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1 Introduction

The present manual on MatContM is based on version 5.3 of MatContM and the runs
were tested on Matlab 9.3 (R2017b). It is meant to be a practical guide for MatContM

users without undue discussion of the details of the used algorithms. Parts of this manual can
be used as tutorials since all discussed command line runs are also available in the directory
Testruns of the distributed version 5.3 of MatContM. In this case one may start with §2.6
and continue with §10.1. There are separate tutorials for the GUI version of MatContM.

In a typical use of MatContM, one starts with an initial fixed point or cycle, which may
be obtained from analysis, simulations or previous continuations. One first computes curves of
fixed points or cycles under variation of one parameter, and may detect bifurcation points on
such curves. Starting from such bifurcation points, the continuer algorithm in MatContM

can compute bifurcation curves. These curves are defined by a system of equations consisting
of fixed point and bifurcation conditions. With one free parameter we can also compute
curves of connecting orbits. By varying two system parameters we can compute bifurcation
curves of limit points, period-doubling and Neimark-Sacker points as well as tangencies of
homoclinic and heteroclinic orbits. A recent application is given in [45].

The following list contains functionalities that are provided by MatContM:

• Simulation (iteration) of maps, i.e. computation and visualization of orbits (trajecto-
ries).

• Computation of the Lyapunov exponents of long trajectories.

• Continuation of fixed points of maps and iterates of maps with respect to a control
parameter.

• Detection of fold (limit point), flip (period-doubling point), Neimark-Sacker and branch
points on curves of fixed points.

• Computation of normal form coefficients for fold, flip and Neimark-Sacker bifurcations.

• Continuation of fold, flip and Neimark-Sacker bifurcations in two control parameters.

• Detection of all codimension 2 fixed point bifurcations on curves of fold, flip and
Neimark-Sacker bifurcations.

• Computation of normal form coefficients for all codimension 2 bifurcations of fixed
points.

• Switching to the period doubled branch in a flip point.

• Branch switching at branch points of fixed points.

• Switching to branches of codimension 1 bifurcations rooted in codimension 2 points.

• Automatic differentiation for normal form coefficients of codimension 1 and codimension
2 bifurcations.

• Computation of one-dimensional invariant manifolds (stable and unstable) and in the
two-dimensional case computing their transversal intersections to obtain initial homo-
clinic and heteroclinic connections.
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• Continuation of homoclinic and heteroclinic orbits with respect to a control parameter
and the detection of tangencies on the curve of orbits.

• Detection of other bifurcations on curves of homoclinic and heteroclinic orbits, see [46]
for details.

• Continuation of homoclinic and heteroclinic tangencies in two control parameters.

• Detection of generalized tangencies and other bifurcations on curves of homoclinic and
heteroclinic orbits, see [46] for details.

2 Basic aspects of numerical continuation and the software

2.1 Numerical continuation

In general, numerical continuation methods are used to compute solution manifolds of non-
linear systems of the form:

F (X) = 0, (1)

where X ∈ R
n+k and F : Rn+k → R

n is a sufficiently smooth function. The solutions of this
equation consist of regular pieces, which are joined at singular solutions. The regular pieces
are curves when k = 1, surfaces when k = 2 and k-manifolds in general.
In MatContM we use numerical continuation methods for analyzing the solutions of (1)
when restricted to the case k = 1. In fact, we construct solution curves Γ in

{X : F (X) = 0} , (2)

by generating sequences of points Xi, i = 1, 2, ... along the solution curve Γ satisfying a chosen
tolerance criterion. The general idea of a continuation method is that of a predictor-corrector
scheme. Starting with an initial point on the continuation path, the goal is to trace the
remainder of the path in steps. At each step, the algorithm first predicts the next point on
the path, and subsequently corrects the predicted point towards the solution curve. A variant
of Newton’s method is used for the corrector step. For details of the continuation method
used in MatContM, we refer to [12, 13].

2.2 Test functions for bifurcations

Let X = X(s) be a smooth, local parameterization of a solution curve of (1) where k = 1.
Suppose that s = s0 corresponds to a bifurcation point. A smooth scalar function ψ : Rn+1 →
R
1 defined along the curve is called a test function, a tool to detect singularities on a solution

branch, for the corresponding bifurcation if g(s0) = 0, where g(s) = ψ(X(s)). The test
function ψ has a regular zero at s0 if dg

ds (s0) 6= 0. A bifurcation point is detected between two
successive points X0 and X1 on the curve if ψ(X0)ψ(X1) < 0. To solve the system

{
F (X) = 0
ψ(X) = 0

(3)

we use a one-dimensional secant method to locate ψ(X) = 0 along the curve. Notice that
this involves Newton corrections at each intermediate point.
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2.3 Singularity matrix

Suppose we have two singularities S1 and S2, and test functions ψ1 and ψ2. Assume that ψ1

vanishes at both S1 and S2 while ψ2 generically vanishes only at S2. Then we need to require
that ψ2 does not vanish at S1, i.e. we need the possibility to require that in some singularities
certain test functions do not vanish. To represent all singularities we use a singularity matrix,
i.e. a compact way to describe the relation between the singularities and the test functions.
Suppose we have ns singularities and nt test functions. Then the singularity matrix S is an
ns × nt matrix, such that:

Sij =





0 means : for singularity i testfunction j must vanish
1 means : for singularity i testfunction j must not vanish
otherwise means : for singularity i ignore test function j

(4)

2.4 User functions

The user has the possibility to define specific functions which must be scalar and can depend
only on the state variables and parameters. He can request that their zeros are detected and
computed during continuation runs as if they were singular points. This requires that the
options Userfunctions and UserfunctionsInfo are set properly (see §2.5.3) and that the
mapfile defines the user functions (§2.6). An example application is given in §10.1.

2.5 Software

2.5.1 Continuer

The syntax of the continuer is:

[x, v, s, h, f] = cont(@curve, x0, v0, options)

curve is a MATLAB m-file where the problem is specified, cf. §2.5.2.
x0 and v0 are respectively the initial point and the tangent vector at the initial point where
the continuation starts.
options is a structure as described in §2.5.3.
The function returns:
x and v, i.e. the points and their tangent vectors along the curve. Each column in x and v
corresponds to a point on the curve.
s is an array whose structures contain information on detected singularities. This structure
has the following fields:
s.index index of the singularity point in x
s.label label of the singularity
s.data any kind of extra information
s.msg a string containing a message for this particular singularity

h is used for output of the algorithm, currently this is a matrix with for each point a column
with the following components (in that order) :

• Stepsize:
Stepsize used to calculate this point (zero for initial point and singular points)

• Half the number of correction iterations, rounded up to the next integer
For singular points this is the number of locator iterations
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• User function values :
The values of all active user functions

• Test function values :
The values of all active test functions

In general, f can be anything depending on which curve file is used. However, inMatContM,
f always contains the multipliers if they were computed during the continuation. Multipliers
are computed when options is set by :

options=contset(options,’Multipliers’,1);

See §2.5.3 for more details.
It is also possible to extend the most recently computed curve with the same options (also

the same number of points) as it was first computed. The syntax to extend this curve is:

[x, v, s, h, f] = cont( x, v, s, h, f, cds)

x, v, s, h and f are the results of the previous call to the continuer and cds is the global variable
that contains the curve description of the most recently computed curve. The function returns
the same output as before extended with the new results.

2.5.2 Curve file

The continuer uses special m-files in which the type of the solution branch is defined.
The basic four curve files (but not the only ones) in MatContM are fixedpointmap.m,
limitpointmap.m,
perioddoublingmap.m and neimarksackermap.m in which defining systems for fold, flip and
Neimark-Sacker bifurcations of cycles of maps are defined, respectively.

A curve file contains some sections as curve func, jacobian, hessians, adapt, etc. In
some cases the problem definition uses auxiliary entities like bordering vectors and it may
be needed to adapt them during the continuation. In adapt these entities are adapted. If
cds.options.Adapt has a value n, then after n computed points a call to
[reeval,x,v]=feval(cds.curve adapt,x,v) will be made.

2.5.3 Options

In the continuation we use the options structure which is initially created with contset:
options = contset

will initialize the structure. The continuer stores the handle to the options in the variable
cds.options. Options can then be set using
options = contset(options, optionname, optionvalue);
where optionname is an option from the following list.

InitStepsize the initial stepsize (default: 0.01)

MinStepsize the minimum stepsize to compute the next point on the curve (default: 10−5).
It is implicitly assumed that the minimum stepsize is not larger than the initial stepsize
but this is not checked by the code.
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MaxStepsize the maximum stepsize (default: 0.1). It is implicitly assumed that the max-
imum stepsize is not smaller than the initial stepsize but this is not checked by the
code.

MaxCorrIters maximum number of correction iterations (default: 10)

MaxNewtonIters maximum number of Newton-Raphson iterations before switching to
Newton-Chords in the corrector iterations (default: 3)

MaxTestIters maximum number of iterations to locate a zero of a test function (default:
10)

Increment the increment to compute the derivatives numerically (default: 10−5)

FunTolerance tolerance of function values: ||F (x)|| ≤ FunTolerance is the first convergence
criterion of the Newton iteration (default: 10−6)

VarTolerance tolerance of coordinates: ||δx|| ≤ V arTolerance is the second convergence
criterion of the Newton iteration (default: 10−6)

TestTolerance tolerance of test functions (default: 10−5)

Singularities boolean indicating the presence of singularities (default: 0)

MaxNumPoints maximum number of points on the curve (default: 300)

Backward boolean indicating the direction of the continuation (direction of the initial tan-
gent vector) v0 (default: 0)

CheckClosed number of points indicating when to start to check if the curve is closed (0 =
do not check) (default: 50)

Adapt number of points indicating when to adapt the problem while computing the curve
(0 = do not adapt) (default: 3)

IgnoreSingularity vector containing indices of singularities which are to be ignored (default:
empty)

Multipliers boolean indicating the computation of the multipliers (default: 0)

TSearchOrder numerical value that indicates if unit vectors are cycled in increasing order
of index (default: 1, increasing) or decreasing (set to a value different from 1), see
§2.5.12.

Userfunctions boolean indicating the presence of user functions (default: 0)

UserfunctionsInfo is an array with structures containing information about the
user functions. This structure has the following fields:
.label label of the user function (must consist of four characters, including possibly

trailing spaces)
.name name of this particular user function
.state boolean indicating whether the user function has to be evaluated or not
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For the options MaxCorrIters, MaxNewtonIters, MaxTestIters, Increment, FunTolerance,
VarTolerance, TestTolerance and Adapt the default values are in most cases good.

Options also contains some fields which are not set by the user but frozen or filled by calls
to the curvefile, namely:

MoorePenrose boolean indicating the use of the Moore-Penrose continuation as the
Newton-like corrector procedure (default: 1)

SymDerivative the highest order symbolic derivative which is present (default: 0)

SymDerivativeP the highest order symbolic derivative with respect to the parameter(s)
which is present (default: 0)

AutDerivative boolean indicating the use of automatic differentiation in the computation
of normal form coefficients (default: 1)

AutDerivativeIte an integer number that indicates the use of automatic differentiation
when the iteration number of the map equals or exceeds this number (default: 24)

Testfunctions boolean indicating the presence of test functions and singularity matrix (de-
fault: 0)

WorkSpace boolean indicating to initialize and clean up user variable space (default: 0)

Locators boolean vector indicating for which testfunctions a specific locator code exists to
locate its zeroes. Otherwise the default locator is used (default: empty)

ActiveParams vector containing indices of the active parameter(s) (default: empty)

Some more details follow here on some of the options.

2.5.4 Derivatives of the defining system of the curve

In the defining system of the object that is to be continued, the derivates can be provided
that are needed for the continuation algorithm or other computations. The continuer stores
the handle to the derivatives in the variables cds.curve jacobian,cds.curve hessians.

If cds.symjac= 1, then a call to feval(cds.curve jacobian, x) must return the (n−
1)× n Jacobian matrix evaluated at point x.

If cds.symhess= 1, then a call to feval(cds.curve hessians, x) must return a 3-

dimensional (n− 1× n× n) matrix H such that H(i, j, k) = ∂2Fi(x)
∂xj∂xk

.

In the present implementation in most cases cds.symhess= 0, so the ODE-file does not
provide second order derivatives, since they are not needed in the algorithms used.

2.5.5 Singularities and test functions

To detect singularities on the curve one must set the option Singularities on. Singularities are
defined using the singularity matrix, as described in section 2.3. The continuer stores the han-
dles to the singularities, the testfunctions and the processing of the singularities respectively
in the variables cds.curve singmat,cds.curve testf and cds.curve process.

A call to [S,L] = feval(cds.curve singmat) gets the singularity matrix S and a vector
of 2-character strings which are abbreviations of the singularities.
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A call to feval(cds.curve testf, ids, x, v) then must return the evaluation of all
testfunctions, whose indices are in the integer vector ids, at x (v is the tangent vector at x).
As a second return argument it should return an array of all testfunction id’s which could
not be evaluated. If this array is not empty the stepsize will be decreased.

When a singularity is found, a call to [failed,s] = feval(cds.curve process,i,x,v,s)

will be made to process singularity i at x. This is the point where computations can be done,
like computing normal forms, eigenvalues, etc. of the singularity. These results can then be
saved in the structure s.data which can be reused for further analysis. Note that the first
and last point of the curve are also treated as singular.

2.5.6 Locators

It may be useful to have a specific locator code for locating certain singularities. To use a
specific locator you must set the option Locators. This is a vector in which the index of an
element corresponds to the index of a singularity. Setting the entry to 1 means the presence
of a user-defined locator. The continuer has stored the handles to the locators in the variable
cds.curve locator and will then make a call to
[x,v]=feval(cds.curve locate,i,x1,v1,x2,v2)

to locate singularity i which was detected between x1 and x2 with their corresponding tangent
vectors v1 and v2. It must return the located point and the tangent vector at that point. If
the locator was unable to find a point it should return x = [].

2.5.7 User functions

To detect zeros of userfunctions on the curve one must set the option Userfunctions on.
The continuer has stored the handles to the userfunctions cds.curve userf. First a call
to UserInfo = contget(cds.options, ’UserfunctionsInfo’, []) is made to get infor-
mation on the userfunctions. A call to feval(cds.curve userf, UserInfo, ids, x, v)

then must return the evaluation of all userfunctions ids, whose information is in the structure
UserInfo, at x (v is the tangent vector at x). As a second return argument it should return
an array of all user function id’s which could not be evaluated. If this array is not empty the
stepsize will be decreased.

A special point on a bifurcation curve that is specified by a user function has a structure
as follows:
s.index index of the detected singular point defined by the user function.
s.label a string that is in UserInfo.label, label of the singularity.
s.msg a string that is set in UserInfo.name.
s.data an empty tangent vector or values of the user functions in the singular point.

When a change of sign of a userfunction is detected, the userfunction i is processed at x.
This is the point where the results (values of the userfunction) can be saved in the structure
s.data which can be reused for further analysis.

2.5.8 Defaultprocessor

In many cases it is useful to do some general computations for every calculated point on
the curve. The results of these computations can then be used by for example the test-
functions. The continuer has stored the handle to the defaultprocessor in the variable
cds.curve defaultprocessor.
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The defaultprocessor is called as
[failed,f,s] = feval(cds.curve defaultprocressor,x,v,s).
x and v are the point on the curve and it’s tangent vector. The argument s is only supplied
if the point is a singular point, in that case the defaultprocessor may also add some data to
the s.data field. If for some reason the default processor fails it should set failed to 1. This
will result in a reduction of the stepsize and a retry which should solve the problem. Any
information that is to be preserved, should be put in f. f must be a column vector and must
be of equal size for every call to the default processor.

2.5.9 Special processors

After a singular point has been detected and located a singular point data structure will be cre-
ated and initialized. If there are some special data (like eigenvalues) which may be of interest
for a particular singular point then a call to [failed,s] = feval(cds.curve process,i,x,v,s)

should store this data in the s.data field. Here i indicates which singularity was detected
and x and v are the point and tangent vector where this singularity was detected.

2.5.10 Workspace

During the computation of a curve it is sometimes necessary to introduce variables and do
additional computations that are common to all points of the curve. The continuer has stored
the handle to the initialization and cleaning of the workspace in the variables cds.curve init

and cds.curve done. These can be relegated to a call of the type

feval(cds.curve_init,x,v).

This option has to be provided only if the variable WorkSpace in cds.options is switched
on. In this case a call

feval(cds.curve_done,x,v)

must clear the workspace. Variables in the workspace must be set global.

2.5.11 Adaptation

It is possible to adapt the problem while generating the curve. If Adapt has a value, say 5,
then after 5 computed points a call to [reeval,x,v]=feval(cds.curve adapt,x,v) will be
made where the user can program to change the system.

For some applications it is useful to change or modify the used test functions while com-
puting the curve (like in bordering techniques). In order to preserve the correct signs of the
test functions it is sometimes necessary to reevaluate the test functions after adaptation. To
do this reeval should be one otherwise zero. The return variables x and v should be the
updated x and v which may have changed because of the changes made to the system.

2.5.12 Tangent search order

To start a continuation, an initial point x0 and a tangent vector v0 are needed in gen-
eral. Often, only x0 is available. In this case, MatContM successively tries all unit vec-
tors as candidate tangent vectors. By default, this is done in increasing order of index
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(cds.options.TSearchOrder = 1). If cds.options.TsearchOrder is set to a value different from
1 then the cycling is done in decreasing order of index.

In cases where the number of continuation variables is large (e.g. when computing homo-
clinic connections) the choice of cds.options.TSearchOrder can substantially change the speed
of the computation.

2.5.13 Directories

To start MatContM its main directory must be the root directory of MatcontM where
init.m is set. The files of the toolbox are organized in the following subdirectories

• Continuer
Here are all the main files for the continuer which are needed to calculate and plot any
curve.

• FixedPointMap
Here are all files needed to do a continuation of fixed points of iterates of a map. This
includes in particular the initializers and the fixed point curve definition file.

• LimitPointMap
Here are all files needed to do a fold continuation. This includes in particular the
initializers and the fold curve definition file.

• PeriodDoublingMap
Here are all files needed to do a flip continuation. This includes in particular the
initializers and the flip curve definition file.

• NeimarkSackerMap
Here are all files needed to do a Neimark-Sacker continuation. This includes in particular
the initializers and the Neimark-Sacker point curve definition file.

• MultilinearForms
Here are all files needed to compute the critical normal form coefficients for all codim-1
and codim-2 bifurcation points both numerically with finite directional differences and
using symbolic derivatives of the original map.

• AD
Contains all files needed to use automatic differentiation in the computation of multi-
linear forms.

• InvManifold
Contains all files needed for the computation of stable and unstable manifolds.

• Homoclinic
Here are all files needed to continue a homoclinic connection.

• Heteroclinic
Contains all files needed to continue a heteroclinic connection.

• HomoclinicT
Here are all files needed to continue a fold curve of homoclinic connections.

13



CURVE DEFINITION

CURVE INITIALIZERCONTINUER

MATLAB PROMPT

MAPFILE

Figure 1: Continuation process in MatContM.

• HeteroclinicT
Here are all files needed to continue a fold curve of heteroclinic connections.

• Systems
Here are all example system definitions.

• Testruns
Here are all example testruns. They can be used to run the examples described in this
manual and to test if everything is working correctly. This directory contains three
subdirectories Tnfmap, LeslieGower and CodStock that correspond to the testruns of
the examples in §10.1, §10.2 and §10.3 respectively.

• GUI
Here are the files which are specific to the GUI version of MatContM. These will not
be discussed in the present manual.

The only files which are not in any of these directories are init.m, cpl.m, and matcontm.m.
The command init must be called before any continuation in the toolbox, so that MAT-
LAB can find all the needed functions. The function cpl is used to plot the results ob-
tained in a continuation run. It can provide 2D or 3D plots. For instance the commands
cpl(x24,v24,s24,[3 1]) and cpl(x4,v4,s4,[3 1 2]) create the 2D and 3D plots of Fig-
ure 10 and Figure 8, respectively. The command matcontm starts the GUI of MatContM

and will not be discussed further in this manual.
The process of continuation is visualized in Figure 1.
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2.6 The mapfile of the map

A solution curve must be initialized before doing a continuation. Each curve file has its own
initializers which use a mapfile where the map is defined, see for instance § 3.2. A mapfile

contains at least the following sections (in that order):
init, fun eval, jacobian, jacobianp, hessians, hessiansp, der3, der4 , der5.

However, the section init is routinely empty; it is reserved for users with special desiderata.
A mapfile may also contain one or more sections that describe user functions.

We note that if state variables, parameters or user functions are added or deleted then
this constitutes another dynamical system. So either all computed data should be deleted or
ignored, or the name of the system should be changed. The last option is recommended, in
particular when the GUI is used.

A mapfile can be defined by simply using the Matlab editor or any other text editor.
From version 4.1 on MatContM provides two better possibilities to create mapfiles. One

of them is by using the GUI version of MatContM. The other one is a shortcut to this.
In order to illustrate this method and the elements of a mapfile, we consider the example

MTN , the map of a truncated normal form that will be studied in Section 10.1.1.
A new mapfile can be created by calling SysGUI.new.
This opens a System window, which contains several fields and buttons. To identify the

system, type for example

Tnfmap

in the Name field (it must be one word).
Input names of theCoordinates: ksi1,ksi2, and theParameters: beta1,beta2,CC,DD.
If shown, select symbolic generation of the 1st order derivatives by pressing the corre-

sponding radio-button 1.
Finally, in the large input field, type the RHS of the truncated normal form map as

ksi1’=-ksi1+ksi2

ksl2’=beta1*ksi1-ksi2+beta2*ksi2+CC*ksi1^3+DD*ksi1^2*ksi2

Avoid typical mistakes:

• Make sure the multiplication is written explicitly with ∗.

