing as endpoint of the initial connecting orbit. To this end we click
the View Result button in the Control window to open the Data Browser. We then select
the HTHom Select Connection point. For the discretization we use 50 mesh intervals and 4
collocation points. This opens the Starter window for an init HTHom HTHom initializer. We see
that none of the SParam values equals zero, but they are quite small; −0.039964 and −0.751048,
respectively. Following the outline in Appendix we activate both unstable homoclinic parameters,
both stable homoclinic parameters and eps1. The Starter is shown in Figure 15 (left).

During the continuation, we detect a point where SParam1 vanishes. We stop the continuation
here and select the HTHom SParam equal to zero point via the View Result button in the
Control window. This opens the Starter window for the second init HTHom HTHom initializer.
We see that SParam1 is zero, SParam2 equals −0.749078. Following the outline in Appendix, we
activate SParam2 and eps1 and the system parameter u2. The Starter is shown in Figure 15
(right).

In this continuation (Forward and Extend) we detect a point where the SParam2 also van-
ishes. Here eps1 = 1.2457. The next continuation (Backward and Extend many times), with
T, eps1 and one system parameter free, again we take u2, makes eps1 smaller as needed. This
gives us the end-values: T = 0.66932, eps1 = 0.01, u2 = -14.395. Now we can start the con-
tinuation of homoclinic orbits (Type|Curve|Homoclinic to Saddle), with T and eps1 as free
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Figure 13: Starter and Integrator windows for the integration of the unstable manifold.

Figure 14: A segment of the unstable manifold of the saddle at the initial parameter values.

homoclinic parameters and u1 and u2 as free system parameters. The result of this two-parameter
continuation is given in Figure 16.
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Figure 15: Starter windows for the first (left) and second (right) continuation of HTHom connec-
tions.

3 Additional Problems

A. Consider the Lorenz system  ẋ = σ(−x+ y),
ẏ = rx− y − xz,
ż = −bz + xy,

with the standard parameter value b = 8
3 . Use MatCont to analyse its homoclinic bifurca-

tions:

1. Locate at σ = 10 the bifurcation parameter value rHom corresponding to the primary
orbit homoclinic to the origin. Hint: Use homotopy starting from r = 15.5.

2. Compute the primary homoclinic bifurcation curve in the (r, σ)-plane for b = 8
3 . Try

to reach r = 100 and σ = 100.

3. Locate and continue in the same (r, σ)-plane several secondary homoclinic to the origin
orbits in the Lorenz system. Hint: These orbits make turns around both nontrivial
equilibria. The simplest one can be found starting from (σ, r) = (10, 55).

B. Study with MatCont homoclinic bifurcations in the adaptive control system of Lur’e type: ẋ = y,
ẏ = z,
ż = −αz − βy − x+ x2,

where α and β are parameters.
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Figure 16: Continuation of homoclinic connections in the (u1, u2) parameter space.

C. 1. Extend the system in §2.1 by adding a new parameter tst, a new state variable Z and
a new state equation

Z ′ = tst ∗ Z − (x14 + y14 + x24 + y24)

With fixed tst = 12 compute and continue a homoclinic orbit of the new system along
the lines for the system in §2.1, using the same system parameters. (Hint: this will
involve a continuation with two free unstable homoclinic parameters, a continuation
with three free unstable homoclinic parameters, and two continuations with no free
unstable homoclinic parameters).

2. Study the previous system for the fixed value tst = 8. Explain why the system now
behaves differently.

Appendix: Outline of the homotopy method for homoclinic
connections to hyperbolic equilibria

We consider autonomous systems of ODEs depending on at least two parameters

u̇ = f(u, α), u ∈ Rn, α ∈ Rm. (3)

Here n ≥ 2 and m ≥ 2. If m > 2, then at most two parameters are active at any time but the
choice of the active parameters can be changed between the steps of the algorithm.

We will initialize homoclinic orbits to hyperbolic equilibria, continue them under variation of
two system parameters and detect some codim 2 bifurcations. Details can be found in a recent
publication3.