• Specify the right hand sides in the same order as the coordinates.

It is best not to add comma’s or semicolons after the equations. Now the System window
should look like in Figure 2, and you can press the OK button. Two new files will be
created in the Systems directory ofMatContM, namely the mapfile Tnfmap.m and a mat-file
Tnfmap.mat.

1If the MATLAB Symbolic Toolbox is present, there will be buttons indicated ’symbolically’. The first-

order derivatives are used in some of the integration algorithms, the first- and second-order derivatives are

used in the continuation, while the third-order derivatives are employed in the normal form computations.

The derivatives of fourth and fifth order are only used in the normal form computations of some codimension

2 bifurcations.
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Figure 2: Specifying a new model.
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The mapfile can be edited later on by calling SysGUI.edit(@name) where name is the name
of an existingmapfile. User functions can be added by calling SysGUI.userfunctions(@name).
See Figure 3.

Figure 3: Adding a user function.

First we give the mapfile of MTN using symbolic derivatives up to order 5:

function out = Tnfmap

out{1} = [];

out{2} = @fun_eval;

out{3} = @jacobian;

out{4} = @jacobianp;

out{5} = @hessians;

out{6} = @hessiansp;

out{7} = @der3;

out{8} = @der4;

out{9} = @der5;

% --------------------------------------------------------------------------

function dydt = fun_eval(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

dydt=[-kmrgd(1)+kmrgd(2);

par_beta1*kmrgd(1)-kmrgd(2)+par_beta2*kmrgd(2)+par_CC*kmrgd(1)^3+par_DD*kmrgd(1)^2*kmrgd(2);
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% --------------------------------------------------------------------------

function jac = jacobian(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

jac=[ -1 , 1 ; par_beta1 + 3*kmrgd(1)^2*par_CC + 2*kmrgd(1)*kmrgd(2)*par_DD , par_beta2 +

% --------------------------------------------------------------------------

function jacp = jacobianp(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

jacp=[ 0 , 0 , 0 , 0 ; kmrgd(1) , kmrgd(2) , kmrgd(1)^3 , kmrgd(1)^2*kmrgd(2) ];

% --------------------------------------------------------------------------

function hess = hessians(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

hess1=[ 0 , 0 ; 6*kmrgd(1)*par_CC + 2*kmrgd(2)*par_DD , 2*kmrgd(1)*par_DD ];

hess2=[ 0 , 0 ; 2*kmrgd(1)*par_DD , 0 ];

hess(:,:,1) =hess1;

hess(:,:,2) =hess2;

% --------------------------------------------------------------------------

function hessp = hessiansp(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

hessp1=[ 0 , 0 ; 1 , 0 ];

hessp2=[ 0 , 0 ; 0 , 1 ];

hessp3=[ 0 , 0 ; 3*kmrgd(1)^2 , 0 ];

hessp4=[ 0 , 0 ; 2*kmrgd(1)*kmrgd(2) , kmrgd(1)^2 ];

hessp(:,:,1) =hessp1;

hessp(:,:,2) =hessp2;

hessp(:,:,3) =hessp3;

hessp(:,:,4) =hessp4;

%---------------------------------------------------------------------------

function tens3 = der3(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

tens31=[ 0 , 0 ; 6*par_CC , 2*par_DD ];

tens32=[ 0 , 0 ; 2*par_DD , 0 ];

tens33=[ 0 , 0 ; 2*par_DD , 0 ];

tens34=[ 0 , 0 ; 0 , 0 ];

tens3(:,:,1,1) =tens31;

tens3(:,:,1,2) =tens32;

tens3(:,:,2,1) =tens33;

tens3(:,:,2,2) =tens34;

%---------------------------------------------------------------------------

function tens4 = der4(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

tens41=[ 0 , 0 ; 0 , 0 ];

tens42=[ 0 , 0 ; 0 , 0 ];

...

tens47=[ 0 , 0 ; 0 , 0 ];

tens48=[ 0 , 0 ; 0 , 0 ];

tens4(:,:,1,1,1) =tens41;

tens4(:,:,1,1,2) =tens42;

...

tens4(:,:,2,2,1) =tens47;

tens4(:,:,2,2,2) =tens48;

%---------------------------------------------------------------------------

function tens5 = der5(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

tens51=[ 0 , 0 ; 0 , 0 ];
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tens52=[ 0 , 0 ; 0 , 0 ];

...

tens515=[ 0 , 0 ; 0 , 0 ];

tens516=[ 0 , 0 ; 0 , 0 ];

tens5(:,:,1,1,1,1) =tens51;

tens5(:,:,1,1,1,2) =tens52;

...

tens5(:,:,2,2,2,1) =tens515;

tens5(:,:,2,2,2,2) =tens516;

We observe that:

• out{1} is empty. This output field is provided for cases in which the user wants to do
some initializations.

• The state variables are collected in a vector kmrgd.

• Internally the parameters are renamed to avoid clashes with the name restrictions of
the symbolic toolbox. E.g., CC is replaced by par CC.

After adding a user function userfun1=beta2-2 we obtain:

function out = Tnfmap

out{1} = @init;

out{2} = @fun_eval;

out{3} = @jacobian;

out{4} = @jacobianp;

out{5} = @hessians;

out{6} = @hessiansp;

out{7} = @der3;

out{8} = @der4;

out{9} = @der5;

out{10}= @userfun1;

% --------------------------------------------------------------------------

function dydt = fun_eval(t,kmrgd,beta1,beta2,CC,DD)

dydt=[-kmrgd(1)+kmrgd(2);

beta1*kmrgd(1)-kmrgd(2)+beta2*kmrgd(2)+CC*kmrgd(1)^3+DD*kmrgd(1)^2*kmrgd(2);];

% --------------------------------------------------------------------------

function jac = jacobian(t,kmrgd,beta1,beta2,CC,DD)

jac=[ -1 , 1 ; beta1 + 3*CC*kmrgd(1)^2 + 2*DD*kmrgd(1)*kmrgd(2) , beta2 + DD*kmrgd(1)^2 -

% --------------------------------------------------------------------------

function jacp = jacobianp(t,kmrgd,beta1,beta2,CC,DD)

jacp=[ 0 , 0 , 0 , 0 ; kmrgd(1) , kmrgd(2) , kmrgd(1)^3 , kmrgd(1)^2*kmrgd(2) ];

% --------------------------------------------------------------------------

function hess = hessians(t,kmrgd,beta1,beta2,CC,DD)

hess1=[ 0 , 0 ; 6*CC*kmrgd(1) + 2*DD*kmrgd(2) , 2*DD*kmrgd(1) ];

hess2=[ 0 , 0 ; 2*DD*kmrgd(1) , 0 ];
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hess(:,:,1) =hess1;

hess(:,:,2) =hess2;

% --------------------------------------------------------------------------

function hessp = hessiansp(t,kmrgd,beta1,beta2,CC,DD)

hessp1=[ 0 , 0 ; 1 , 0 ];

hessp2=[ 0 , 0 ; 0 , 1 ];

hessp3=[ 0 , 0 ; 3*kmrgd(1)^2 , 0 ];

hessp4=[ 0 , 0 ; 2*kmrgd(1)*kmrgd(2) , kmrgd(1)^2 ];

hessp(:,:,1) =hessp1;

hessp(:,:,2) =hessp2;

hessp(:,:,3) =hessp3;

hessp(:,:,4) =hessp4;

%---------------------------------------------------------------------------

function tens3 = der3(t,kmrgd,beta1,beta2,CC,DD)

tens31=[ 0 , 0 ; 6*CC , 2*DD ];

tens32=[ 0 , 0 ; 2*DD , 0 ];

tens33=[ 0 , 0 ; 2*DD , 0 ];

tens34=[ 0 , 0 ; 0 , 0 ];

tens3(:,:,1,1) =tens31;

tens3(:,:,1,2) =tens32;

tens3(:,:,2,1) =tens33;

tens3(:,:,2,2) =tens34;

%---------------------------------------------------------------------------

function tens4 = der4(t,kmrgd,beta1,beta2,CC,DD)

tens41=[ 0 , 0 ; 0 , 0 ];

tens42=[ 0 , 0 ; 0 , 0 ];

...

tens47=[ 0 , 0 ; 0 , 0 ];

tens48=[ 0 , 0 ; 0 , 0 ];

tens4(:,:,1,1,1) =tens41;

tens4(:,:,1,1,2) =tens42;

...

tens4(:,:,2,2,1) =tens47;

tens4(:,:,2,2,2) =tens48;

%---------------------------------------------------------------------------

function tens5 = der5(t,kmrgd,beta1,beta2,CC,DD)

tens51=[ 0 , 0 ; 0 , 0 ];

tens52=[ 0 , 0 ; 0 , 0 ];

...

tens515=[ 0 , 0 ; 0 , 0 ];

tens516=[ 0 , 0 ; 0 , 0 ];

tens5(:,:,1,1,1,1) =tens51;

tens5(:,:,1,1,1,2) =tens52;

...

tens5(:,:,2,2,2,1) =tens515;

tens5(:,:,2,2,2,2) =tens516;

function userfun1=userfun1(t,kmrgd,beta1,beta2,CC,DD)

20



userfun1=beta2-2;

If no symbolic derivatives are available then MatContM uses finite difference approxi-
mations instead. However, this will be less accurate and computed normal form coefficients
are often unreliable. A mapfile of MTN without symbolic derivatives is given by:

function out = Tnfmap

out{1} = [];

out{2} = @fun_eval;

out{3} = [];

out{4} = [];

out{5} = [];

out{6} = [];

out{7} = [];

out{8} = [];

out{9} = [];

out{10}= @userfun1;

% --------------------------------------------------------------------------

function dydt = fun_eval(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

dydt=[-kmrgd(1)+kmrgd(2);

par_beta1*kmrgd(1)-kmrgd(2)+par_beta2*kmrgd(2)+par_CC*kmrgd(1)^3+par_DD*kmrgd(1)^2*kmrgd(2);

% --------------------------------------------------------------------------

function jac = jacobian(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

% --------------------------------------------------------------------------

function jacp = jacobianp(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

% --------------------------------------------------------------------------

function hess = hessians(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

% --------------------------------------------------------------------------

function hessp = hessiansp(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

%---------------------------------------------------------------------------

function tens3 = der3(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

%---------------------------------------------------------------------------

function tens4 = der4(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

%---------------------------------------------------------------------------

function tens5 = der5(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

function userfun1=userfun1(t,kmrgd,par_beta1,par_beta2,par_CC,par_DD)

userfun1=beta2-2

A special point on a bifurcation curve that is specified by a user function has a structure
as follows:
s.index index of the detected singular point defined by the user function.
s.label a string that is in UserInfo.label, label of the singularity.
s.data an empty tangent vector, values of the test and user functions in

the singular point.
s.msg a string that is set in UserInfo.name.
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2.7 Computing orbits and the Jacobian

The main use of the mapfile is in the continuation and bifurcation algorithms but it can
also be used to apply the map, compute orbits and Jacobians. Computing long orbits is
an important feature since it often allows to find stable fixed points and stable cycles from
scratch.

The most direct way to apply the map is shown in the testrun Tnfmap0.m in the directory
Testruns/Tnfmap:

funchandle=feval(@Tnfmap);

func=funchandle{2};

x=[0.4;0.6];

p=[1;2;3;4];

P0=num2cell(p);

func(0,x,P0{:})

By running this script one computes f(x, p) where f is the map that is introduced in the
mapfile Tnfmap.m. The output is

>> Tnfmap0

ans =

0.2000

1.5760

A less straightforward but more powerful way is to use the object MatContMSystem.m in
the directory Systems. An example is provided in the testrun Tnfmap00 in the directory
Testruns/Tnfmap:

f=MatContMSystem(@Tnfmap)

f([0.4;0.6],[1 2 3 4])

f.orbit(5,[0.4;0.6],[1 2 3 4])

f.jacobian([0.4;0.6],[1 2 3 4])

f4=f.getIteratedMap(4)

f4([0.4;0.6],[1 2 3 4])

Running this file applies the map, computes an orbit of length 5, computes the Jacobian,
defines the fourth-iterate map and applies it. The output is as follows:

>> Tnfmap00

f =

MatContMSystem with properties:

iteration: 1
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ans =

0.2000

1.5760

ans =

0.4000 0.2000 1.3760 0.6762 26.1099

0.6000 1.5760 2.0522 26.7861 77.3751

ans =

-1.0000 1.0000

4.3600 1.6400

f4 =

MatContMSystem with properties:

iteration: 4

ans =

26.1099

77.3751

The Jacobian of an iterate of the map can be computed in the same way.

3 Continuation of cycles

The subdirectory FixedPointMap contains all files related to the continuation of fixed points
of iterates of maps, detection of their bifurcations, computation of the normal forms etc.
The main files are fixedpointmap.m, init FPm FPm.m and init BPm FPm.m . The data
specific to this continuation are stored in the global structure fpmds. Such a continuation can
be found, for instance, in §10.1, Run 1.

3.1 Bifurcations and test functions

Consider
f i : x −→ f i(x) = f(f(..f(x))) (5)
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The iteration gives rise to a sequence of points

x = x1, x2, x3, ..xi+1,

in which xl+1 = f l(x1). The equation for fixed points of the i-th iterate is

f i(x)− x = 0 (6)

There are three generic codim 1 bifurcations that can be detected along the curve of fixed
points of the i-th iterate, namely Fold (Limitpoint, LP), Flip (Period Doubling, PD) and
Neimark-Sacker ( NS). Also, there can be branch points ( BP). We consider them in this order.
To detect these singularities, we define 4 test functions.

φ1(x, α) = det(A(i) ⊙A(i) − Im), (7)

φ2(x, α) = det(A(i) + In), (8)

φ3(x, α) = vn+1, (9)

φ4(x, α) = det

(
FX

vT

)
. (10)

Here v is the tangent vector along the curve, ⊙ is the m × m bialternate matrix product
where m = n(n−1)

2 (cf. [22], §4.4.4), F (X) = f i(x, α) − x and A(i) is the Jacobian matrix of
the iterated map f i.

The following codimension 1 bifurcations and branch points can be detected and located
as regular zeroes of the above test functions:

• NS: φ1 = 0.

• PD: φ2 = 0.

• LP: φ3 = 0, φ4 6= 0.

• BP: φ4 = 0.

We notice that φ1 is also zero if there is a pair of real multipliers with product 1. Such points
are called neutral saddles. We have to take care of these when processing the NS points.
The singularity matrix is :

S =




0 − − −
− 0 − −
− − 0 1
− − − 0


 (11)

3.2 Fixed point initializations

The initializers are init FPm FPm.m, init PDm FP2m.m and init BPm FPm.m. To start from a
known fixed point of the i-th iterate one first gives the following curve initializer statement:

[x0, v0] = init FPm FPm(@mapfile, x, p, ap, i)

24



Here mapfile is the mapfile to be used, x is a vector containing the starting values of the
state variables, p is the vector containing the starting values of the parameters and ap is the
index of the active parameter. This routine stores its output partly in the global structure
fpmds. The output of init FPm FPm contains a vector x0 with the state variables and the
active parameter and an empty vector v0.

To explain the meaning of fpmds we run the fixed point initializer using the mapfile that is
defined in §2.6 where symbolic derivatives are used. The global structure fpmds is set using:

[x0, v0] = init FPm FPm(@Tnfmap, [0; 0], [−1; 0; 1; 1], 2, 1)

Some important fildes of fpmds are given by:

P0: [4x1 double]

ActiveParams: 2

mapfile: @Tnfmap

func: @fun_eval

Jacobian: @jacobian

JacobianP: @jacobianp

Hessians: @hessians

HessiansP: @hessiansp

Der3: @der3

Der4: @der4

Der5: @der5

Niterations: 1

nphase: 2

To start the continuation of 2-cycles from a period-doubling point detected during a fixed
point of i-th iterate continuation one first gives the following curve initializer statement:

[x0, v0] = init PDm FP2m(@mapfile, xnew, p, ap, s(j), h, i)

Here mapfile is the mapfile to be used, xnew is a vector containing the starting values of
the state variables, p is the vector containing the starting values of the parameters and ap

must be the index of the active parameter. In the most natural situation where x is the
matrix returned by the previous fixed point curve continuation one starts to build xnew by
the statement xnew=x(1:nphase,s(j).index).
s(j) is the special point structure of the detected period doubling point on the fixed point
of i-th iterate curve continuation and nphase is the number of state variables.
Next, the statement

p(ap old)=x(end,s(j).index);

replaces the old value of the free parameter in the previous run by the parameter value at the
PD point.
The output of init PDm FP2m contains a vector x0 with the state variables and the active
parameter and a tangent vector v0. If xPD is the PD point on the original branch and q is the
right eigenvector of the multiplier −1 in xPD then x0 = xPD + hq and v0 = q; the scalar h is
called the amplitude.
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We note that init PDm FP2m uses the global structures fpmds and cds that were cre-
ated during the computation of the fixed point curve on which the PD point was detected.
This should be taken into account if intermediate computations are performed. The routine
init PDm FP2m stores its output partly in the same global structures fpmds and cds.

3.3 Output of a fixed point continuation

The fixed point curve is continued by calling:

[x, v, s, h, f] = cont(@fixedpointmap, x0, v0, opt) (12)

This call returns :
x and v: points and their tangent vectors along the fixed points curve, respectively.
The array s contains information about the computed singular points, including zeros of user
functions, with the following fields:
s.index index of the point in x.
s.label label of the singularity, may be 00, NS, PD, LP, BP, 99

or the label of a user function.
The strings 00 and 99 indicate the first and the last point
on the fixed points curve, respectively.

s.data extra information.
For the first and last points this is only an empty tangent vector.
For zeroes of user functions an empty tangent vector is given,
plus the values of all active user functions and test functions.
For bifurcation points see the respective cases in §3.4.1, §3.4.2, §3.4.3, §3.5.

s.msg a string containing a message for this particular singularity.
For the first and last points these are the strings
’This is the first point of the curve’ and
’This is the last point of the curve’, respectively.
For zeroes of user functions the name of the user function is given.
For bifurcation points see again the respective cases.

h and f were described in §2.5.1

3.4 Normal form coefficients of codim-1 bifurcation points

When a limit point, period doubling point or Neimark-Sacker point is detected on a curve of
fixed points, then the processing of these points includes the computation of the normal form
coefficients.
Assuming sufficient smoothness of f , we write

f r(x0 + u, α0) = x0 +A(r)u+ 1
2 B

(r)(u, u) + 1
6 C

(r)(u, u, u)

+ 1
24 D

(r)(u, u, u, u) + 1
120 E

(r)(u, u, u, u, u) +O(‖u‖6), (13)

26



where A(r) = (f r)x(x0) and the components of the multilinear functions B(r), C(r), D(r), and
E(r) are given by

B(r)(x, y) =

n∑

j,k=1

∂2f (r)(x0, α0)

∂ξj∂ξk
xjyk,

C(r)(x, y, z) =
n∑

j,k,l=1

∂3f (r)(x0, α0)

∂ξj∂ξk∂ξl
xjykzl,

D(r)(x, y, z, u) =

n∑

j,k,l,m=1

∂4f (r)(x0, α0)

∂ξj∂ξk∂ξl∂ξm
xjykzlum,

E(r)(x, y, z, u, v) =
n∑

j,k,l,m,s=1

∂5f (r)(x0, α0)

∂ξj∂ξk∂ξl∂ξm∂ξs
xjykzlumvs,

for r = 1, 2, . . . , n. Here ||x|| =
√
〈x, x〉 =

√
x̄Tx. We now give the critical normal form

coefficients of the generic codimension 1 bifurcations of fixed points. For details and proofs
we refer to [33], §5.4.2.

3.4.1 Limit point

The matrix A(i) (Jacobian of the i-th iterate) has a simple eigenvalue λ1 = 1 and no other
multipliers on the unit circle, while the restriction of (1) to a one dimensional center manifold
at the critical parameter value has the form

w 7−→ w + aw2 +O(w3), w ∈ R
1 (14)

if a 6= 0, where for the coefficient a we have the expression:

a =
1

2

〈
p,B(i)(q, q)

〉
, (15)

where A(i)q = q, (A(i))T p = p, and 〈q, q〉 = 1 , 〈p, q〉 = 1.
A generic unfolding of (14) is

w 7−→ α+ w + aw2 +O(w3), w ∈ R
1 (16)

where α is the control parameter with critical value 0. When the control parameter crosses
0, two fixed points collide and disappear. So the fixed point curve has a turning point with
respect to the control parameter.
At a fold point the output s, in the continuation of fixed point curve (12), contains:
s.index index of the fold point.
s.label the label LP.
s.data an empty tangent vector,

values of the active test functions and active user functions,
the normal form coefficient a,
multipliers and corresponding eigenvectors.

s.msg the string Limit point.
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3.4.2 Period doubling

The matrix A(i) has a simple eigenvalue λ1 = −1 and no other multipliers on the unit circle.
The restriction of (1) to a one dimensional center manifold at the critical parameter value
can be transformed to the normal form

w 7−→ −w + bw3 +O(w4), w ∈ R1 (17)

if b 6= 0, where b is given by

b =
1

6

〈
p, C(i)(q, q, q) + 3B(i)(q, (I −A)−1B(i)(q, q))

〉
, (18)

where I is the unit n× n matrix, A(i)q = −q, (A(i))T p = −p, 〈q, q〉 = 1,〈p, q〉 = 1.
A generic unfolding of (17) is

w 7−→ −w(1 + α) + bw3 +O(w4), w ∈ R1 (19)

where α is a control parameter. When the control parameter crosses the critical value 0,
a cycle of period 2 bifurcates from the fixed point. If b > 0 then this period two cycle is
stable and found for those α - values where the fixed point of the map is unstable; this
is called a supercritical PD. If b < 0 then the period two cycle is unstable and found for
those α - values where the fixed point of the map is stable; this is called a subcritical PD
point. At a flip point the output s, in the continuation of fixed point curve (12), contains:
s.index index of the flip point.
s.label the label PD.
s.data an empty tangent vector, values of the active test functions,

values of the active user functions, the right eigenvector,
the normal form coefficient b,
multipliers and corresponding eigenvectors.

s.msg the string Period doubling.

3.4.3 Neimark-Sacker

The matrix A(i) has simple critical multipliers λ1,2 = e±iθ0 (0 ≤ θ ≤ π) and no other
multipliers on the unit circle. Assume that eikθ0 6= 1, k = 1, 2, 3, 4 (these special cases are the
strong resonances, §5.4-7).

Then the restriction of (1) to the two dimensional center manifold at the critical parameter
value can be transformed to the normal form

w 7−→ weiθ0(1 + d|w|2) +O(|w|4), w ∈ C1

where w is now a complex variable and d is a complex number. If c = Re(d) 6= 0, then a
unique closed invariant curve around the fixed point appears when the parameter crosses the
critical value. One has the following expression for d:

d =
1

2
e−iθ0

〈
p, C(i)(q, q, q̄) + 2B(i)(q, h11) +B(i)(q̄, h20)

〉
(20)

where
h11 = (In −A)−1B(i)(q, q̄), h20 = (e2iθ0In −A(i))−1B(i)(q, q),
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and A(i)q = eiθ0q, [A(i)]T p = e−iθ0p and 〈q, q〉 = 〈p, q〉 = 1.
If c < 0 then an stable invariant curve branches off the NS point and is found for values of
the control parameter for which the fixed point of the map is unstable.

If c > 0 then an unstable invariant curve branches off the NS point and is found for values
of the control parameter for which the fixed point of the map is stable. At a Neimark-Sacker
point the output s, in the continuation of fixed point curve (12), contains:
s.index index of the Neimark-Sacker point.
s.label the label NS.
s.data an empty tangent vector,

values of the active test functions and user functions,
the normal form coefficient c,
multipliers and corresponding eigenvectors.
a field ’ mprocess NS’ that is empty or
’Neutral saddle’ in the case of Neimark-Sacker or Neutral-Saddle point,
respectively.

s.msg either the string Neimark Sacker or Neutral saddle.

3.5 Branch switching

In this section we consider the approximation of a new cycle curve that emanates from a
branch point for (6). This situation is very similar to that of branch points of equilibria. We
consider the iterate map f i : Rn+1 7−→ R

n. A solution X0 = X(s0) of

F (x) = f i(x)− x = 0 (21)

is called a simple singular point if FX(X0) has rank n− 1.
At a branch point point the output s, in the continuation of fixed point curve (12), contains:
s.index index of the branch point.
s.label the label BP.
s.data tangent vector,

values of the active test functions and user functions,
multipliers and corresponding eigenvectors.

s.msg the string Branch point.

To initialize the continuation of the new branch in a branch point a special routine is needed.
Its syntax is

[x0, v0] = init BPm FPm(@mapfile, x, p, s(j), h, i)

This routine calculates an initial point for starting a new branch from a branch point detected
on a fixed point curve. Here mapfile is the mapfile to be used, x is an array containing the
values of the state variables returned by the previous fixed point curve continuation. p is
the vector containing the current values of the parameters, s(j) is the special point structure
where j is the index of the branch point, h contains the value of the initial amplitude and i
is the iteration number. In most cases, i is the iteration number of the branch of fixed points
on which the BP point xBP was detected. If q is the unit vector in the direction of the new
branch in xBP then x0 = xBP + hq and v0 = q; the scalar h is called the amplitude.

We notice that init BPm FPm uses the global structures fpmds and cds created during the
continuation of the fixed point curve on which the BP was detected. This should be taken into
account if intermediate computations are performed. This routine stores part of its output
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in the global structures fpmds and cds. Such a branch switching is presented, for instance,
in §10.1, Run 2.

3.6 Fixed point curve adaptation

In the continuation of fixed points there is no need to change the system, so adaptation is
void in this case.

4 Continuation of codim-1 bifurcations of cycles

4.1 Continuation of fold curves

The files which are specific to this type of computation are stored in the directory
LimitPointMap. The main files in this directory are limitpointmap.m and init LPm LPm.m.
The data specific to this continuation are stored in the global structure lpmds. Such a con-
tinuation can be found, for instance, in §10.2, Run 18.

4.1.1 The defining system

If A(i)(x, α) is the Jacobian matrix of f i evaluted in (x, α), then we have the continuation
problem {

f i(x, α)− x = 0,

det(A(i)(x, α)− In) = 0,
(22)

which is a system of n+1 equations in an (n+2) -dimensional space with coordinates (x, α).
In MatContM limit point curves are computed by minimally extended defining systems, cf.
[22], §4.1.2. The limit point curve is defined by the following system

{
f i(x, α)− x = 0,
g(x, α) = 0,

(23)

where (x, α) ∈ Rn+2, while g is obtained by solving

(
f ix(x, α)− In wbor

vTbor 0

)(
v
g

)
=

(
0n
1

)
, (24)

and wbor, vbor ∈ R
n are chosen such that the matrix in (24) is nonsingular. An advantage of

this method is that the derivatives of g can be obtained easily from the derivatives of f ix(x, α):

gz = −wT (f ix)zv (25)

where z is a state variable or an active parameter and w is obtained by solving

(
(f ix)

T (x, α)− In vbor
wT
bor 0

)(
w
g

)
=

(
0n
1

)
. (26)

We note that the quantities called g in (24) and (26) are the same since they are both equal
to the bottom right element of the inverse of the square matrix in (24). This method is
implemented in the curve definition file limitpointmap.m.
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4.1.2 Bifurcations and test functions

There are four generic codim 2 bifurcations that can be detected along the limit point curve:

• Resonance 1:1. We will denote this bifurcation with R1

• Fold+Flip point, denoted as LPPD

• Fold+Neimark-Sacker point, denoted as LPNS

• Cusp point, denoted as CP

To detect these singularities, we first define 4 test functions:

• φ1 = wT v

• φ2 = det(A(i)(x, α) + In)

• φ3 = det(A(i) ⊙A(i) − Im)

• φ4 =
〈
w,B(i)(v, v)

〉

In these expressions v and w are the vectors computed in (24) and (26), respectively. The
singularity matrix is:

S =




0 − 0 −
− 0 − −
1 − 0 −
− − − 0


 (27)

4.1.3 Fold initialization

The only way to start a fold curve continuation in the toolbox is from a limit point. To
initialize the continuation one first gives the following statement:

[x0, v0] = init LPm LPm(@mapfile, xnew, p, ap, i)

In this statement xnew must be a vector that contains the values of the state variables. p must
contain the current values of all the parameters and ap must be the indices of the 2 active
parameters. In the most natural situation where x is the matrix returned by the previous
equilibrium curve continuation one starts to build xnew by the statement
xnew = x(1 : nphase, s(j).index). s(j) is the special point structure of the detected fold point
on the equilibrium curve continuation and nphase is the number of state variables. Now xnew
contains the state variables. Next, the statement
p(ap old)=x(end,s(j).index)

replaces the value of the free parameter in the previous run by its value at the fold point.
mapfile specifies the mapfile to be used. The output of init LPm LPm contains a vector x0
with the state variables and the active parameters and an empty vector v0.
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4.1.4 Output of a fold continuation

The fold curve is continued by calling:

[x, v, s, h, f] = cont(@limitpointmap, x0, v0, opt) (28)

This call returns :
x and v: points and their tangent vectors along the fold curve, respectively.
The array s contains information about the computed singularity points with the following
fields:
s.index index of the singularity point in x.
s.label label of the singularity, may be R1, LPPD, LPNS and CP.
s.data values of the active test functions and user functions,

the normal form coefficients, see the respective cases in §5.4, §5.8, §5.9, §5.1,
multipliers and corresponding eigenvectors.

s.msg strings can be Resonance 1:1, Fold+Flip, Fold+Neimark-Sacker and Cusp.
h and f were discussed in §2.5.1.

4.1.5 Adaptation

It is possible to adapt the problem while generating the fold curve. This call updates the
auxiliary variables used in the defining system of the computed branch. The bordering vectors
vbor and wbor may require updating since they must at least be such that the matrices in (24),
(26) are nonsingular. Updating is done by replacing vbor and wbor by the normalized vectors
v, w computed in (24), (26), respectively.

4.2 Continuation of flip curves

The files which are specific to this type of computation are stored in the directory
PeriodDoublingMap. The main files in this directory are perioddoublingmap.m and
init PDm PDm.m. The data specific to this continuation are stored in the global structure
pdmds. Such a continuation can be found, for instance, in §10.2, Run 16.

4.2.1 The defining system

If A(i)(x, α) is the Jacobian matrix of f i in (5) evaluted in (x, α), then we get the continuation
problem {

f i(x, α)− x = 0,

det(A(i)(x, α) + In) = 0,
(29)

which is a system of n+1 equations in an (n+2) -dimensional space with coordinates (x, α).
In MatContM period doubling point curves are computed by minimally extended defining

systems cf. [22], §4.1.2. The limit point curve is defined by the following system

{
f i(x, α)− x = 0,
g(x, α) = 0,

(30)

where (x, α) ∈ Rn+2, and g is obtained by solving

(
f ix(x, α) + In wbor

vTbor 0

)(
v
g

)
=

(
0n
1

)
, (31)
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and wbor, vbor ∈ R
n are chosen such that the matrix in (31) is nonsingular.

An advantage of this method is that the derivatives of g can be obtained easily from the
derivatives of f ix(x, α):

gz = −wT (f ix)zv (32)

where z is a state variable or an active parameter and w is obtained by solving

(
(f ix)

T (x, α) + In vbor
wT
bor 0

)(
w
g

)
=

(
0n
1

)
, (33)

This method is implemented in the curve definition file perioddoubling.m.

4.2.2 Bifurcations and test functions

In discrete maps there are four generic codim 2 bifurcations that can be detected along the
period doubling curve:

• Resonance 1:2 point, denoted as R2

• Fold+Flip point, denoted as LPPD

• Flip+Neimark-Sacker point, denoted as PDNS

• Generalized flip point, denoted as GPD

To detect these singularities, we define 4 test functions:

• φ1 = wT v

• φ2 = det(A(i)(x, α)− In)

• φ3 = det(A(i) ⊙A(i) − Im)

• φ4 =< w,C(i)(v, v, v) > +3 < w,B(i)(v, (In −A(i))−1B(i)(v, v)) >

In these expressions v and w are the vectors computed in (31),(33), respectively.
The singularity matrix for is:

S =




0 − 0 −
− 0 − −
1 − 0 −
− − − 0


 (34)

4.2.3 Period doubling initialization

The only way to start a period doubling curve continuation in the toolbox is from a period
doubling point. To initialize the continuation one first gives the following statement:

[x0, v0] = init PDm PDm(@mapfile, xnew, p, ap, i)

In this statement xnew must be a vector that contains the values of the state variables. p

must contain the current values of all the parameters and ap must be the indices of the active
parameters. In the most natural situation where x is the matrix returned by the previous
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equilibrium curve continuation one starts to build xnew by the statement
xnew=x(1:nphase,s(j).index). s(j) is the special point structure of the detected period
doubling point on the equilibrium curve continuation and nphase is the number of state vari-
ables. Now xnew contains the state variables. Next, the statement
p(ap old)=x(end,s(j).index); replaces the old value of the free parameter in the previous
run by the newly found parameter p. mapfile specifies the ode-file to be used. The output
of init PDm PDm contains a vector x0 with the state variables and the active parameters and
an empty vector v0.

4.2.4 Output of a flip continuation

The flip curve is continued by calling:

[x, v, s, h, f] = cont(@perioddoublingmap, x0, v0, opt)

This call returns :
x and v: points and their tangent vectors along the flip curve, respectively.
The array s contains information about the computed singularity points with the following
fields:
s.index index of the singularity point in x.
s.label label of the singularity, may be R2, LPPD, PDNS and GPD.
s.data values of the active test functions and user functions,

the normal form coefficients, see the respective cases in §5.5, §5.8, §5.10, §5.2,
multipliers and corresponding eigenvectors.

s.msg strings can be Resonance 1:2, Fold+Flip, Flip+Neimark-Sacker and
Degenerate Flip.

h and f were discussed in §2.5.1.

4.2.5 Adaptation

It is possible to adapt the problem while generating the period doubling curve. This call
updates the auxiliary variables used in the defining system of the computed branch. The
bordering vectors vbor and wbor may require updating since they must at least be such that
the matrices in (31), (33) are nonsingular. Updating is done by replacing vbor and wbor by
the normalized vectors v, w computed in (31), (33), respectively.

4.3 Continuation of Neimark-Sacker curves

The files which are specific to this type of computation are stored in the directory
NeimarkSackerMap. The main files in this directory are neimarksackermap.m and
init NSm NSm.m. The data specific to this continuation are stored in the global structure
nsmds. Such a continuation can be found, for instance, in §10.3, Run 3.

4.3.1 The defining system

The continuation variables for a Neimark-Sacker continuation consist of the state and pa-
rameter values, and the scalar k defined as the real part of the Neimark-Sacker multipliers
e±iθ.
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The Neimark-Sacker curve is defined by the following system





f i(x, α)− x = 0
gi1j1(x, α, k) = 0
gi2j2(x, α, k) = 0,

(35)

i.e. by n+ 2 equations in the (n+ 3) unknowns x ∈ Rn, α ∈ R2, k ∈ R. Here (i1, j1, i2, j2) ∈
{1, 2} and gi,j are the components of G:

G =

(
g11 g12
g21 g22

)

which is obtained by solving

(
(Ai)2(x, α)− 2kAi(x, α) + In Wbor

V T
bor O

)(
V
G

)
=

(
0n,2
I2

)
, (36)

Vbor,Wbor ∈ Rn×2 and the integers i1, j1, i2, j2 are chosen (and can be adapted) so that
the matrix in (36) is nonsingular.

This method is implemented in the curve definition file neimarksackermap.m.

4.3.2 Bifurcations and test functions

The bifurcations that can be detected along the Neimark-Sacker curve are:

• Chenciner point, denoted as CH: φ1 = 0

• Flip+Neimark-Sacker point, denoted as PDNS: φ2 = 0; φ6 6= 0

• Fold+Neimark-Sacker point, denoted as LPNS: φ3 = 0; φ4 6= 0

• Resonance 1:1 point, denoted as R1 : φ3 = φ4 = 0

• Double Neimark-Sacker point, denoted as NSNS: φ5 = 0

• Resonance 1:2 point, denoted as R2: φ2 = φ6 = 0

• Resonance 1:3 point, denoted as R3: φ7 = 0

• Resonance 1:4 point, denoted as R4 : φ8 = 0

To detect these singularities, we define 8 test functions:

• φ1 = Re(d) (see formula (20))

• φ2 = det(A(i) + In)

• φ3 = det(A(i) − In)

• φ4 = k − 1

• φ5 = det(A(i)|NC ⊙A(i)|NC )

• φ6 = k + 1
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• φ7 = k + 1
2

• φ8 = k.

Where A(i) = (f i)x(x, α) and the vectors p, q ∈ C
n satisfy

A(i)q = eiθ, (A(i))T p = e−iθ, 〈Re q, Im q〉 = 0, 〈q, q〉 = 〈p, q〉 = 1

The subspace NC of Rn is the orthogonal complement of the critical two-dimensional left
eigenspace associated with the pair of multipliers with unit product; 2m = (n− 2)(n− 3). In
this case the singularity matrix is:

S =




0 − − − − − − −
− 0 − − − 1 − −
− − 0 1 − − − −
− − 0 0 − − − −
− − − − 0 − − −
− 0 − − − 0 − −
− − − − − − 0 −
− − − − − − − 0




(37)

4.3.3 Neimark-Sacker initialization

The only way to start the continuation of a Neimark-Sacker bifurcation curve is to start it
from a Neimark-Sacker point, typically found on a curve of fixed points. The initializer is
called as follows:

[x0, v0] = init NSm NSm(@mapfile, xnew, p, ap, i)

The input arguments mapfile, xnew, p, ap are built exactly as in init LPm LPm. The output
vector x0 consists of xnew extended with the free parameters and the k in (36).

4.3.4 Output of a Neimark-Sacker continuation

The continuation is then performed by the command

[x, v, s, h, f] = cont(@neimarksackermap, x0, v0, opt)

This call returns :
x and v: points and their tangent vectors along the Neimark-Sacker curve, respectively.
The array s contains information about the computed singular points with the following fields:
s.index index of the singularity point in x.
s.label label of the singularity, may be CH, PDNS, LPNS, R1, NSNS, R2, R3 and R4.
s.data values of the active test functions and user functions,

the normal form coefficients, see the respective cases in §5.3, §5.10, §5.9,
§5.4, §5.11, §5.5, §5.6, §5.7,
multipliers and corresponding eigenvectors.

s.msg strings can be Chenciner, Flip+Neimark-Sacker, Fold+Neimark-Sacker,
Resonance 1:1, Double Neimark-Sacker, Resonance 1:2, Resonance 1:3

and Resonance 1:4.
h and f were discussed in §2.5.1.
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4.3.5 Adaptation

It is possible to adapt the problem while generating the Neimark-Sacker curve. This call
updates the auxiliary variables used in the defining system of the computed branch. The
bordering matrices V and W may require updating since they must at least be such that the
matrix in (36) is nonsingular. Updating of V and W is done exactly as in the LimitPoint case.
Updating of i1, j1, i2, j2 is done in such a way that the linearized system of (35) is as well -
conditioned as possible.

5 Normal forms of codim-2 bifurcation points

Below we give normal forms to which the restriction of a generic map g(x, α) = f (K)(x, α) to
the parameter-dependent center manifold can be transformed near the corresponding bifurca-
tion by smooth invertible coordinate and parameter transformations. We only incorporate the
parameter-dependent part if branch switching to local bifurcations is involved. The O-symbol
denotes higher order terms in phase-variables, the coefficients of which may also depend on
parameters. But the qualitative picture is determined by the lowest order terms listed below.
We refer to [33], Ch. 9, and [35, 36] for details, including explicit expressions for all critical
normal form coefficients which are not repeated here. If a complex critical eigenvalue λ is
involved, it is always assumed that λν 6= 1 for ν = 1, 2, 3, 4.

5.1 CP (cusp)

The critical smooth normal form on the center manifold at a cusp bifurcation is

w 7→ w + dw3 +O(|w|4), w ∈ R, (38)

where, generically, d 6= 0. Under this condition, a generic two-parameter unfolding of this
singularity has two fold curves in the parameter plane which form a cuspidal wedge. For
nearby parameter values, the map g has up to three fixed points that pairwise collide along
the fold curves. In the direct product of the state and the parameter spaces, there is one
smooth fold curve, so no branch switching is needed.
MatContM provides the normal form coefficient d.

5.2 GPD (generalized period doubling)

Near a generalized flip bifurcation the restriction of the map g to the parameter-dependent
center manifold is smoothly equivalent to the normal form

w 7→ −(1 + β1)w + β2w
3 + c2w

5 +O(|w|6), w ∈ R, (39)

where, generically, the coefficient c2 6= 0, while (β1, β2) are smooth functions of α which can
serve as new unfolding parameters. The fixed point w = 0 of the map (39) exhibits a flip
bifurcation for β1 = 0. From the point β = 0, corresponding to the generalized flip bifurcation,
a fold curve of double-period cycles emanates. The asymptotic expression for this curve in
(39) is given by

(w, β1, β2) = (ε,−c2ε4 +O(ε5),−2c2ε
2 +O(ε3)). (40)

MatContM provides the normal form coefficient c2. An example is given in §10.2, Run 16.
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5.3 CH (Chenciner)

If eiνθ0 6= 1 for ν = 1, 2, . . . , 6, the critical smooth normal form on the center manifold at the
Chenciner bifurcation can be written as

z 7→ eiθ0z + c1z|z|2 + c2z|z|4 +O(|z|6), z ∈ C, (41)

where ℜ(e−iθ0c1) = 0 but, generically, ℜ(e−iθ0c2) +
1
2ℑ(e−iθ0c1)

2 6= 0.
MatContM provides the coefficient ℜ(e−iθ0c2) +

1
2ℑ(e−iθ0c1)

2 to check nondegeneracy.

5.4 R1 (resonance 1:1)

The restriction of the map at a 1:1 resonance to the corresponding center manifold can be
written in the form

(
w1

w2

)
7→
(

w1 + w2

w2 + a1w
2
1 + b1w1w2

)
+O(‖w‖3), w ∈ R

2. (42)

Generically, a Neimark-Sacker bifurcation curve of the fixed point meets tangentially the fold
bifurcation curve. The local branch switching problem is trivial here.
MatContM provides the sign of the coefficient s = (b1−a1)a1 which determines the stability
of the bifurcating invariant curve.

5.5 R2 (resonance 1:2)

Near a 1:2 resonance the restriction of the map g to the parameter-dependent center manifold
is smoothly equivalent to the normal form

(
w1

w2

)
7→

(
−w1 + w2

β1w1 + (−1 + β2)w2 + C1(β)w
3
1 +D1(β)w

2
1w2

)

+ O(‖w‖4), w ∈ R
2.