3V. De Witte, W. Govaerts, Yu.A. Kuznetsov, and M. Friedman. Interactive initialization and continuation of
homoclinic and heteroclinic orbits in MATLAB. ACM Trans. Math. Software 38 (2012), 18:1-18:34.
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Let u0 be a hyperbolic equilibrium of (3) with nu eigenvalues with a positive real part and
ns eigenvalues with a negative real part, so nu ≥ 1, ns ≥ 1 and nu + ns = n. Let the unstable
eigenvalues µ1, . . . , µnu be ordered by increasing values of their real parts. We assume that the
critical eigenvalues, i.e. the unstable eigenvalues with the smallest real part, consist of either a
simple real eigenvalue or a single conjugate pair of complex eigenvalues.

The homotopy method is based on the use of an orthonormal base (q10 , . . . , q
nu
0 ) of the right

unstable eigenspace and an orthonormal base (p10, . . . , p
nu
0 ) of the left unstable eigenspace of the

Jacobian fu(u0). These bases are constructed so that if <(µi) < <(µi+1) for 1 ≤ i ≤ nu − 1 then
(q10 , . . . , q

i
0) span the generalized right eigenspace of the first i unstable eigenvalues, and similarly

for the left eigenspaces.
The homotopy method consists of three stages, namely:

1. Stage 1: Approximating the unstable manifold by integration.

2. Stage 2: Homotopy towards the stable eigenspace of the saddle.

3. Stage 3: Homotopy of the end-point towards the saddle.

Stage 1 consists of a time integration that starts from a point of the form

u0 + eps0(Uparam1 q10 + Uparam2 q20)/‖Uparam1 q10 + Uparam2) q20‖

in the unstable eigenspace at distance eps0 from u0. The integration interval, eps0, Uparam1,

and Uparam2 are user-defined. The UParam parameters are called unstable homoclinic parameters.
If µ1 is real, then the term with Uparam2 is not used and Uparam1 must be nonzero. In the

other case UParam1 and UParam(2 must not be both zero.
Typically the computed orbit does not look like a homoclinic connection but the algorithm

chooses the point where the distance to u0 stops decreasing for the last time as the endpoint
u(end) of the first approximation to a homoclinic connection.

Stage 2 is the most complicated one. The inner products

SParam i = 〈u(end)− u0, pi0〉, i = 1 . . . nu,

are called the stable homoclinic parameters. The end point u(end) is in the stable eigenspace
if all stable parameters vanish. The basic idea in Stage 2 is that each continuation step should
annihilate (at least) one stable homoclinic parameter (not necessarily in any a priori given order).
The distance

eps1 = ‖u(end)− u(0)‖
is also used as a parameter in Stage 2 and Stage 3.

If nu = 1 then Stage 2 consists of a single continuation in which the active parameters are
SParam1, eps1, and one user-chosen system parameter. UParam1 is fixed at ±1. Stage 2 is
succesful if a point is found where SParam1 is zero.

If nu > 1 then in the first continuation step the free parameters consist of Uparam1, UParam2,
all nu stable homoclinic parameters and eps1. The continuation involves the normalization equa-
tion

UParam12 + UParam22 = 1

and the initial point of the orbit is given by

u0 + eps0(Uparam1 q10 + Uparam2 q20)

This step is successful if a point is found where one of the stable homoclinic parameters vanishes.
The next step starts from this point. First, all stable homoclinic parameters below a threshold

are set to zero. Let k be the number of zero stable homoclinic parameters. If k < nu − 1 then in
the next continuation the free parameters consist of UParam i, 1 ≤ i ≤ k + 2, the nu − k nonzero
stable homoclinic parameters and eps1. The new orbits start from

u0 + eps0(Uparam1 q10 + . . .+ Uparam(k + 2) qk+2
0 )
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The continuation again involves the normalization equation

UParam12 + . . .+ UParam(k + 2)2 = 1,

and the new unstable homoclinic parameters are initially zero.
If k = nu−1 then in the next continuation the remaining nonzero stable homoclinic parameter,

eps1 and one user-chosen system parameter are free. The new orbits start from

u0 + eps0(Uparam1 q10 + . . .+ Uparam(nu)qnu
0 ).

Stage 2 is succesful when at the end all stable homoclinic parameters are zero.
Stage 3 consists of a single continuation in which eps1, the ‘period’ parameter T (the length

of the final approximating orbit will be 2T), and one user-chosen system parameter are free.
Stage 3 is succesful when eps1 attains a user-chosen threshold eps1tol.

From this point the continuation of orbits homoclinic to a hyperbolic saddle can be started.
In such a continuation, two system parameters must be free, and also one of the three homoclinic
parameters eps0, eps1, or T.
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