(43)

that depends on two control parameters (β1, β2). If C1 < 0, then there is a Neimark-Sacker
curve of fixed points of g with double period that emanates from the flip bifurcation curve
β2 = 0 of fixed points. It has the following asymptotic expression

(w2
1, w2, β1, β2) =

(
− 1

C1
, 0, 1,

(
2 +

D1

C1

))
ε+O(ε2). (44)

MatContM provides the normal form coefficients [c, d] = [4C1,−6C1−2D1], to check nonde-
generacy conditions. Moreover the sign of the coefficient d determines the bifurcation scenario
under generic pertubation, see [33], Ch 9. An example is given in §10.3, Run 11.

5.6 R3 (resonance 1:3)

At a 1:3 resonance, the restriction of the map g to the parameter-dependent center manifold
is smoothly equivalent to the normal form

z 7→ (e2iπ/3 + β)z +B1z̄
2 + C1z|z|2 +O(|z|4), z ∈ C. (45)
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A generic unfolding of this singularity has a period-3 saddle cycle that does not bifurcate for
nearby parameter values, although it merges with the primary fixed point as the parameters
approach R3.
Note that the period-3 cycle becomes neutral near this bifurcation. Recall that a saddle cycle
is called neutral if the corresponding fixed point has a pair of real multipliers with product 1.
This singularity is important in analyzing global bifurcations of invariant manifolds of cycles.
Moreover, the curve of neutral period-3 saddle cycles may turn into a true Neimark-Sacker
bifurcation at R1 or R2. Therefore, we give here an asymptotic of this curve.

First we need a vector field for which the time-1 flow approximates the third iterate of
the map, i.e.

g̃(η, β̃) = β̃η + η̄2 + C0η
2η̄ +O(|η|4), (46)

where

β̃ = 3e−2iπ/3β, z =
1

|B1(β)|
ei arg(B1(β))/3η, C0 =

1

3

(
e−2iπ/3C1 − 1

)
.

We write C0 = a+ ib and for η = ρeiφ the neutral saddle curve has the following asymptotic
expression

(ρ, φ, β1, β2) =
(
ε, s(π/6− aε/3),−2aε2, sε− bε2

)
+O(ε3), (47)

where s = ±1.
MatContM provides the coefficient c1 = e

4π
3 C1 − |B1|2 which determines the bifurcation

scenario. An example is given in §10.3, Run 11.

5.7 R4 (resonance 1:4)

Near a 1:4 resonance the restriction of the map g to the parameter-dependent center manifold
is smoothly equivalent to the normal form

z 7→ (i+ β)z + C1(β)z
2z̄ +D1(β)z̄

3 +O(|z|4), z ∈ C. (48)

For this bifurcation we do not only need this parameter-dependent normal form, but also an
approximation of its 4th iterate by a unit-time shift along orbits of a vector field

g̃(η, β̃) = β̃η +A0(β)η
2η̄ + η̄3 +O(|η|4), (49)

where η ∈ C and β̃ = β̃1 + iβ̃2, β̃i ∈ R. Here the scaling

z =
1√

|D1(β)|
ei arg(D1(β))/4η

is used and

A0(β) = −i C1(β)

|D1(β)|
.

Moreover, we have (
β̃1
β̃2

)
=

(
0 4
−4 0

)(
β1
β2

)
. (50)

There are three possible branch switches for this bifurcation. Let a = ℜ(A0(0)) and
b = ℑ(A0(0)). If ∆ ≡ a2 + b2 − 1 > 0, then there are two half-lines l1,2 of a limit-point curve
of cycles with four times the original period. If

|b| > (1 + a2)√
1− a2

,
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then there is a curve n1 along which a cycle of four times the primary period exhibits a
Neimark-Sacker bifurcation. Using η = reiφ we have the following approximations

l1,2 : (r
2, φ, β̃1, β̃2) =

(
ε,

1

4
arctan

(
ab±

√
∆

b2 − 1

)
+O(ε),

−a∆∓ b
√
∆

a2 + b2
ε,

−b∆± a
√
∆

a2 + b2
ε

)
+O(ε2)

n1 : (r
2, φ, β̃1, β̃2) = (ε+O(ε2), sign(b) arccos(a)/4 +O(ε),

−2aε+O(ε2),−(b− sign(b)
√

1− a2)ε+O(ε2)).

(51)

Taking into account (50), we obtain expressions for β. If, in the formula for n1, we replace
sign(b) by −sign(b), then this gives the asymptotic for a neutral saddle singularity of the
period-4 cycle.
MatContM provides the coefficient A = −i C1(0)

|D1(0)| which determines the bifurcation scenario
near the R4 point. An example is given in §10.3, Run 11.

5.8 LPPD (fold –flip)

Near a fold-flip bifurcation, the restriction of the map g to the parameter-dependent center
manifold is smoothly equivalent to the normal form

(
w1

w2

)
7→

(
β1 + (1 + β2)w1 + a(β)w2

1 + b(β)w2
2 + c1(β)w

3
1 + c2(β)w1w

2
2

−w2 + e(β)w1w2 + c3(β)w
2
1w2 + c4(β)w

3
2

)

+ O(‖w‖4), w ∈ R
2.

(52)

A new branch predicted by (52) for a generic map g is a Neimark-Sacker of double period
that exists if be > 0 and has the asymptotic expression

(x, y2, β1, β2) =

(
−c4
e
, 1,−b,−2b+ ec2 − 2(a+ e)c4

e

)
ε+O(ε2). (53)

MatContM provides the normal form coefficients a(0) and b(0). An example is given in
§10.2, Run 16.

5.9 LPNS (fold – Neimark-Sacker)

For a fold – Neimark-Sacker bifurcation, the critical normal form on the center manifold is
given by

(
w
z

)
7→
(
w + szz̄ + w2 + cx3

eiθ0z + awz + bzw2

)
+O(‖(w, z)‖4), (w, z) ∈ R× C. (54)

Depending on the coefficient values, several bifurcation scenarios are possible, which all involve
only global phenomena.
MatContM provides the normal form coefficients s, a, b and c.
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5.10 PDNS (flip – Neimark-Sacker)

Near a flip – Neimark-Sacker bifurcation, the restriction of the map g to the parameter-
dependent center manifold is smoothly equivalent to the parameter-dependent normal form

(
w
z

)
7→

(
−(1 + β1)w + c1(β)w

3 + c2(β)w|z|2
eiθ(β)(1 + β2)z + c3(β)w

2z + c4(β)z|z|2
)
+O(‖(w, z)‖4),

(w, z) ∈ R× C,

(55)

where θ(0) = θ0. Besides global bifurcations, a Neimark-Sacker bifurcation curve of double
period for g is rooted at β = 0; it is always present. The asymptotic expression of this curve
is given by

(w2, z, β1, β2) =
(
1, 0, c1, sign(c1)ℜ(e−iθ0c3)

)
ε+O(ε2). (56)

MatContM provides the normal form coefficients c1(0), c2(0), c3(0) and c4(0).

5.11 NSNS (double Neimark-Sacker)

For a double Neimark-Sacker bifurcation, provided lθ0 6= jθ1 for integer l and j with l+j ≤ 4,
the critical normal form on the center manifold is

(
z1
z2

)
7→
(
eiθ0z1 + c1z1|z1|2 + c2z1|z2|2
eiθ1z2 + c3z2|z1|2 + c4z2|z2|2

)
+O(‖z‖4), z ∈ C

2. (57)

Depending on the coefficient values, several bifurcation scenarios are possible in parameter-
dependent unfoldings, which all involve only global phenomena. For some of them, one has
to take into account fourth- and fifth-order terms.
MatContM provides the normal form coefficients c1(0), c2(0), c3(0) and c4(0).

6 Branch switching at codim-2 bifurcation points

The problem of branch switching is to specify one starting point near the curve from which
the continuation code converges to a point on the curve.

Here we address the problem of branch switching at codim 2 bifurcation points of maps,
when the emanating curve corresponds to a local bifurcation. These cases involve generalized
flip, 1:2 resonance, 1:3 resonance, 1:4 resonance, fold-flip and flip-Neimark-Sacker bifurcations
only. The asymptotic expressions for the new curves for the parameter-dependent normal
form are given in Section 5. Combining this information with a parameter-dependent center-
manifold reduction, leads to an initial prediction in state-parameter space.

6.1 Detection and switching graphs for codim-1 and codim-2 bifurcation
points

In the detection graph Figure 4, we present all codim-1 and codim-2 bifurcation points that
can be detected on curves of fixed points and codim-1 bifurcation curves. In the switching
graphs Figure 5 and Figure 6, possible switchings at codim-1 and codim-2 bifurcation points
are indicated graphically.
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Figure 4: Detection graph.

LP NS PD
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FP

×2
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×2

Figure 5: Switching graph 1: dashed lines indicate switching subject to constraints and ×2
indicates curve of double period.
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Figure 6: Switching graph 2: dashed lines indicate switching subject to constraints, ×2 and
×4 indicate curves of double and quadruple periods, respectively.

6.2 Initializations of branch switching

For each switch to a codim-1 curve an initializer m-function is constructed, the syntax is as
follows :

[x0,v0] = init_GPD_LP2m(@mapfile, eps, x, p, ap, n)

[x0,v0] = init_R2_NS2m(@mapfile, eps, x, p, ap, n)

[x0,v0] = init_R3_NS3m(@mapfile, eps, x, p, ap, n)

[x0,v0] = init_R4_LP4m1(@mapfile, eps, x, p, ap, n)

[x0,v0] = init_R4_LP4m2(@mapfile, eps, x, p, ap, n)

[x0,v0] = init_R4_NSm4(@mapfile, eps, x, p, ap, n)

[x0,v0] = init_LPPD_NS2m(@mapfile, eps, x, p, ap, n)

[x0,v0] = init_PDNS_NS2m(@mapfile, eps, x, p, ap, n)

The arguments are

- mapfile An m-file containing the specifications of the map.

- eps The (positive) amplitude of the initial step.

- x The coordinates of the bifurcating fixed point.

- p The parameters at which the codim-2 bifurcation occurs.

- ap The active parameters which are used.

- n The number of iterates of the bifurcating fixed point.

In some cases it depends on the critical normal form coefficients whether branch switching
is possible. If it is not, we stop. Otherwise, we specify a new coordinate x̃ and parameter
p̃ and return x0 = (x̃, p̃). So, for example, for the generalized flip bifurcation x̃ = x + ǫq
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and p̃ = p − 2c2v01ǫ
2 + (−c2v10 + 2c22v02)ǫ

4, where only the parameters specified by ap are
updated. If the amplitude ǫ is small, it is enough to use only the leading terms of the
asymptotic expressions.

7 Algorithmic and numerical details

In this section we consider the computation of the derivatives and tensor-vector products,
which are not only needed for the continuation, but also for the computation of the critical
normal form coefficients at codim 1 and 2 bifurcation points and for branch switching.

7.1 Recursive formulas for derivatives of iterates of maps

7.1.1 Derivatives with respect to phase variables

The iteration of (1) gives rise to a sequence of points

{x1, x2, x3, . . . , xK+1},

where xJ+1 = f (J)(x1, α) for J = 1, 2, . . . ,K. Suppose that symbolic derivatives of f up to
order 5 can be computed at each point. We write

A(xJ)i,j =
∂fi
∂xj

(xJ), B(xJ)i,j,k =
∂2fi

∂xj∂xk
(xJ), C(xJ)i,j,k,l =

∂3fi
∂xj∂xk∂xl

(xJ),

and similarly for D(xJ) and E(xJ).
We want to find recursive formulas for the derivatives of the composition (5), i.e. the

coefficients of the multilinear functions in (13) that we now denote by A(J), B(J), and C(J) to
indicate the iterate explicitly:

(A(J))i,j =
∂(f (J)(x1))i

∂xj
, (B(J))i,j,k =

∂2(f (J)(x1))i
∂xj∂xk

, (C(J))i,j,k,l =
∂3(f (J)(x1)i
∂xj∂xk∂xl

,

and D(J) and E(J) are analogously defined. What follows is a straightforward application of
the Chain Rule.

For J = 1 we have A(1) = A(x1), B
(1) = B(x1) and C(1) = C(x1) and these are known.

Now,

A
(J)
i,j =

∑

k

∂fi
∂xk

(f (J−1)(x1))
∂(f (J−1)(x1))k

∂xj
=
∑

l

A(xJ)i,kA
(J−1)
k,j = A(xJ)A(xJ−1) ... A(x1).

(58)
we see that

(F (x, α))x = A(xK)A(xK−1) · · ·A(x1)− In, (59)

where F (x, α) = f (K)(x, α)− x.
For the second order derivatives we first write B(J) once in coordinates

B
(J)
i,j,k =

∂

∂xj

∂

∂xk
fi(f

(J−1)(x))

=
∑

l,m

∂2fi
∂xl∂xm

(xJ)
∂(f (J−1))m

∂xj

∂(f (J−1))l
∂xk

+
∑

l

∂fi
∂xl

(xJ)
∂2(f (J−1))l
∂xj∂xk

.
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For any two vectors q1 and q2, we can multiply the previous expression by (q1)j(q2)k and sum
over (k, l) to obtain

B(J)(q1, q2) = B(xJ)(A
(J−1)q1, A

(J−1)q2) +A(xJ)B
(J−1)(q1, q2). (60)

As A(xJ) and B(xJ) are known, (60) allows to compute the multilinear form B(K)(q1, q2)
recursively.

Let qi, i = 1, 2, 3, 4, 5, be given vectors. Multilinear forms with higher order derivatives
can be computed with

C(J)(q1, q2, q3) = C(xJ)(A
(J−1)q1, A

(J−1)q2, A
(J−1)q3)+

B(xJ)(B
(J−1)(q1, q2), A

(J−1)q3)
∗+

A(xJ)(C
(J−1)(q1, q2, q3)),

(61)

where ∗ means that all combinatorially different terms have to be included, i.e.,

B(xJ)(B
(J−1)(q1, q2), A

(J−1)q3)
∗ = B(xJ)(B

(J−1)(q1, q2), A
(J−1)q3) +

B(xJ)(B
(J−1)(q1, q3), A

(J−1)q2) +

B(xJ)(B
(J−1)(q2, q3), A

(J−1)q1).

For D(J) we get

D(J)(q1, q2, q3, q4) = D(xJ)(A
(J−1)q1, A

(J−1)q2, A
(J−1)q3, A

(J−1)q4)+

C(xJ)(B
(J−1)(q1, q2), A

(J−1)q3, A
(J−1)q4)

∗+
B(xJ)(B

(J−1)(q1, q2), B
(J−1)(q3, q4))

∗+
B(xJ)(C

(J−1)(q1, q2, q3)), A
(J−1)q4)

∗+
A(xJ)D

(J−1)(q1, q2, q3, q4).

(62)

Finally, for E(J) holds

E(J)(q1, q2, q3, q4, q5) = E(xJ)(A
(J−1)q1, A

(J−1)q2, A
(J−1)q3, A

(J−1)q4, A
(J−1)q5)+

D(xJ)(B
(J−1)(q1, q2), A

(J−1)q3, A
(J−1)q4, A

(J−1)q5)
∗+

C(xJ)(B
(J−1)(q1, q2), B

(J−1)(q3, q4), A
(J−1)q5)

∗+
C(xJ)(C

(J−1)(q1, q2, q3), A
(J−1)q4, A

(J−1)q5)
∗+

B(xJ)(C
(J−1)(q1, q2, q3), B

(J−1)(q4, q5))
∗+

B(xJ)(D
(J−1)(q1, q2, q3, q4))(A

(J−1)q5)
∗+

A(xJ)(E
(J−1)(q1, q2, q3, q4, q5)).

(63)

The multilinear forms A(K)(q1), B
(K)(q1, q2), C

(K)(q1, q2, q3), D
(K)(q1, q2, q3, q4) and

E(K)(q1, q2, q3, q4, q5) are used in the computations of the normal form coefficients for codim
1 and codim 2 bifurcations of period-K cycles in §3.4 and §5, and also in the branch switching
in §6.

7.1.2 Derivatives with respect to parameters

In the continuation of codimension 1 bifurcation curves (§4.1, §4.2, §4.3), we need derivatives

of the form ∂f (J)

∂αk
and ∂2f (J)

∂αk∂x
where αk is a parameter. If enough symbolic derivatives of f are
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available, then MatContM computes these expressions symbolically. The idea is as follows.
Taking the derivative of (1) with respect to αk, gives

∂(f (J)(x1, α))

∂αk
=

∂f

∂αk
(xJ , α) +

∂f

∂x
(xJ , α)

∂(f (J−1)(x1, α))

∂αk
, (64)

which is recursively computable. Also mixed derivatives, which are necessary for continuation
and branch switching, can be found recursively:

∂2(f (J)(x1, α))

∂αk∂x
=

∂2f

∂αk∂x
(xJ , α) +

∂2f

∂x2
(xJ , α)

∂(f (J−1)(x1, α))

∂αk
. (65)

In fact, the recursion is not applied to (65) itself, but to its product with a fixed vector.
This is sufficient for all continuations of fixed points and their codimension 1 bifurcations.

It is also sufficient for all cases of branch switching from codimension 2 points, except for
the case of generalized flip. For this case, we fall back to a finite difference approximation.
Since it is only used in the prediction step for which high accuracy is not needed, this seems
acceptable.

7.2 Recursive formulas for derivatives of the defining systems for continu-
ation

For the continuation of fixed points and cycles we need the derivatives of (1) which can be
computed from (59) and (64). Now, we consider the derivatives of g (as defined in (23)) with
respect to z, a state variable or parameter. The flip and Neimark-Sacker cases can be handled
in a similar way. Let M be the matrix in (24). By taking derivatives of (24) with respect to
z we obtain

M

[
vz
gz

]
+

[
A

(K)
z 0
0 0

] [
v
g

]
= 0. (66)

Using (26) we obtain
gz = −wT (A(K))zv. (67)

If z represents one of the state variables, then

gxi
= −〈w,B(K)(ei, v)〉, (68)

as computed in section 7.1. When z is a parameter αk we can write

gαk
=

K∑

J=1

CJ , (69)

where
CJ = −wT fx(xK) · · · (fx(xJ))αk

fx(xJ−1) · · · fx(x1)v (70)

where J = 1, . . . ,K. In this expression

(fx(xJ))αk
= [fx(f

(J)(x1, α))]αk
= fxα(xJ , α) +B(xJ)TJ (71)

where TJ is a vector, that can be recursively defined by

TJ = fαk
(xJ−1, α) +A(xJ−1)TJ−1, T1 = 0. (72)
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Summarizing, for the computation of gα we need to compute fx, fαk
, fxx, fxαk

in all iteration
points x1, . . . , xK , and given these compute TJ for J = 1, . . .K. Then

CJ = −wTA(xK) · · · (fxαk
(xJ) +B(xJ)TJ)A(xJ−1) · · · A(x1)v (73)

and gαk
is computed via (69).

7.3 Computing the vector-Hessian-vector and Hessian-vector products

To define the Jacobian system of fold, flip and Neimark-Sacker continuations we need to com-
pute terms of the form vector-Hessian-vector and Hessian-vector where Hessian is a n×n×n
tensor and vector is a n-vector. These can be computed symbolically by using the recursive
formulas derived in Section 7.2. Computation of vector-Hessian-vector by using (68) and
(69) are implemented in the files lpvecthessvect and lpvecthesspvect. These files are
used in fold continuation and contained in the folder LimitPointMap. The same computa-
tions are implemented in pdvecthessvect and pdvecthesspvect for flip continuation and
nsvecthessvect and nsvecthesspvect for Neimark-Sacker continuation. Furthermore, in
switching of some codim-2 bifurcation points, we need to compute expressions of the form
Hessian-vector symbolically, where Hessian is a n × n × n tensor w.r.t state variables and
parameters. This computation can be done by using the recursive formula (69) and imple-
mented in lphesspvect, pdhesspvect and nshesspvect and are contained in the folders
LimitPointMap, PeriodDoublingMap, NeimarkSackerMap, respectively.

7.4 Finite difference approximation of directional derivatives

For a general discussion of directional derivatives we refer to [33], §10.3.4, where it is shown
that all computations can be reduced to computing expressions of the form

fxq, fxxqq, fxxxqqq, fxxxxqqqq , fxxxxxqqqqq

For the first order derivative we approximate:

fxq ∼= f(x+hq)−f(x−hq)
2h

(74)

For the second order derivative, we have

fxxqq ∼= f(x+hq)−2f(x)+f(x−hq)
h2 (75)

Similarly for the third order derivative, we have

fxxxqqq ∼= f(x+3hq)−3f(x+hq)+3f(x−hq)−f(x−hq)
8h3 (76)

For the fourth order derivative we have:

fxxxxqqqq ∼= f(x+4hq)−4f(x+2hq)+6f(x)−4f(x−2hq)+f(x−4hq)
16h4 (77)

Finally, for the fifth order derivative

fxxxxxqqqqq ∼= f(x+5hq)−5f(x+3hq)+10f(x+hq)−10f(x−hq)+5f(x−3hq)−f(x−5hq)
32h5 (78)

In the software the default values of the increment h for the first, the second, the third, the
fourth and the fifth order derivatives are defined as follows:
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• Increment = (ǫm)
1
3

• hessIncrement = (ǫm)
1
4

• tens3Increment = (ǫm)
1
5

• tens4Increment = (ǫm)
1
6

• tens5Increment = (ǫm)
1
7

where ǫm is the machine precision; we use ǫm = 10−15. However, the Increment can be
adjusted by the user by setting cds.options.Increment. The increments of the higher-order
derivatives are then adapted accordingly.

7.5 Using automatic differentiation

As an alternative to symbolic derivatives (SD) and finite differences (FD) for computing
normal form coefficients, we have implemented automatic differentiation (AD) techniques, see
e.g. [26], into MatcontM, to compute derivatives of an iterated map, w.r.t state variables.
More precisely, in the computation of the multilinear functions (13), a drawback of using the
recursive expressions (58), (60), (61), (62) and (63) is the nonlinear growth of elapsed time
with increasing iteration number. To remedy this drawback, we use AD for high iteration
numbers of the map. If symbolic derivatives are not available, then we always use AD in the
computation of normal form coefficients.
The user has the possibility to switch off the use of AD or to link its use to the iteration
number of the map. The syntax for this is as follows:

options=contset(options,’AutDerivative’,i);

where i is 1 or 0, decides whether AD is to be used or not, respectively. The default value for
i is 1.
The command:

options=contset(options,’AutDerivateIte’,i);

where i is an integer number, instructs the software to use AD in the computation of normal
form coefficients if the iteration number of the map equals or exceeds i (default i = 24). As
a rule, it can be advised to lower i for increasing phase space dimension.

7.6 Multilinear forms

The files which are specific to the directional multilinear forms are stored in the directory
MultilinearForms. These files are used for computation of the multilinear functions A, B,
C, D and E in (13). We use these multilinear forms to compute the normal form coefficients of
the codimension-1 and codimension-2 bifurcations as well as for defining some test functions
for the codimension-2 bifurcation points and branch switching. The computations are done
numerically with finite directional differences or using symbolic derivatives of the original map
depending on the mapfile or AD. The directory MultilinearForms contains the following m-
files:
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• multilinear1.m computes Aq where q is a vector. In the case of symbolic derivatives
the computations are done by calling the file multilinear1sym.m, which uses the
recursive formula (58).

• multilinear2.m computes B(q1q2) where q1 and q2 are vectors. In the case of symbolic
derivatives the computations are done by calling the file multilinear2sym.m, which
uses the recursive formula (60).

• multilinear3.m computes C(q1, q2, q3) where q1, q2 and q3 are vectors. In the case of
symbolic derivatives the computations are done by calling the file multilinear3sym.m,
which uses the recursive formula (61).

• multilinear4.m computes D(q1, q2, q3, q4) where q1, q2, q3 and q4 are vectors. In the
case of symbolic derivatives the computations are done by calling the file
multilinear4sym.m, which uses the recursive formula (62).

• multilinear5.m computes E(q1, q2, q3, q4, q5) where q1, q2, q3,q4 and q5 are vectors. In
the case of symbolic derivatives the computations are done by calling the file
multilinear5sym.m, which uses the recursive formula (63).

• The files nf LPm.m, nf PDm.m, nf NSm.m, nf CPm.m, nf DPDm.m, nf CHm.m,
nf LPPDm.m, nf LPNSm.m, nf PDNSm.m, nf NSNSm.m, nf R1m.m, nf R2m.m,
nf R3m.m and nf R4m.m compute the critical normal form coefficients of codim-1 and
codim-2 bifurcation points LP (fold), PD (flip), NS (Neimark-Sacker), CP (Cusp), GPD
(generalized flip), CH (Chenciner), LPPD (fold+flip), LPNS (fold+Neimark-Sacker), PDNS
(flip+Neimark-Sacker), NSNS (double Neimark-Sacker), R1 (Resonance1:1), R2 (Reso-
nance1:2), R3 (Resonance1:3), and R4 (Resonance1:4), respectively.

8 Numerical continuation of connecting orbits of maps

The accurate computation of orbits connecting fixed points of an iterated map, and the study
of associated topological properties have long been recognized as an important problem both
in the theory of nonlinear dynamical systems and in a variety of applied problems, e.g. in
models for economical, biological, and physical phenomena. Indeed, as discovered by Poincaré
and Birkhoff, such orbits may generate rich dynamics. For example, an orbit that connects
a hyperbolic fixed point to itself (a homoclinic orbit) generically implies the existence of
an infinite number of periodic orbits nearby, see [57, 44, 56] and tutorial presentations in
[28, 61, 50]. As discovered in [20, 21, 27], the appearance of a pair of such homoclinic orbits
is accompanied by an infinite sequence of fold and period-doubling bifurcations of periodic
orbits, for more details see [48, 51], as well as [33]. Moreover, since a homoclinic orbit of a
planar map belongs to the intersection of the stable and the unstable invariant curves of a
saddle fixed point, such orbits can be involved in the destruction of a closed invariant curve
which is born, for example, at a Neimark-Sacker bifurcation [47, 54, 55]. This destruction
mechanism has been studied in [2, 7].

8.1 Continuation of heteroclinic connections

We consider the J-th iterate of a map at some parameter value α as follows:

x 7→ fJ(x, α), f : Rn × R
p → R

n, (79)
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where
fJ(x, α) = f(f(f(· · · f︸ ︷︷ ︸

J times

(x, α), α), α), α).

A sequence (xk)k∈Z is called a connecting orbit of the map fJ(·, α) at α = ᾱ if

lim
k→−∞

xk = x−∞

fJ(xk, ᾱ) = xk+1, for all k ∈ Z

lim
k→+∞

xk = x+∞

(80)

It is called homoclinic if x−∞ = x+∞ and heteroclinic otherwise. From a geometrical point
of view, the connecting orbit lies in the intersection of the unstable manifold W u

−∞ of x−∞
and the stable manifold W s

+∞ of x+∞. A connecting orbit is regular if x−∞ and x+∞ are
hyperbolic and the stable manifold W u

+∞ and the unstable manifold W s
−∞ have transversal

intersections at xk for all k ∈ Z.
Degenerate cases occur when either the orbit loses transversality or one of its fixed points

becomes nonhyperbolic. In the latter case the unstable and center-stable manifolds have a
transversal intersection, which produces a connecting orbit with a singular endpoint. In the
simplest case there is precisely one multiplier 1 or −1, or one conjugate pair of multipliers
of fJ(x, α) on the unit circle. This gives us the saddle-fold, saddle-flip or saddle-Neimark-

Sacker connecting orbits, respectively, see e.g. [29, 4]. We will not deal with these cases but
concentrate on nontransversality.

The numerical problem, for a regular heteroclinic connection between hyperbolic fixed
points x1 and xN of (79), is that of finding a solution (xk)k=1,2,...,N of the following system
[5]:

x1 = fJ(x1, α),
xk+1 = fJ(xk, α), k = 2, . . . , N − 2
xN = fJ(xN , α)

(81)

such that (xk)k=2..,N−1 leave x1 along its unstable manifold and enter xN along its stable
manifold. These requirements are then substituted by projection boundary conditions which
place x2 and xN−1 into the corresponding tangent spaces [5].

We use an improved algorithm for locating and continuing connecting orbits, which in-
cludes an algorithm for the continuation of invariant subspaces (CIS) as described in [10, 14].
Assume the eigenvalues of (fJ(x1, α))x and (fJ(xN , α))x are ordered, respectively, as follows:

|λUn | ≤ . . . ≤ |λUnU+1| < 1 < |λU1 | ≤ . . . ≤ |λUnU
|

|λS1 | ≤ . . . ≤ |λSnS
| < 1 < |λSnS+1| ≤ . . . ≤ |λSn |

The algorithm requires the evaluation of various projections associated with the eigenspaces
of (fJ(x1, α))x and (fJ(xN , α))x. These projections are constructed using the real Schur
factorizations.

(fJ(x1, α))x = Q1R1Q
T
1 , (fJ(xN , α))x = Q2R2Q

T
2 .

where Q1, R1, Q2 and R2 are n× n-matrices.
The first factorization is chosen so that the first nU columns qU1 , . . . , q

U
nU

of Q1 form
an orthonormal basis of the right invariant subspace S1 of (fJ(x1, α))x, corresponding to
λU1 , . . . , λ

U
nU

and the remaining n − nU columns qUnU+1, . . . , q
U
n of Q1 form an orthonormal
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basis of the orthogonal complement S⊥
1 . Similarly, the first nS columns qS1 , . . . , q

S
nS

of Q2

form an orthonormal basis of the right invariant subspace SN of (fJ(xN , α))x, corresponding
to λS1 , . . . , λ

S
nS

and the remaining n − nS columns qSnS+1, . . . , q
S
n of Q2 form an orthonormal

basis of the orthogonal complement S⊥
N .

The problem of heteroclinic connections is to find a connection {xn} with:

• Stationary state conditions for the initial fixed point:

fJ(x1, α)− x1 = 0, (82)

• The iteration conditions

fJ(xk, α)− xk+1 = 0, k = 2, 3, . . . , N − 2, (83)

• Stationary state conditions for the final fixed point:

fJ(xN , α)− xN = 0, (84)

• The left boundary conditions

(x2 − x1)
T .qUnU+i

= 0, i = 1, . . . , n− nU , (85)

• The right boundary conditions

(xN−1 − xN )T .qSnS+i
= 0, i = 1, . . . , n− nS (86)

A regular zero of a system of equations (82), (83), (84), (85) and (86) corresponds to a
transversal heteroclinic orbit with hyperbolic fixed points and with nU + nS = n. Thus, a
zero for this system can be continued in one parameter.

In the computational process the conditions in (85) and (86) imply that at each step of
the continuation we need to access the unstable and stable eigenspaces of the map (79) at
the fixed points x1 and xN , respectively. It is not efficient to recompute these spaces from
scratch in each continuation step. We use an algorithm for continuing the invariant subspaces
S1 and S2, based on the Riccati equations, see [30]. Contrary to [10, 14], our algorithm is
purely based on linear algebra arguments.

8.1.1 Heteroclinic initialization

To initialize the continuation of a heteroclinic connection to the saddle fixed points x1 and xN ,
one can start from an initial set of points as transversal intersections of invariant manifolds (
to be discussed in §9) at x0 and x1. The initializer is called as follows:

[x0, v0] = init Het Het(@mapfile, C, p, ap, J)

The input argument mapfile, is the map to be used and C is a matrix whose N columns
contain coordinates of points in the intersection of invariant manifolds at x1 and xN , the first
column corresponding to x1 and the last to xN . Next, p is the vector containing the starting
values of parameters, ap is the index of the active parameter and J is the iteration number of
the map. The output of init Het Het contains a vector x0 with the continuation variables
and an empty vector v0. Part of the output is also written in the global structures cds and
hetds.
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8.1.2 Output of the continuation of a heteroclinic connection

The continuation of a heteroclinic connection is performed by the command

[x, v, s, h, f] = cont(@heteroclinic, x0, [], opt)

This call returns :
x and v: points and their tangent vectors along the heteroclinic connection, respectively.
The array s contains information about the computed singular points with the following fields:

s.index index of the singularity point in x.
s.label label of the singularity, may be BP, LP.
s.data values of the active test functions and user functions, in a LP point also the entries of a unit

h was discussed in §2.5.1. f contains for each computed point the number of orbit points in
phase space (so it is constant vector).

8.1.3 Adaptation

At each continuation point a basis for the unstable eigenspace of x1 and for its orthogonal
complement are computed. However, these bases are not orthogonal. To restore orthogo-
nality we adapt the basis for the unstable eigenspace from time to time using the singular

value decomposition (SVD). By using a similar procedure we adapt the basis for the stable
eigenspace of xN and for its orthogonal complement.

8.2 Continuation of homoclinic connections

Assume that the eigenvalues of (fJ(x1, α)x are ordered as follows:

|λ1| ≤ . . . ≤ |λk| < 1 < |λk+1| ≤ . . . ≤ |λn|

The procedure to continue a homoclinic connection to x1 is similar to the procedure used
in §8.1. The algorithm now requires the evaluation of two projections associated with the
eigenspaces of (fJ(x1, α)x. These projections are constructed using the real Schur factoriza-
tions.

(fJ(x1, α))x = Q1R1Q
T
1 , (fJ(x1, α))x = Q2R2Q

T
2

where Q1, Q2, R1 and R2 are n× n-matrices.
The first factorization has been chosen so that the first k columns qS1 , . . . , q

S
k of Q1 form

an orthonormal basis of the right invariant subspace S1 of (fJ(x1, α)x, corresponding to
λ1, . . . , λk and the remaining n − k columns qUk+1, . . . , q

U
n of Q1 form an orthonormal basis

of the orthogonal complement S⊥
1 . Similary the first l = n − k columns qU1 , . . . , q

U
l of Q2

form an orthonormal basis of the right invariant subspace U1 of (fJ(x1, α))x, corresponding
to λk+1, . . . , λn and the remaining n− l = k columns qUl+1, . . . , q

U
n of Q2 form an orthonormal

basis of the orthogonal complement U⊥
1 .

The problem of a homoclinic connection is to find a connection {xm}m=1,...,N with

• Stationary state condition
fJ(x1, α)− x1 = 0, (87)

• The iteration conditions

fJ(xm, α)− xm+1 = 0, m = 2, 3, . . . , N − 2, (88)
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• The left boundary conditions

(x2 − x1).q
U
k+i(α) = 0, i = 1, . . . , n− k (89)

• The right boundary conditions

(xN−1 − x1).q
S
l+i(α) = 0, i = 1, . . . , n− l (90)

A regular zero of a system of equations (87), (88), (89) and (90) corresponds to a transversal
homoclinic orbit. Thus, a zero for this system can be continued in one parameter.

In the continuation process the conditions in (89) and (90) imply that we need to access
the stable and unstable eigenspaces of the map (79) at the fixed points x1 at each step of the
continuation.

8.2.1 Homoclinic initialization

To initialize the continuation of a homoclinic connection to the saddle fixed point x1, one
should start from an initial set of points as transversal intersections of invariant manifolds at
x1. The initializer is called as follows:

[x0, v0] = init Hom Hom(@mapfile, C, p, ap, J)

The input argument mapfile is the map to be used and C is a matrix with N columns where
the first column contains the coordinates of the saddle point x1 an the other colunns contain
the coordinates of points in the intersection of invariant manifolds at x1. Next, p is the vector
containing the starting values of the parameters, ap is the index of the active parameter and
J is the iteration number of the map. The output of init Hom Hom contains a vector x0 with
the continuation variables and an empty vector v0. Part of the output of init Hom Hom is
stored in the global structures cds and homds.

8.2.2 Output of continuation of a homoclinic connection

The continuation of a homoclinic connection is performed by the command

[x, v, s, h, f] = cont(@homoclinic, x0, [], opt)

This call returns :
x and v: points and their tangent vectors along the homoclinic connection, respectively.
The array s contains information about the computed singular points with the following fields:

s.index index of the singularity point in x.
s.label label of the singularity, may be BP and LP.
s.data values of the active test functions and user functions,

h was discussed in §2.5.1. f contains for each point the number of orbit points in phase space
(so it is a constant vector).

8.2.3 Adaptation

At each continuation point a basis for the unstable eigenspace of x1 and for its orthogonal
complement are computed. However, these bases are not orthogonal. To restore orthogonality
we adapt the basis for the unstable eigenspace from time to time using the singular value

decomposition (SVD). By using a similar procedure we adapt the basis for the unstable
eigenspace of x1 and for its orthogonal complement.
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8.3 Continuation of heteroclinic and homoclinic tangencies

Let F (X,α) = 0 be the defining system of the heteroclininc connection, then a heteroclinic
tangency satisfies the following conditions:

{
F (X,α) = 0,

det(FX(X,α)) = 0,
(91)

which is a system of K1 = n(N − 1)+nU (n−nU )+nS(n−nS)+ 2n−nU −nS +1 equations
in a K2 = nN + nU (n− nU ) + nS(n− nS) +#ap-dimensional space with coordinates (X,α).
Here X = (x1, . . . , xN , YU , YS , ap), YU is an auxiliary (n− nU )× nU matrix which is used in
the adaptation of the bases for the unstable manifold at x1 and its orthogonal complement
(see the Riccati equations [30]), and YS is an auxiliary (n − nS) × nS matrix which is used
in the adaptation of the bases for the stable manifold at xN and its orthogonal complement
(again, see the Riccati equations [30]).
If nU + nS = n and #ap = 2, then (91) defines a continuation problem. This system is
natural from of a theoretical perspective but may lead to numerical scaling problems. If
the Jacobian has eigenvalues of large magnitude, then these eigenvalues contribute to the
determinant (which is the product of all eigenvalues) and may make it difficult to satisfy
the defining equations to a desired tolerance. The larger the system, the worse this problem
becomes. Thus we seek alternate defining equations that avoid calculation of the determinant.
Bordered matrices allow us to find a substitute function of the determinant.

We define a curve of heteroclinic tangencies by the following system
{
F (X,α) = 0,
g(X,α) = 0,

(92)

where g(X,α) is computed as the last component of the solution vector in the K1-dimensional
bordered system: (

FX(X,α) b
cT 0

)(
v
g

)
=

(
0(K1−1)

1

)
, (93)

for suitable vectors b, c ∈ R
K1−1.

If c is close to the nullvector of FX(X,α) and b is close to the nullvector of F T
X(X,α),

then the matrix

M =

(
FX(X,α) b

cT 0

)
(94)

is nonsingular at (X,α) and (93) has a unique solution. In practical computations, c and b
are approximations of the null vectors of FX(X,α) and F T

X(X,α), respectively.
In the continuation of heteroclinic tangencies b and c are computed in the curve initializer

init HetT HetT and stored in the fields hetTds.b and hetTds.c of the global variable hetTds.
The vectors b and c must be adapted during the continuation of hetereoclinic tangencies

to keep the matrix M nonsingular.

8.3.1 Initialization of heteroclinic and homoclinic tangencies

To initialize the continuation of a heteroclinic or homoclinic tangency, one should start from
a limit point found on a heteroclinic or homoclinic connection, respectively. The initializers
for heteroclinic and homoclinic tangencies are called as follows, respectively:

[x0, v0] = init HetT HetT(@mapfile, X, nphase, nu, ns, p, ap, J)
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and
[x0, v0] = init HomT HomT(@mapfile, X, nphase, nu, ns, p, ap, J)

The input arguments:

• mapfile, is the map to be used.

• X is a vector that contains the coordinates of the orbit points at the detected tangency.

• nphase is the dimension of the state space.

• nu and ns are the dimensions of the unstable and stable eigenspaces of the start point
and end point, respectively.

• p and ap contain the current values of the parameters and the indices of the 2 active
parameters, respectively.

• J is the iteration number of the map.

8.3.2 Output of a continuation of heteroclinic or homoclinic tangencies

The continuations of heteroclinic and homoclinic tangencies are performed by the commands

[x, v, s, h, f] = cont(@heteroclinicT, x0, [], opt)

and
[x, v, s, h, f] = cont(@homoclinicT, x0, [], opt)

respectively. This call returns :
x and v: points and their tangent vectors along the heteroclinic and homoclinic connections,
respectively.

The array s contains information about the computed singular points with the following
fields:

s.index index of the singularity point in x.
s.label label of the singularity.
s.data values of the active test functions and user functions,

h was discussed in §2.5.1. f contains for each point the number of orbit points in phase space
(so it is a constant vector).

9 Invariant manifolds

Invariant manifolds give information about the global structure of phase space. For example,
a codimension 1 manifold in 2D space may separate several basins of attraction. Invariant
manifolds are also used to simplify dynamical systems. The phase portrait near the manifold
may be trivial, so restricting the dynamical system to the manifold effectively reduces the
dimension of the system.

Our main motivation for computing stable and unstable manifolds of a saddle point is the
role that they play in the computation of connecting orbits. Intersections of stable and un-
stable manifolds may form homoclinic or heteroclinic tangles. Stable and unstable manifolds
are global objects that cannot normally be found analytically and, hence, must be computed
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numerically. These manifolds must be grown from local knowledge, for example from linear
information near a fixed point. We concentrate here on the simplest case that these manifolds
are one-dimensional.

We recall some definitions, mostly to fix the notation. We consider (79) when n = 2 and
assume that f has a fixed point x0 = fJ(x0) and that f is differentiable in a neighborhood
of x0, but may not have a unique inverse. The fixed point x0 of f is a saddle if the Jacobian
matrix D(fJ)(x0) has at least one stable eigenvalue and one unstable eigenvalue, and no
eigenvalue with modulus 1. The stable manifold theorem [50] guarantees that there exist
local stable and unstable manifolds W s

loc(x0) and W u
loc(x0) tangent at x0 to the stable and

unstable eigenspaces Es(x0) and Eu(x0), respectively. The stable manifold W s(x0) of x0 is
defined as the set of points that converge to x0 under forward iteration of f ,

W s(x0) =
{
x ∈ R2 : fJ(x) → x0 as J → ∞

}
. (95)

Similarly, the unstable manifold W u(x0) of x0 consists of points that converge to x0 under
backward iteration of the map f . In terms of forward iterates, this is defined as

W u(x0) =

{
x ∈ R2 : ∃ {qk} , q0 = x and fJ(xq+1) = qk, and lim

k→∞
qk = x0

}
. (96)

The global stable manifold W s(x0) can also be defined as the union of the successive pre-
images of W s

loc(x0). However, if multiple inverses exist, then all pre-images, even if disjoint
from the main branch, are part of the stable manifold. Hence the stable manifold may or
may not be simply connected in phase space.

9.1 Growing stable and unstable manifolds

In MatContM only one-dimensional stable and unstable manifolds are computed. We use (a
slightly improved version of) the algorithm for computing the global one-dimensional unstable
manifold of a saddle point of a map as described in [31]. The computation of one-dimensional
stable manifolds of a planar map at a saddle point is described in [18]. An extension of this
method to higher dimensions was proposed by C. Bruschi. We use a slightly improved variant
of this extension. See also [46].

In general, the accuracy of the computation of a manifold is controlled locally by two
numbers, namely the distance δ between two consecutive points and the angle α between
two consecutive chord vectors. Depending on their sizes a newly found point is accepted
or rejected and the input initial value of δ is halved, doubled or left unchanged in the next
computational step.

9.1.1 Directory structure

The directory InvManifolds contains (at least) 7 files. The computation of a manifold starts
with a call to init FPm 1Dman.m in which the global structure opt man and the curve de-
scription file man ds are created. Next, a call to contman.m controls the actual computation
of the manifold. Since the details of the computation differ in the stable and unstable cases,
contman.m further calls Smanifold.m or Umanifold.m, depending on the case.
In the case of 2D maps with a saddle fixed point it is further possible to compute the intersec-
tion points between a computed stable and a computed unstable manifold, and hence to find
homoclinic or heteroclinic connections. This is achieved by a call to either findintersections.m
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or Projectie2.m. The output of this routine is a cell array in which each cell is an array
whose columns constitute an orbit of the map. An application is given in §10.5.2.
The directory InvManifolds contains two further files Smanifoldfile.m and Umanifoldfile.m
which at present are obsolete and will not be used. They were written to swap files in the
case where the computed manifolds are too big to be kept in the internal Matlab memory.
Advances in the Matlab software have made this procedure redundant but it is still possible
to use Smanifoldfile.m and Umanifoldfile.m by a switch in the code in contman.

9.1.2 Options

When growing a one-dimensional manifold one has to start from the options structure which
may already exist or can be created with contset.
options = contset

initializes options with empty field values, cf. Section 2.5.3. A call to Init FPm 1Dman.m

creates a new structure opt man with some pre-assigned fields taken from options or given
default values. These fields can be overwritten by the user; other fields can be added and set
by the user. During the actual computation of the 1D manifolds by a call to contman.m fields
can be changed and new fields can be added. The following fields will eventually appear:

deltaMin the minimal distance between two consecutive points on the computed manifold
(MinStepsize in options, default: 1e− 10)

deltaMax the maximal distance between two consecutive points on the computed manifold
(MaxStepsize in options, default: 0.1

√
2. It is implicitly assumed that the minimal

distance is not larger than the maximal distance but this is not checked by the code.

deltak the initially proposed distance between two consecutive points on the computed man-
ifold (InitStepsize in options, default: 1e − 4). It is implicitly assumed that it is not
smaller than the minimal distance and not larger than the maximal distance but this is
not checked by the code.

nmax maximum number of computed points along the manifold (MaxNumPoints in options,
default: 5000)

eps a threshold value used in the control of Newton-Raphson iterations in the computation
of stable manifolds; not used in the computation of unstable manifolds (FunTolerance
in options, default: 1e − 6). Decreasing the value of ǫ increases the accuracy of the
computations but makes them slower and can lead to failure.

NwtMax maximum number of Newton iterations to locate a zero of a function (MaxNew-
tonIters in options, not used in the case of unstable manifolds, default: 10)

Niterations the iteration number of the map. It is mandatory that this field be set by
the user. Otherwise an error will be declared. To preserve the direction, the iteration
number is doubled if the leading eigenvalue is negative.

function can be either ’UManifold’ or ’SManifold’. This field can be set by the user in the
case of 2D maps. Default in this case is ’UManifold’. If the dimension is higher than
2, the code decides which type of one-dimensional manifold can exist and sets the field
accordingly.

57



direction a unit right eigenvector corresponding to the leading (stable or unstable) eigen-
value. This field is set by the code. See also the field distanceInit.

Arc maximal arclength of the computed manifold. (Default: Inf).

alphaMax maximum allowed value for the angle α (default: pi).

alphaLowMax a stricter maximum value for α (default: pi/4).

deltaAlphaMax maximum value allowed for the product αδ.(default: 1e-3)

deltaAlphaLowMax a stricter maximum value for the product αδ (default: 1e-4).

distanceInit distance from the saddle fixed point to the first point on the manifold, in the
direction chosen by the code. A negative value forces the code to start in the opposite
direction. (default: 1e-4).

searchListLength this is an obsolete field provided for the use of Smanifoldfile.m and
Umanifoldfile.m (default: 20).

file this is an obsolete field, in which 1 indicates that Smanifoldfile.m or Umanifoldfile.m
is used (default: 0).

The rules for accepting found points and for doubling or halving δ are as follows.

• A found point is accepted if and only if δ ≤ deltaMax and α ≤ alphaMax and δα ≤
deltaAlphaMax.

• If a found point is accepted and in addition α ≤ alphaLowMax and αδ ≤ deltaAlphaLowMax
and 2δ ≤ deltaMax, then δ is doubled as initial guess for the next try.

• If a found point is not accepted and δ
2 ≥ deltaMin then δ is halved as initial guess for

the next try.

• If a found point is not accepted and δ
2 < deltaMin then the computation of the manifold

is halted.

9.1.3 Output of the growing of an invariant manifold

An invariant manifold is grown by calling:

[a, l] = growman(optM); (97)

The formal input is the structure optM which is used as the opt man structure described in
§9.1.2. We note that the structure man ds is global in growman.m and must be set beforehand
by calling Init FPm 1DMan. This call returns :
a: an array in which the entries of each column are the coordinates of a point on the manifold.
l: the arclength of the manifold.
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10 Examples and applications

10.1 A truncated normal form map

10.1.1 The map and some analytical normal form coefficients

In this example we consider the two - dimensional map, introduced in [33], §9.9, (unfolding
of an R2 point to which it reduces for β1 = β2 = 0)

MTN :

(
ξ1
ξ2

)
7−→

(
−1 1
β1 − 1 + β2

)(
ξ1
ξ2

)
+

(
0

Cξ31 +Dξ21ξ2

)
(98)

For all parameter values, this map has a trivial fixed point (0, 0)T . If (ξ1, ξ2) is a nontrivial
fixed point then we have:

ξ2 = 2ξ1, ξ2 = β1ξ1 + (−1 + β1)ξ2 + Cξ31 +Dξ21ξ2 (99)

It is easy to see that if
4− (β1 + 2β2)

C + 2D
> 0,

then nontrivial real fixed points (ξ1, 2ξ1) exist and are given by

ξ1 = ±
√

4− (β1 + 2β2)

C + 2D
, ξ2 = 2ξ1. (100)

If
4− (β1 + 2β2)

C + 2D
= 0,

then these points collide with a trivial fixed point. If this happens with β1 or β2 as a free
parameter in a continuation of trivial fixed points, then clearly we have a pitchfork bifurcation
of fixed points.
The characteristic equation of the Jacobian in the trivial fixed point is:

λ2 + (2− β2)λ+ 1− β1 − β2 = 0. (101)

We first note that the product of the two multipliers is 1 if and only if β1+β2 = 0. In particular,
NS points can only be found if β1 + β2 = 0. In this case, ∆ = (2− β2)

2 − 4 = β2(β2 − 4). So
we have true NS points if β2 ∈]0, 4[, β1 = −β2; we have neutral saddles if β2 /∈ [0, 4], β1 = −β2.

In particular we consider the following three special cases of the NS bifurcation:

(i) β1 = −1, β2 = 1, (θ = 2π
3 )

(ii) β1 = −2, β2 = 2, (θ = π
2 )

(iii) β1 = −3, β2 = 3, (θ = π
3 )

(102)

We note that cases (i) and (ii) are cases with a strong resonance.
Also, it is easy to see that (101) has a root −1 if and only if β1 = 0. The other root then

is −1 + β2. We will also consider the case :

(iv)β1 = 0, β2 = 1. (103)

One can obtain analytically the normal form coefficients. The results are as follows:
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• in the case of (i), i.e. θ = 2π
3 : c = −1

8(6C + 4D)

• in the case of (ii), i.e. θ = π
4 : c = − 1

12(6C + 6D)

• in the case of (iii), i.e. θ = π
3 : c = − 1

16(6C + 8D)

• in the case of (iv), i.e. θ = π : b = −C

10.1.2 Numerical continuation of trivial and nontrivial fixed points

Theoretically computed values of the normal form coefficients can now be checked numerically
when continuing the fixed point curve. In the mapfile (cf. §2.6) the order of state variables
and parameters is (ξ1, ξ2) and (β1, β2, C,D), respectively. For illustration purposes we defined
two user functions, namely β2 − 2 with label ′B2 ′ and β2 − 0.5 with label ′B3 ′.
First we continue the fixed point curve numerically to detect the NS point in case (i) in Run

1, where we use the mapfile that uses symbolic derivatives (cf. §2.6).
>> init

>> global opt cds fpmds

>> ap=2; p=[-1;0;1;1];

>> opt = contset;

>> n=1;

>> [x0,v0]=init_FPm_FPm(@Tnfmap,[0;0], p, ap, n);

>> opt=contset(opt,’MaxNumPoints’,50);

>> opt=contset(opt,’Singularities’,1);

>> opt = contset(opt,’Multipliers’,1);

>> opt=contset(opt,’Userfunctions’,1);

>> UserInfo(1).label=’B2 ’;

>> UserInfo(1).name=’Beta2’;

>> UserInfo(1).state=1;

>> UserInfo(2).label=’B3 ’;

>> UserInfo(2).name=’Beta3’;

>> UserInfo(2).state=1;

>> opt=contset(opt,’UserfunctionsInfo’,UserInfo);

>> [x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = B3 , x = ( 0.000000 0.000000 0.500000 )

label = NS , x = ( 0.000000 0.000000 1.000000 )

normal form coefficient of NS = -1.250000e+000

label = B2 , x = ( 0.000000 0.000000 2.000000 )

label = BP , x = ( 0.000000 0.000000 2.500000 )

elapsed time = 0.7 secs

npoints curve = 50

This test is run by typing Tnfmap1 in the command window.
Our theoretical outcome is confirmed by the numerical value for d obtained in Run 1. Indeed,
in this case the theoretically obtained value of the normal form coefficient c is

c = −1

8
(6C + 4D) = −1.25
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since C = D = 1 .

By (100) the nontrivial fixed points collide to a trivial fixed point when

4− (β1 + 2β2) = 0 (104)

The fixed parameter in Run 1 is β1 = −1, this implies that in a BP β2 = 2.5 in (104). This
confirms the result in Run 1 concerning the BP point.

The Jacobian is given by:

[(MTN )x − I|(MTN )β2 ] =

(
−2 1 0
β1 − 2 + β2 0

)
(105)

If β1 = −1 and β2 = 2.5, then this reduces to:

[(MTN )x − I|(MTN )β2 ] =

(
−2 1 0
−1 0.5 0

)
(106)

Clearly [(MTN )x − I|(MTN )β2 ] is rank deficient as expected.

Now we compute the new branch in the BP point of Run 1; we refer to this Run 2:

>> global x1 v1 s1 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>>>>> Branch switching at BP >>>>>>>

>> xx2=x1(1:2,s1(5).index);p1=p;p1(fpmds.ActiveParams)=x1(3,s1(5).index);

>> opt=contset(opt,’Backward’,0);

>>opt=contset(opt,’MaxNumPoints’,50);

>>[x2,v2]=init_BPm_FPm(@Tnfmap,xx2,p1,s1(5),0.01,1);

>>[x21,v21,s21,h21,f21]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = PD, x = ( 0.377964 0.755929 2.285714 )

normal form coefficient of PD = 4.392157e+000

elapsed time = 0.6 secs

npoints curve = 50

>> cpl(x21,v21,s21,[3 1]);

>>opt=contset(opt,’Backward’,1);;

>> [x22,v22,s22,h22,f22]=cont(@fixedpointmap,x2,[],opt);

first point found

tangent vector to first point found

label = BP, x = ( -0.000000 -0.000000 2.500000 )

label = PD, x = ( -0.377964 -0.755929 2.285714 )

normal form coefficient of PD = 4.392157e+000

elapsed time = 0.9 secs

npoints curve = 50

>> cpl(x22,v22,s22,[3 1])
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Figure 7: Continuation of trivial and nontrivial fixed points of MTN in (β2, ξ1) space .

This test is run by typing Tnfmap2 in the command window.
The branch in Run 2 is a nontrivial one and we remark that for the singular points ξ2 = 2ξ1
holds. In fact the curve of nontrivial fixed points in (100 ) in (β2, ξ1) space is a parabola. A
picture of the continued trivial fixed point of Run 1 and nontrivial fixed points computed in
Run 2 is given in Figure 7.

In Run 3 we continue a fixed point curve to detect the NS point in case (ii) :

>> global opt cds fpmds

>> ap=2; p=[-2;0;1;1];

>> opt = contset;

>> [x0,v0]=init_FPm_FPm(@Tnfmap,[0;0], p, ap,1);

>> opt=contset(opt,’MaxNumPoints’,300);

>> opt=contset(opt,’Singularities’,1);

>> opt=contset(opt,’Backward’,0);

>> opt = contset(opt,’Multipliers’,1);

>>[x3,v3,s3,h3,f3]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = NS , x = ( 0.000000 0.000000 2.000000 )

normal form coefficient of NS = -1.000000e+000

label = BP , x = ( 0.000000 0.000000 3.000000 )

elapsed time = 1.1 secs

npoints curve = 300

>> cpl(x3,v3,s3,[3 1])
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This test is run by typing Tnfmap3 in the command window.
Again the numerically obtained value for the normal form coefficient d in Run 3 confirms the
theoretical result. Indeed, the theoretical value is

d = − 1

12
(6C + 6D) = −1

since C = D = 1.
By (100) we have a BP point if 4 − (β1 + 2β2) = 0. By subsituting β1 = −2, we get β2 = 3.
This confirms the result in Run 3 concerning the BP point.

Now we perform branch switching in this point in Run 4:

>> global x3 v3 s3 opt cds fpmds

>> opt = contset;

>> xx2=x3(1:2,s3(3).index);p1=p;p1(fpmds.ActiveParams)=x3(3,s3(3).index);

>> opt=contset(opt,’Backward’,0);

>> opt=contset(opt,’MaxNumPoints’,300);

>> opt=contset(opt,’Singularities’,1);

>> opt=contset(opt,’Multipliers’,1);

>> [x2,v2]=init_BPm_FPm(@Tnfmap,xx2,p1,s3(3),0.001,1);

>> [x41,v41,s41,h41,f41]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = PD, x = ( 0.534523 1.069045 2.571429 )

normal form coefficient of PD = 3.733333e+000

elapsed time = 1.4 secs

npoints curve = 300

>> cpl(x41,v41,s41,[3 1 2]);

>>opt=contset(opt,’Backward’,1);;

>> [x42,v42,s42,h42,f42]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = BP, x = ( -0.000000 -0.000000 3.000000 )

label = PD, x = ( -0.534523 -1.069045 2.571429 )

normal form coefficient of PD = 3.733333e+000

elapsed time = 1.5 secs

npoints curve = 300

>> cpl(x42,v42,s422,[3 1 2])

This test is run by typing Tnfmap4 in the command window.
The BP point is the same as in Run 3, and the PD point on the new branch satisfies ξ2 = 2ξ1.
A picture of the new branch computed in Run 4 is given in Figure 8.

In Run 5 we continue a fixed point curve to detect the NS point in case (iii) :
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Figure 8: The fixed points curve of the second iterate in (β2, x1, x2) space.

>> global opt cds fpmds

>> ap=2; p=[-3;0;1;1];

>> opt = contset;

>> [x0,v0]=init_FPm_FPm(@Tnfmap,[0;0], p, ap,1);

>> opt=contset(opt,’MaxNumPoints’,300);

>> opt=contset(opt,’Singularities’,1);

>> opt = contset(opt,’Multipliers’,1);

>>[x5,v5,s5,h5,f5]=cont(@fixedpointmap,x0,[],opt);

first point found

tangent vector to first point found

label = NS, x = ( 0.000000 0.000000 3.000000 )

normal form coefficient of NS = -8.750000e-001

elapsed time = 1.4 secs

npoints curve = 300

>> cpl(x5,v5,s5,[3 1])

This test is run by typing Tnfmap5 in the command window.
Here also the numerically obtained value confirms the theoretical result

c = − 1
16(6C + 8D) = −0.875 where C = D = 1.

Since the normal form coefficient in Run 5 is negative, the invariant curves nearby the NS

point must be stable. In fact the characteristic polynomial (101) when β1 = −3, is

λ2 + (2− β2)λ+ 4− β2 = 0 (107)

The multipliers for β2 nearby 3 are

λ1,2 = −β2 − 2

2
± i

√
3− β22

4
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Figure 9: Stable invariant curve of MTN started from ξ1 = ξ2 = 0.01 for β2 = 2.99.

Also
|λ21,2| = 4− β2

So the fixed point of MTN is stable for β2 > 3 and unstable for β2 < 3, i.e. the invariant
curve is stable when β2 < 3 and unstable when β2 > 3. A picture of the stable invariant
curve nearby the NS point is given in Figure 9. It was created by simulation of MTN for the
parameter values indicated in Figure 9.

The next Run 6 will detect the PD point in case (iv):

>> global opt cds fpmds

>> ap=1; p=[-1;1;1;1];

>> opt = contset;

>> [x0,v0]=init_FPm_FPm(@Tnfmap,[0;0], p, ap,1);

>> opt=contset(opt,’MaxNumPoints’,300);

>> opt=contset(opt,’Singularities’,1);

>> opt = contset(opt,’Multipliers’,1);

>>[x6,v6,s6,h6,f6]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = NS, x = ( 0.000000 0.000000 -1.000000 )

normal form coefficient of NS = -1.250000e+000

label = PD, x = ( 0.000000 0.000000 0.000000 )

normal form coefficient of PD = -1

label = BP, x = ( 0.000000 0.000000 2.000000 )
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elapsed time = 1.3 secs

npoints curve = 300

This test is run by typing Tnfmap6 in the command window.
Clearly the result of the continuation in Run 6 is consistent with the theoretical statement
for case (iv), that is b = −2C = −2 since C = 1.
By (100) we have a BP point when 4 − (β1 + 2β2) = 0. Since β2 = 1 in Run 6, the BP point
must be found for β1 = 2. This confirms the result in Run 6 concerning the BP point.

Now we compute the curve of fixed points of the second iterate in the PD point of Run 6.
We call this Run 7:

>> global x6 v6 s6 opt cds fpmds

>> opt = contset;

>>>>> switching at PD >>>>>>>

>> xx2=x6(1:2,s6(3).index);p1=p;

>> p1(fpmds.ActiveParams)=x6(3,s6(3).index);

>> opt=contset(opt,’Backward’,1);

>> opt=contset(opt,’MaxNumPoints’,300);

>> opt=contset(opt,’Singularities’,1);

>> [x2,v2]=init_PDm_FP2m(@Tnfmap,xx2,p1,s6(3),0.01,1);

>> opt = contset(opt,’Multipliers’,1);

>> [x7,v7,s7,h7,f7]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = BP, x = ( -0.000000 0.000000 -0.000000 )

label = NS, x = ( -0.577350 0.000000 -0.333333 )

Neutral saddle

label = BP, x = ( -0.707107 -0.000000 -0.500000 )

elapsed time = 2.0 secs

npoints curve = 300

This test is run by typing Tnfmap7 in the command window.
The first BP point in Run 7 is the PD point in Run 6. The second BP point corresponds with
β1 = −0.5 and is clearly not a fixed point of MTN . For the parameters values in Run 7, we
have:

MTN :

(
−

√
2
2

0

)
7−→

(
−1 1
0 0

)(
−

√
2
2

0

)
+

(
0
0

)
=

( √
2
2
0

)
(108)

And

MTN :

( √
2
2
0

)
7−→

(
−1 1
0 0

)( √
2
2
0

)
+

(
0
0

)
=

(
−

√
2
2
0

)
(109)

So indeed M2
TN maps the point (−

√
2
2 , 0)

T to itself.
We further remark that in Run 7 the trivial fixed point is stable for negative values of β1

close to 0 and unstable for positive values of β1 close to zero. Also, the normal coefficient of
the PD point is negative.
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Further computations show that the multipliers ofMTN andM2
TN in the PD point x = (0, 0, 0)

are (−1, 0)T and (1, 0)T respectively.
A nearby point on the curve of fixed points of the second iterate is

x = (−0.0129710, 0.0000000,−0.0001683). For the same parameter value the fixed point of the
map is stable, as could be expected from the sign of the normal form coefficient in the PD point
in Run 6. The multipliers of MTN and M2

TN in the same point are (−1.0003363, 0.0005046)T

and (1.0006728, 0.0000003)T respectively. So the fixed points of the second iterate are unsta-
ble, as could also be expected from the sign of the normal form coefficient in the PD point in
Run 6.

10.2 A Leslie-Gower competition model

10.2.1 The model and its fixed points

The roots of the present model can be found in [37, 38, 17]. Roughly speaking, it was found in
biological experiments that two species of flour beetles can coexist under strong competition
for the same food. This was rather unexpected at the time and several models were built
to explain this phenomenon. One of the ideas in [17] and [58] is to use an age-structured
competition model. For general background we refer to [6]; the model that we use is a four
- dimensional map MLG (110) with 14 parameters described in [58]. It is a Leslie/Gower
competition model for the interaction between the juveniles (j) and adults (a) of one species
of the flour beetle Tribolium and the juveniles (y) and adults (z) of another species for the
same food.

MLG :




j
a
y
z


 7−→




j+
a+
y+
z+


 =




b1a

(1 + cjjj + cjaa+ cjyy + cjzz)
(1− µj)j + (1− µa)a

b2z

(1 + cyjj + cyaa+ cyyy + cyzz)
(1− µy)y + (1− µz)z




(110)

Each species has its own juvenile recruitment rate b1 > 0, b2 > 0, juvenile death rate µj and
µy, and adult death rate µa and µz. For biological reasons we have

0 < µj , µa, µy, µz < 1. (111)

The other coefficients cjj , cja, cjy, cjz and cyj , cya, cyy, cyz describe the competition. They are
all strictly positive. By assumption, competition does not affect the adults of either species.
In the present study, as in [58], we will study the influence of the coefficients cyj and cjy on
the behavior of MLG in a case where all other parameters are fixed. In other words, we study
the influence of the competition between juveniles if all other parameters are fixed.
The fixed points (j∗, a∗, y∗, z∗) of the map (110) satisfy:

a∗ = 1−µj

µa
j∗

z∗ = 1−µy

µz
y∗.

(112)

As a consequence j∗ and a∗ are either both zero or both nonzero. Similarly, y∗, z∗ are both
zero or both nonzero. The trivial vector (0, 0, 0, 0)T is a fixed point of (110). It can be checked
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easily by analytical means that it is always unstable.
For each set of parameters there is a unique ’horizontal’ fixed point, i.e. a fixed point of the
form (j∗, a∗, 0, 0) which is given by:

j∗ =
b1(1− µj)− µa

µacjj + cja(1− µj)
(113)

a∗ =
1− µj
µa

j∗ =
b1(1− µj)

2 − µa(1− µj)

µa(µacjj + cja(1− µj))
(114)

with (j∗, a∗) > 0 (i.e. j∗, a∗ are biologically meaningful) iff

b1
1− µj
µa

> 1 (115)

Similarly, there is a unique ’vertical’ fixed point of the form (0, 0, y∗, z∗) given by

y∗ =
b2(1− µy)− µz

µzcyy + cyz(1− µy)
(116)

z∗ =
1− µy
µz

y∗ =
b2(1− µy)

2 − µz(1− µy)

µz(µzcyy + cyz(1− µy))
(117)

This point is biologically meaningful if (y∗, z∗) > 0, i.e. iff

b2
1− µy
µz

> 1 (118)

The general form of the Jacobian matrix of (110) is:




−b1cjja

β2
1

b1β1−b1acja
β2
1

−b1cjya

β2
1

−b1cjza

β2
1

1− µj 1− µa 0 0
−b1cyjz

β2
2

−b2cyaz

β2
2

−b1cyyz

β2
2

b2β2−b2zcyz
β2
2

0 0 1− µy 1− µz


 (119)

where
β1 = 1 + cjjj + cjaa+ cjyy + cjzz (120)

β2 = 1 + cyjj + cyaa+ cyyy + cyzz (121)

We now study the stability of the ’axis’, i.e. horizontal or vertical fixed points. First we con-
sider the horizontal fixed points. So we consider the Jacobian matrix evaluated at (j∗, a∗, 0, 0):




−b1cjja
∗

β2
1

b1β1−b1a∗cja
β2
1

−b1cjya
∗

β2
1

−b1cjza
∗

β2
1

1− µj 1− µa 0 0

0 0 0 b2
β2

0 0 1− µy 1− µz


 (122)

Because of the 2×2 block of zeros in the lower left corner, the multipliers of this 4×4 matrix
are the multipliers of the 2 × 2 block in the upper left corner, and those of the 2 × 2 block
in the lower right corner. The multipliers of the upper left block determine whether or not
the horizontal fixed point is stable in the absence of competition by the second species. The
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coefficients related to the second species or to the competition between the two species do
not appear in the entries of this block. The multipliers of the lower right block determine if
a fixed point that is stable within the axis will remain stable in the presence of an invading
small number of the second species.
The characteristic polynomial of the lower right block is

λ2 − (1− µz)λ− (1− µy)
b2
β2

(123)

We first establish the conditions under which the roots λ1 and λ2 of (123) are inside the unit
circle. By (111), it is necessary and sufficient that:

(1− µy)b2
µzβ2

< 1 (124)

By substituting the value of β2 in (121) into (124), and evaluating at (j∗, a∗, 0, 0), we have :

b2(1− µy)

µz(1 + cyjj∗ + cyaa∗)
< 1 (125)

So if the multipliers of the upper left 2 by 2 block in (122) are inside the unit circle, then
(125) is a necessary and sufficient conditon for the stability of the horizontal fixed points.
A similar analysis shows that a vertical axis fixed point is stable if

b1(1− µj)

µa(1 + cjyy∗ + cjzz∗)
< 1 (126)

We now consider the coexistence fixed points that is defined by a system of two linear equa-
tions for j∗ and y∗:

j∗(cjj + cja
1−µj

µa
) + y∗(cjy + cjz

1−µy

µz
) = b1

1−µj

µa
− 1

j∗(cyj + cya
1−µj

µa
) + y∗(cyy + cyz

1−µy

µz
) = b2

1−µy

µz
− 1

(127)

The unique coexistence fixed point (j∗, a∗, y∗, z∗) is given by:

j∗ =
γ(b2β − 1)− (b1α− 1)η

δγ − ǫη
,

a∗ = α

(
γ(b2β − 1)− (b1α− 1)η

δγ − ǫη

)
,

y∗ =
−ǫ(b2β − 1) + (b1α− 1)δ

δγ − ǫη
,

z∗ = β

(−ǫ(b2β − 1) + (b1α− 1)δ

δγ − ǫη

)
,

provided
H ≡ δγ − ǫη 6= 0, (128)

where

α =
1− µj
µa

, β =
1− µy
µz

, ǫ = cjj + cjaα
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and
γ = cjy + cjzβ, δ = cyj + cyaα, η = cyy + cyzβ.

The resulting eigenvalue equation of the Jacobian matrix evaluated in (j∗, a∗, y∗, z∗) is quartic,
but we can compute the multipliers numerically in MatContM if the actual values of state
variables and parameters are known. In this way we will be able to determine the stability
of fixed points numerically.
We will study the overall dynamics of the model for the following fixed model parameter
values which we took from [58] .

b1 = 20 cjj = 0.36 b2 = 18 cja = 0.55 cjz = 0.23 µj = 0.23

µa = 0.72 cya = 0.08 cyy = 0.18 cyz = 0.26 µy = 0.29 µz = 0.98

The parameters cjy and cyj will be used as free parameters.

10.2.2 Numerical continuation of the horizontal fixed points and their stability

analysis

First we consider horizontal fixed points and their continuation. For all values of the param-
eters cjy and cyj , the fixed point obtained from (113) and (114)

FH = (21.50285631, 22.99611022, 0, 0)

remains unchanged since cjy and cyj do not appear in (113) and (114). Also, the free param-
eters do not enter in the the entries of the left upper block 2 by 2 matrix of (122). We first
show that all the multipliers of this block are inside the unit circle. The 2 by 2 upper left
block is: ( −b1cjja

∗

β2
1

b1β1−b1a∗cja
β2
1

1− µj 1− µa

)
(129)

The multipliers of (129) in FH are −0.6712 and 0.5893, with absolute values less than 1. That
means that in a continuation of the horizontal fixed points with either cyj or cjy free, the
multipliers of the upper left block of (122) are inside the unit circle. Now we consider the
stability condition (125). For the given model parameters, the horizontal fixed point is stable
if :

12.78

21.0728× cyj + 2.7829
< 1 (130)

This is equivalent to cyj > cyj0 where cyj0 = 0.474477674. Hence FH is unstable if 0 ≤ cyj <
cyj0 and stable if cyj0 < cyj ≤ 1. It is biologically plausible that the horizontal fixed point is
stable only if the juveniles of the first species suppress the juveniles of the second species to a
sufficient degree. Now we perform the continuation, where in mapfile the order of the state
variables and parameters is (j, a, y, z) and (b1, b2, µa, µj , µy, µz, cjj , cja, cyy, cyz, cjy, cjz, cyj , cya),
respectively. First we vary only the parameter cyj from 0 to 1, while cjy is fixed at 0; we refer
to this as Run 1:

>> init

>> global opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);
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>> ap=13; p=[20;18;0.72;0.23;0.29;0.98;0.36;0.55;0.18;0.26;0.;0.23;0.;.08];

>> opt = contset(opt,’MaxNumPoints’,50);

>> opt = contset(opt,’Singularities’,1);

>> [x0,vO]=init_FPm_FPm(@LeslieGower,[21.50285631;22.99611022;0;0], p, ap,1);

>> [x12,v12,s12,h12,f12]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = NS, x = ( 21.502856 22.996110 0.000000 0.000000 0.076818 )

Neutral saddle

label = NS, x = ( 21.502856 22.996110 0.000000 0.000000 0.132182 )

Neutral saddle

label = PD, x = ( 21.502856 22.996110 0.000000 0.000000 0.450625 )

normal form coefficient of PD = 3.260623e-003

label = BP, x = ( 21.502856 22.996110 0.000000 0.000000 0.474408 )

elapsed time = 2.1 secs

npoints curve = 50

This test is run by typing LeslieGower12 in the command window.
By monitoring the multipliers in Run 1, we also find that the horizontal fixed point is unstable
before the BP point and stable afterwards.
To understand the appearance of the PD point in Run 1, we see that FH is a PD point if there
is an eigenvalue −1, which is possible only if:

1

2
[(1− µz)−

√
(1− µz)2 + 4(1− µy)

b2
β2

] = −1 (131)

From this equation, β2 and hence cyj can be computed. For the model parameters, this
implies that cyj = 0.4506, independently of cjy. This is the same value as found in Run 1.
In Run 1 we also detected a BP point. In this point the characteristic polynomial (123) must
have a root +1, i.e.

1− (1− µz)− (1− µy)
b2
β2

= 0 (132)

If we input the fixed values of the model parameters, then the value of parameter cyj that
satisfies (132) is precisely cyj0; this is also the value found for the BP point in Run 1. We now
check that for this value of the continuation parameter the Jacobian [(MLG)x − I|(MLG)cyj ]
is rank deficient. The Jacobian evaluated in a horizontal fixed point is:

[(MLG)x− I| (MLG)cyj ] =




−b1cjja
∗

β2
1

− 1
b1β1−b1a∗cja

β2
1

−b1cjya
∗

β2
1

−b1cjza
∗

β2
1

0

1− µj − µa 0 0 0

0 0 − 1 b2
β2 0

0 0 1− µy − µz 0




(133)
From this form it is clear that if the lower right two by two block of [fx − I] is singular in a
horizontal fixed point, then [(MLG)x − I| (MLG)cyj ] is rank deficient, i.e. we have a BP point.
This confirms the result of the continuation concerning the BP point. Now we switch to a new
branch in the BP point of Run 1. This is Run 2:
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>> global x12 v12 s12 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt=contset(opt,’Singularities’,1);

>> opt = contset(opt,’MaxNumPoints’,250);

>> x1=x12(1:4,s12(5).index);p1=p;

>> p1(fpmds.ActiveParams)=x12(5,s12(5).index);

>> [x2,v2]=init_BPm_FPm(@LeslieGower,x1,p1,s12(5),0.01);

>> [x131,v131,s131,h131,f131]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = PD, x = ( 21.984277 23.510963 -2.739442 -1.984697 0.508048 )

normal form coefficient of PD = 2.453609e-003

elapsed time = 1.3 secs

npoints curve = 250

>> opt = contset(opt,’Backward’,1);

>> [x132,v132,s132,h132,f132]=cont(@fixedpointmap,x2,[],opt);

first point found

tangent vector to first point found

label = BP, x = ( 21.502856 22.996110 -0.000000 -0.000000 0.474408 )

elapsed time = 1.5 secs

npoints curve = 250

This test is run by typing LeslieGower13 in the command window.
The branch with negative components that we found in the forward continuation in Run 2 is
not biologically meaningful. By changing the direction of continuation we detected the same
BP point as in Run 1.
We also continue the fixed points of M2

LG starting from the PD point in Run 1. We call this
Run 3:

>> global x12 v12 s12 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt = contset(opt,’MaxNumPoints’,100);

>> opt=contset(opt,’Singularities’,1);

>> x1=x12(1:4,s12(4).index);p1=p;

>> p1(fpmds.ActiveParams)=x12(5,s12(4).index);

>> [x5,v5]=init_PDm_FP2m(@LeslieGower,x1,p1,s12(4),0.01,1);

>> opt=contset(opt,’Backward’,1);

>> [x14,v14,s14,h14,f14]=cont(@fixedpointnmap,x5,v5,opt);

first point found

tangent vector to first point found

label = BP, x = ( 21.502856 22.996110 0.000000 -0.000000 0.450625 )

label = NS, x = ( 19.656619 23.483812 6.223217 -0.928635 0.402732 )

Neutral saddle

elapsed time = 1.1 secs
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npoints curve = 100

This test is run by typing LeslieGower14 in the command window.
The BP point in Run 3 is the PD point in Run 1 . By monitoring the multipliers of M2

LG we
find that the fixed point of M2

LG is unstable. In fact in the PD point

x = (21.5028, 22.9961, 0.0000, 0.0000, 0.450625)

the multipliers of MLG and M2
LG are

(0.5893,−0.6712,−1.0000, 1.0200) and (0.3473, 0.4506, 1.0404, 1.0000) respectively.
In the nearby point

x = (21.7097, 22.8452,−0.4689, 0.4632, 0.4487)

the multipliers of MLG and M2
LG are

(−0.6742, 0.9928, 0.5913, 1.0099) and (0.3473, 0.4516, 0.9938, 1.0485) respectively.

By (126), the vertical fixed point is stable for the fixed values of the model parameters if :

15.4

23.5346cjy + 4.6416
< 1 (134)

That is equivalent to cjy > cjy0 where cjy0 = 0.4571312026. So the vertical fixed point is
unstable for 0 ≤ cjy < cjy0 and stable for cjy0 < cjy ≤ 1. It is biologically plausible that the
vertical fixed point is stable only if the juveniles of the second species suppress the juveniles
of the first species to a sufficient degree.

10.2.3 Numerical continuation of the vertical fixed points and their stability

analysis

We now start the continuation from the vertical fixed point (0, 0, 32.68698060, 23.68138391)T

where cyj = cjy = 0 (116) and (117). We vary the parameter cjy from 0 to 1 while cyj is held
fixed at 0. This is called Run 4.

>> global opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt=contset(opt,’MaxNumPoints’,200);

>> opt=contset(opt,’Singularities’,1);

>> ap=11; p=[20;18;0.72;0.23;0.29;0.98;0.36;0.55;0.18;0.26;0;0.23;0;.08];

>> x=[0;0;32.68698060;23.68138391];

>> [x0,vO]=init_FPm_FPm(@LeslieGower,x, p, ap,1);

>> [x15,v15,s15,h15,f15]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = NS, x = ( 0.000000 0.000000 32.686981 23.681384 0.152939 )

Neutral saddle

label = PD, x = ( 0.000000 0.000000 32.686981 23.681384 0.170849 )

normal form coefficient of PD = 1.304652e-005
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label = BP, x = ( 0.000000 0.000000 32.686981 23.681384 0.457129 )

elapsed time = 1.6 secs

npoints curve = 200

This test is run by typing LeslieGower15 in the command window.
By monitoring the multipliers in Run 4 we find that the vertical fixed point is unstable before
the BP point and stable afterwards; the parameter value cjy0 predicted for the BP point is
indeed found in Run 4. If we vary the parameter cyj while cjy is held fixed at 0, then by
monitoring the multipliers we see that the vertical fixed point is unstable for all values of
cyj . It is not hard to explain this. Since in the stability condition (126), the parameter cyj is
absent and the left hand side of (126) has the value 3.3178 for the model parameter values,
and cjy = 0, we conclude that the vertical fixed point is unstable on the cyj axis.

Now we continue the fixed points of M2
LG starting from the PD point in Run 4. We call

this Run 5:

>> global x15 v15 s15 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> x1=x15(1:4,s15(3).index);p1=p;

>> p1(fpmds.ActiveParams)=x15(5,s15(3).index);

>> opt=contset(opt,’Singularities’,1);

>> [x2,v2]=init_PDm_FP2m(@LeslieGower,x1,p1,s15(3),0.01,1);

>> [x16,v16,s16,h16,f16]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = LP , x = ( -0.002692 0.001619 32.694773 23.675960 0.170849 )

normal form coefficient of LP =-7.827823e-07

label = LP , x = ( -11.313105 6.463612 54.415142 9.852869 0.167365 )

normal form coefficient of LP =-1.750138e-03

elapsed time = 1.2 secs

npoints curve = 300

We now switch to a new branch in the BP point of Run 4. This is Run 6:

>> global x15 v15 s15 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt = contset(opt,’MaxNumPoints’,200);

>> opt=contset(opt,’Backward’,1);

>> opt=contset(opt,’Singularities’,1);

>> x1=x15(1:4,s15(4).index);p1=p;p1(fpmds.ActiveParams)=x15(5,s15(4).index);

>> [x2,v2]=init_BPm_FPm(@LeslieGower,x1,p1,s15(4),0.01,1);

>> [x17,v17,s17,h17,f17]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = BP, x = ( 0.000000 0.000000 32.686981 23.681384 0.457129 )

elapsed time = 1.2 secs

npoints curve = 200
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This test is run by typing LeslieGower17 in the command window.
The BP point is the same as in Run 4 and the new branch is a branch of coexistence fixed
points.

10.2.4 Numerical continuation of the coexistence fixed points and their stability

analysis

Now we consider the coexistence fixed points (j∗, a∗, y∗, z∗), starting the continuation from

(16.42912, 17.570032, 28.871217, 20.916902)

where cyj = cjy = 0. This fixed point bifurcates to vertical and horizontal fixed points
respectively, when one of cjy and cyj is varied and the other variable is held fixed at 0. In the
model this means that one species drives another to extinction. We first do continuation of
coexistence fixed points, where cjy is the free parameter. This is Run 7:

>> global opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt=contset(opt,’MaxNumPoints’,350);

>> opt=contset(opt,’Singularities’,1);

>> opt=contset(opt,’Backward’,1);

>> ap=11; p=[20;18;0.72;0.23;0.29;0.98;0.36;0.55;0.18;0.26;0;0.23;0;.08];

>> x=[16.42912;17.570032;28.871217;20.916902];

>> [x0,v0]=init_FPm_FPm(@LeslieGower,x, p, ap,1);

>> [x18,v18,s18,h18,f18]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = BP, x = ( 0.000000 0.000000 32.686981 23.681384 0.457129 )

elapsed time = 1.8 secs

npoints curve = 350

>>

This test is run by typing LeslieGower18 in the command window.
In Run 7 we see that the coexistence fixed points bifurcate to vertical fixed points in the
BP point where cjy = cjy0. For parameter values cjy > cjy0 the coexistence fixed point is
not biologically meaningful because its first and second components become negative. The
coexistence fixed point is stable before the BP point and unstable afterwards.
Now we switch to a new branch in the BP point of Run 7. This is Run 8:

>> global x18 v18 s18 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt = contset(opt,’MaxNumPoints’,50);

>> opt = contset(opt,’Singularities’,1);

>> opt = contset(opt,’Backward’,1);

>> x1=x18(1:4,s18(2).index);p1=p;p1(fpmds.ActiveParams)=x18(5,s18(2).index);

>> [x2,v2]=init_BPm_FPm(@LeslieGower,x1,p1,s18(2),0.01);

>> [x19,v19,s19,h19,f19]=cont(@fixedpointmap,x2,v2,opt);
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first point found

tangent vector to first point found

label = BP, x = ( 0.000000 0.000000 32.686981 23.681384 0.457129 )

label = PD, x = ( 0.000000 0.000000 32.686981 23.681384 0.170849 )

normal form coefficient of PD = 1.304649e-005

label = NS, x = ( 0.000000 0.000000 32.686981 23.681384 0.152939 )

Neutral saddle

elapsed time = 0.5 secs

npoints curve = 12

This test is run by typing LeslieGower19 in the command window.
The BP point is the same as in Run 4 and the new branch is a branch of vertical fixed points
and contains a PD point.

In the next Run 9 we continue the coexistence fixed points with free parameter cyj :

>> global opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt=contset(opt,’MaxNumPoints’,400);

>> opt=contset(opt,’Singularities’,1);

>> ap=13; p=[20;18;0.72;0.23;0.29;0.98;0.36;0.55;0.18;0.26;0;0.23;0;.08];

>> x=[16.42912;17.570032;28.871217;20.916902];

>> [x0,vO]=init_FPm_FPm(@LeslieGowere,x, p, ap,1);

>> [x20,v20,s20,h20,f20]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = BP, x = ( 21.502856 22.996110 0.000000 0.000000 0.474408 )

elapsed time = 2.0 secs

npoints curve = 400

This test is run by typing LeslieGower20 in the command window.
We see that the coexistence fixed points bifurcate to horizontal fixed points in the BP point
where cyj = cyj0. Therefore for the parameter values cyj > cyj0 the coexistence fixed point is
not biologically meaningful due to the first and the second components of it being negative.
The coexistence fixed point is stable before the BP point and unstable afterwards.
We now switch to a new branch in the BP point of Run 9, and refer to this as Run 10:

>> global x20 v20 s20 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> x1=x20(1:4,s20(2).index);p1=p;

>> p1(fpmds.ActiveParams)=x20(5,s20(2).index);

>> opt = contset(opt,’MaxNumPoints’,50);

>> opt = contset(opt,’Backward’,1);

>> [x2,v2]=init_BPm_FPm(@LeslieGower,x1,p1,s20(2),0.01,1);

>> [x21,v21,s21,h21,f21]=cont(@fixedpointmap,x2,v2,opt);

first point found
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tangent vector to first point found

label = BP, x = ( 21.502856 22.996110 0.000000 0.000000 0.474408 )

label = PD, x = ( 21.502856 22.996110 0.000000 0.000000 0.450625 )

normal form coefficient of PD = 3.260622e-003

elapsed time = 0.8 secs

npoints curve = 50

This test is run by typing LeslieGower21 in the command window.
The BP point in Run 10 is the same BP point as in Run 9, the points computed in Run 10 are
horizontal fixed points.
The solutions to the equation H = 0, where H is given by (128), are the parameter values
for which the existence and uniqueness of the coexistence fixed point is not guaranteed. In
the present context, where only cyj and cjy are not fixed, this leads to

H ≡ cyjcjy + acyj + bcjy − c = 0, (135)

where

a = 0.1666326531, b = 0.0855555552, c = 0.3350275226.

The equation H = 0 defines a hyperbola in (cyj , cjy) space.
Numerically we also find that the special point (cyj0, cjy0) where both the horizontal and

vertical fixed point lose their stability lies on the hyperbola. To check that this is not an
accident we note that by (125) we have

cyj0 =
b2(1− µy)− µz(1 + cyaa

∗)
µzj∗

(136)

where j∗ and a∗ are given by (113) and (114). Similarly by (126)

cjy0 =
b1(1− µj)− µa(1 + cjzz

∗)
µay∗

(137)

where y∗ and z∗ are given by (116) and (117). By substituting (136) and (137) in H and
simplifying the result in Maple, we see that:

cyj0cjy0 + cjy0cya(
1−µj

µa
) + cjzcyj0(

1−µy

µz
) + cjzcya(

1−µj

µa
(
1−µy

µz
)

−(cyj + cya
1−µj

µa
)(cjy + cjz

1−µy

µz
) = 0

(138)

That means that the point (cyj0, cjy0) is on the hyperbola.
To study the solutions of the system of equations, of the coexistence fixed points, for the
parameter values where H = 0, we define

E1 ≡ det

(
ǫ b1α− 1
δ b2β − 1

)
= 0 (139)

and

E2 ≡ det

(
γ b1α− 1
η b2β − 1

)
= 0 (140)

(139) and (140) are linear equations in cyj and cjy respectively that are satisfied iff cyj = cyj0
and cjy = cjy0 respectively.
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This means that only for the parameters values (cyj , cjy) = (cyj0, cjy0) a coexistence fixed
point can lie on the hyperbola H = 0.

The above argument also shows that in (127) the right hand side vector is in the column
space of the coefficient matrix, i.e. there is a straight line of coexistence fixed points for the
parameter values (cyj , cjy) = (cyj0, cjy0).

We notice that the equation

j∗(cyj + cya × α) = b2β − 1 (141)

is satisfied where cyj = cyj0 and j∗ is a component of the horizontal fixed point given by
(113). Similarly, the equation

y∗(cjy + cjz × β) = b1α− 1 (142)

is satisfied where cjy = cjy0 and y∗ is a component of the vertical fixed point given by (116).
The above arguments show that the line of coexistence fixed points bifurcates to the horizontal
and vertical fixed points when cjy = cjy0 and cyj = cyj0 respectively. This reconfirms the
results obtained in Run 7 and Run 9, where we found the new branches of fixed points in cjy0
and cyj0 respectively.

The straight line of coexistence fixed points contains a horizontal fixed point, a vertical
fixed point and two coexistence flip points. As a curve, it is a curve of fold bifurcations of fixed
points. This explains why the coexistence fixed points on the curve of Run 16 are detected
as fold-flip points.

Now we discuss the stability of the coexistence fixed points. The coexistence fixed point
is unstable in S2 where

S2 = {(cyj , cjy) : cyj > cjy0 or cjy > cjy0}
The stability properties of the coexistence fixed point are more complicated in S1 where

S1 = {(cyj , cjy) : 0 ≤ cyj ≤ cyj0, 0 ≤ cjy ≤ cjy0} .
A picture of the hyperbola H = 0, the rectangle S1 and the region S2 are given in Figure 12.
By numerical continuation runs in this rectangle it is found that there is an interior region
in which the coexistence fixed points are unstable. This region is bounded by a curve of
PD points where the stability changes. We now give some detailed computations. We first
consider Run 11 which starts from the coexistence fixed point

(11.17052012, 11.94625068, 20.99523834, 15.21083594)

where cyj = 0.3 and cjy = 0.3; cjy is free in the continuation:

>> global opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt=contset(opt,’MaxNumPoints’,900);

>> opt=contset(opt,’Singularities’,1);
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>> ap=11; p=[20;18;0.72;0.23;0.29;0.98;0.36;0.55;0.18;0.26;0.3;0.23;0.3;.08];

>> x=[11.17052012;11.94625068;20.99523834;15.21083594];

>> [x0,vO]=init_FPm_FPm(@LeslieGower,x, p, ap,1);

>> [x221,v221,s221,h221,f221]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = PD, x = ( 13.759070 14.714561 18.285905 13.247952 0.234912 )

normal form coefficient of PD = 4.356836e-005

elapsed time = 3.5 secs

npoints curve = 900

>> opt=contset(opt,’Backward’,1);

>> [x222,v222,s222,h222,f222]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = PD, x = ( 2.420127 2.588191 30.153929 21.846214 0.433426 )

normal form coefficient of PD = -1.146987e-004

label = BP, x = ( -0.000000 -0.000000 32.686981 23.681384 0.457129 )

elapsed time = 3.7 secs

npoints curve = 900

This test is run by typing LeslieGower22 in the command window.
In Run 11 the coexistence fixed point is stable when cjy < 0.234912 (the first PD point) , and
again stable between the second PD point and the BP point. For other parameter values, in
particular between the two PD points, it is unstable.

We now do a continuation with cyj free, and call this Run 12:

>>>> global opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt=contset(opt,’MaxNumPoints’,900);

>> opt=contset(opt,’Singularities’,1);

>> ap=13; p=[20;18;0.72;0.23;0.29;0.98;0.36;0.55;0.18;0.26;0.3;0.23;0.3;.08];

>> x=[11.17052012;11.94625068;20.99523834;15.21083594];

>> [x0,v0]=init_FPm_FPm(@LeslieGower,x, p, ap,1);

>> [x231,v231,s231,h231,f231]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = PD, x = ( 19.493527 20.847244 4.082945 2.958052 0.454972 )

normal form coefficient of PD = -2.843076e-005

label = BP, x = ( 21.502856 22.996110 -0.000000 -0.000000 0.474408 )

elapsed time = 3.8 secs

npoints curve = 900

>> opt=contset(opt,’Backward’,1);

>> [x232,v232,s232,h232,f232]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = PD, x = ( 8.793401 9.404053 25.825530 18.710333 0.201880 )

normal form coefficient of PD = 2.307707e-005
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elapsed time = 3.5 secs

npoints curve = 900

This test is run by typing LeslieGower23 in the command window.
The coexistence fixed point is stable for cyj < 0.201880 (the first PD point) and between the
second PD point and the BP. For other parameter values, in particular between the two PD

points, it is unstable.
We now do a continuation of the fixed points of M2

LG, starting in the PD point in Run 11

which corresponds to cyj = 0.234912, we call this Run 13:

>> global x221 v221 s221 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt = contset(opt,’Backward’,1);

>> opt = contset(opt,’Singularities’,1);

>> x1=x221(1:4,s221(2).index);p1=p;

>> p1(fpmds.ActiveParams)=x221(5,s221(2).index);

>> [x2,v2]=init_PDm_FP2m(@LeslieGower,x1,p1,s221(2),0.01,1);

>> [x24,v24,s24,h24,f24]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = BP, x = ( 13.759070 14.714561 18.285905 13.247952 0.234912 )

label = LP, x = ( 2.198620 6.212272 10.294425 33.964752 0.504965 )

normal form coefficient of LP =-4.246467e-003

label = BP, x = ( 2.420127 2.588191 30.153929 21.846214 0.433426 )

label = LP, x = ( 6.819750 3.432374 47.612656 7.988337 0.504965 )

normal form coefficient of LP =-4.625801e-003

Closed curve detected at step 1183

elapsed time = 6.6 secs

npoints curve = 1183

>> cpl(x24,v24,s24,[1 5])

This test is run by typing LeslieGower24 in the command window.
The continuation leads to a closed curve of fixed points of M2

LG. A picture of this closed
curve is given in Figure 10. The fixed points are initially stable, then unstable between two
successive LP points, then stable again. The multipliers of M2

LG at the begining, just before
the LP points, just after the LP points and near the end of the closed curve are given by
v1, v2, v3, v4, v5 and v6 respectively:
v1 = (1.0000, 0.8263, 0.4771, 0.3573) , v2 = (0.2905, 0.3609, 0.9997, 0.8401)
v3 = (1.0207, 0.8731, 0.4057, 0.2844) , v4 = (0.2892, 0.3640, 0.8420, 1.0017)
v5 = (0.2930, 0.3559, 0.8372, 0.9964) , v6 = (0.3574, 0.4769, 0.9998, 0.8263)

Now we do a continuation of coexistence fixed points starting from

(21.49714644, 22.99000382, 0.03249100281, 0.02353939999)

where cyj = 0.474 and cjy = 0, the free parameter is cjy, and call this Run 14:
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Figure 10: The second iterate closed curve in (j, cjy) space.

>> global opt cds fpmds

>> opt = contset;

>> ap=11;p=[20;18;0.72;0.23;0.29;0.98;0.36;0.55;0.18;0.26;0;0.23;0.474;.08];

>> x=[21.49714644;22.99000382;0.03249100281;0.02353939999];

>> [x0,v0]=init_FPm_FPm(@LeslieGower,x, p, ap,1);

>> opt=contset(opt,’MaxNumPoints’,1200);

>> opt=contset(opt,’Singularities’,1);

>> opt=contset(opt,’Backward’,1);

>> opt = contset(opt,’Multipliers’,1);

>> [x25,v25,s25,h25,f25]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = PD, x = ( 20.336353 21.748600 1.795753 1.301005 0.449305 )

normal form coefficient of PD = -1.491141e-001

label = PD, x = ( 1.299106 1.389322 30.713618 22.251703 0.457100 )

normal form coefficient of PD = -1.448721e-001

label = BP, x = ( -0.000000 -0.000000 32.686981 23.681384 0.457129 )

elapsed time = 5.2 secs

npoints curve = 1200

This test is run by typing LeslieGower25 in the command window.
Now we do a continuation of fixed points of M2

LG by starting in the PD point of Run 14 that
corresponds to cjy = 0.449305, we call this Run 15:

> global x25 v25 s25 h25 f25 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);
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>> x1=x25(1:4,s25(2).index);p1=p;

>> p1(fpmds.ActiveParams)=x25(5,s25(2).index);

>> opt = contset(opt,’MaxNumPoints’,1700);

>> opt=contset(opt,’Singularities’,1);

>> opt=contset(opt,’Backward’,0);

>> [x2,v2]=init_PDm_FP2m(@LeslieGower,x1,p1,s25(2),0.01,1);

>> [x26,v26,s26,h26,f26]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = LP, x = ( 14.881412 19.584062 2.063890 10.875613 0.335687 )

normal form coefficient of LP =1.853991e-003

label = LP, x = ( 1.211432 6.467511 5.173194 37.643568 0.739309 )

normal form coefficient of LP =1.007065e-002

label = BP, x = ( 1.299106 1.389322 30.713618 22.251703 0.457100 )

label = LP, x = ( 7.401653 2.743706 52.894438 4.425839 0.739309 )

normal form coefficient of LP =9.716217e-003

label = LP, x = ( 19.273038 16.942225 15.270360 1.682874 0.335687 )

normal form coefficient of LP =-1.436619e-003

Closed curve detected at step 1665

elapsed time = 9.4 secs

npoints curve = 1665

This test is run by typing LeslieGower26 in the command window.
In the continuation there is a pair of LP points for cjy = 0.335687, and another pair of LP
points for cjy = 0.739309. The fixed points of M2

LG are stable only between two successive LP
points.

For a detailed study of the behavior of coexistence fixed points in S2, we compute some
bifurcation curves. First we compute the period doubling curve that originates in the PD

point of Run 11, call this Run 16:

>> global x221 v221 s221 opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt=contset(opt,’Maxnumpoints’,250);

>> opt=contset(opt,’Singularities’,1);

>> ap1=11; p1=p;

>> p1(ap1)=x221(end,s221(2).index);

>> x1=x221(1:4,s221(2).index);

>> [x0,v0]=init_PDm_PDm(@LeslieGower,x1,p1,[11 13],1);

>> [x27,v27,s27,h27,f27]=cont(@perioddoublingmap,x0,v0,opt);

first point found

tangent vector to first point found

label = GPD , x = ( 19.463734 20.815382 4.163299 3.016267 0.297779 0.454279 )

Normal form coefficient of GPD = 5.271115e-006

label = LPPD, x = ( 20.354989 21.768530 1.744899 1.264162 0.457129 0.474408 )
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Figure 11: A closed curve of fixed points of M2
LG in (j, cjy) space.

Normal form coefficient for LPPD :[a/e , be]= -1.329134e-009, -5.060725e-005,

elapsed time = 4.2 secs

npoints curve = 250

>> opt=contset(opt,’ Backward’,1);

>> opt=contset(opt,’MaxNumPoints’,270);

>> [x1,v1,s1,h1,f1]=cont(@perioddoublingmap,x0,v0,opt);

first point found

tangent vector to first point found

label = GPD , x = ( 4.771088 5.102414 28.857159 20.906717 0.383143 0.210138 )

Normal form coefficient of GPD = 4.494110e-008

label = LPPD, x = ( 1.297714 1.387833 30.714296 22.252194 0.457129 0.474408 )

Normal form coefficient for LPPD :[a/e , be]= -1.076502e-008, -2.619423e-006,

elapsed time = 4.1 secs

npoints curve = 270

This test is run by typing LeslieGower27 in the command window.
We can explain analytically the detection of the LPPD point in Run 16. As shown before,
for the parameters value (cyj , cjy) = (cyj0, cjy0) there is a curve of fixed points. This curve
can be defined by X = X(t) where t is arclength, with constant parameter α = α0. The fixed
point equation is given by

f(X(t), α0)−X(t) = 0 (143)

By taking derivatives of (143) with respect to t, we have

fX(X(t), α0)
dX

dt
− dX

dt
= (fX(X(t), α0)− I)

dX

dt
= 0. (144)
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Here dX
dt 6= 0 since dX

dt is a unit vector tangent to the curve of fixed points where α = α0. We
conclude that in (144), (fX(X(t), α0) − I) must be rank deficient , i.e, each point is a fold
point. This argument explains the detection of LPPD points in Run 16. Now we compute
the limit point curve of M2

LG, starting from the LP point of M2
LG in Run 13. We call this Run

17:

>>>>>>>>>>>>>>fold curve <<<<<<<<<<<

>> p1(fpmds.ActiveParams)=x24(end,s24(4).index);

>>x1=x24(1:4,s24(4).index);

>> opt=contset(opt,’Maxnumpoints’,120);

>> [x0,v0]=init_LPm_LPm(@LeslieGower,x1,p1,[11 13],2);

>>opt=contset(opt,’Backward’,0);

>> [x1,v1,s1,h1,f1]=cont(@limitpointmap,x0,v0,opt);

first point found

tangent vector to first point found

elapsed time = 2.2 secs

npoints curve = 120

>> cpl(x1,v1,s1,[6 5]);

>> opt=contset(opt,’Backward’,1);

>>[x2,v2,s2,h2,f2]=cont(@limitpointmap,x0,v0,opt);

first point found

tangent vector to first point found

elapsed time = 2.3 secs

npoints curve = 120

>> cpl(x2,v2,s2,[6 5]);

This test is run by typing LeslieGower28 in the command window.
In the next run, Run 18, we continue the fixed points of M2

LG starting from the PD point in
Run 13, detect an LP point and then continue the fold curve of M2

LG.

>>>>>>>>>>> fold curve <<<<<<<<<<

>>opt=contset(opt,’Backward’,0);

>> x1=x24(1:4,s24(4).index);p1=p;

>> p1(fpmds.ActiveParams)=x24(5,s24(4).index);

>> opt=contset(opt,’MaxNumPoints’,250);

>> [x2,v2]=init_LPm_LPm(@LeslieGower,x1,p1,[11 13],2);

>>[x3,v3,s3,h3,f3]=cont(@limitpointmap,x2,v2,opt);

first point found

tangent vector to first point found

elapsed time = 4.7 secs

npoints curve = 250

>> cpl(x3,v3,s3,[6 5]),

>>opt=contset(opt,’Backward’,1);

>> [x3,v3,s3,h3,f3]=cont(@limitpointmap,x2,v2,opt);

first point found

tangent vector to first point found
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Figure 12: The flip curve, the fold curve of M2
LG, the hyperbola H = 0 and the rectangle S1

in (cyj , cjy) space.

elapsed time = 4.2 secs

npoints curve = 250

>> cpl(x3,v3,s3,[6 5]);

This test is run by typing LeslieGower29 in the command window.
A picture of the bifurcation curves and their bifurcation points computed in Run 16, Run 17

and Run 18 along with the hyperbola H = 0 is given in Figure 12.

An alternative way to compute the fold curves of M2
LG, computed in Run 17 and Run 18, is

to switch directly from the GPD point on the PD curve, computed in Run 16. This is Run

19:

>> global opt cds fpmds pdmds

>>>>>>> SWITCHING <<<<<<<

opt=contset(opt,’Maxnumpoints’,250);

ap = [11 13];y1=x1(1:4,s1(2).index);p1(ap)=x1([5 6],s1(2).index);

[x0,v0]=init_GPD_LP2m(@LeslieGower,1e-3,y1,p1,[11 13],1);

opt=contset(opt,’Backward’,0);

[x7,v7,s7,h7,f7]=cont(@limitpointmap,x0,v0,opt);

first point found

tangent vector to first point found
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elapsed time = 4.4 secs

npoints curve = 250

cpl(x7,v7,s7,[6 5]);

y1=x2(1:4,s2(2).index);p1(ap)=x2([5 6],s2(2).index);

opt=contset(opt,’Maxnumpoints’,260);

[x0,v0]=init_GPD_LP2m(@LeslieGower,1e-1,y1,p1,[11 13],1);

[x8,v8,s8,h8,f8]=cont(@limitpointmap,x0,v0,opt);

first point found

tangent vector to first point found

elapsed time = 4.2 secs

npoints curve = 260

cpl(x8,v8,s8,[6 5]);

This test is run by typing LeslieGower30 in the command window.
Now we return to Run 1 where a PD point was detected. We compute the flip curve in the PD
point, this is Run 20:

>> global x12 v12 s12 opt cds fpmds pdmds

>>>>>>> flip curve <<<<<<<

p1(fpmds.ActiveParams)=x12(end,s12(4).index);

x1=x12(1:4,s12(4).index);

opt=contset(opt,’Maxnumpoints’,15);

[x0,v0]=init_PDm_PDm(@LeslieGower,x1,p1,[11 13],1);

opt=contset(opt,’Backward’,0);

[x1,v1,s1,h1,f1]=cont(@perioddoublingmap,x0,v0,opt);

first point found

tangent vector to first point found

label = GPD , x = ( 21.502856 22.996110 0.000000 0.000000 0.275983 0.450625 )

Normal form coefficient of GPD = 2.721284e-006

label = GPD , x = ( 21.502856 22.996110 0.000000 0.000000 0.161087 0.450625 )

Normal form coefficient of GPD = -1.779620e-013

elapsed time = 0.7 secs

npoints curve = 20

cpl(x2,v2,s2,[6 5]);

This test is run by typing LeslieGower31 in the command window. We note that the vector
v2 is not used in the continuation run.
The continuation leads to a vertical straight line of flip points which is depicted in Figure
13, with two GPD bifurcation points. Now we take a point on the straight line of flip points
between the two GPD points, where (cyj , cjy) = (0.450625; 0.2201). Then we compute the
curve of fixed points of the period 2 map by starting from the PD point. We call this Run 21:

>> global x12 v12 s12 opt fpmds cds fpmds

>>>>>> flip curve <<<<<<<<<<<<<

>> x1=x12(1:4,s12(4).index);p1=p;

>> p1(fpmds.ActiveParams)=x12(5,s12(4).index);

>> opt=contset(opt,’MaxNumPoints’,1000);

>> opt=contset(opt,’Backward’,1);
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>> [x2,v2]=init_PDm_FP2m(@LeslieGower,x1,p1,s12(4),0.01,1);

>> [x32,v32,s32,h32,f32]=cont(@fixedpointmap,x2,[],opt);

first point found

tangent vector to first point found

label = BP, x = ( 21.502856 22.996110 -0.000000 0.000000 0.450625 )

label = LP, x = ( 25.761683 36.839702 -49.164526 1.145490 0.487045 )

normal form coefficient of LP =1.228524e-003

elapsed time = 5.4 secs

npoints curve = 1000

>>cpl(x32,v32,s32,[1 5])

This test is run by typing LeslieGower32 in the command window.
The continuation leads to a curve of unstable fixed points. We compute the fold curve of
M2

LG starting from the LP point of Run 21. We refer to this as Run 22:

>> global x32 v32 s32 opt cds fpmds lpmds

>>>>>>> fold curve <<<<<<<

>> p1=p;p1(fpmds.ActiveParams)=x32(end,s32(3).index);x1=x32(1:4,s32(3).index);

>> opt=contset(opt,’Maxnumpoints’,500);

>> [x0,v0]=init_LPm_LPm(@LeslieGower,x1,p1,[11 13],2);

>> opt=contset(opt,’Backward’,1);

>> [x33,v33,s33,h33,f33]=cont(@limitpointmap,x0,v0,opt);

first point found

tangent vector to first point found

elapsed time = 8.1 secs

npoints curve = 500

>> cpl(x33,v33,s33,[6 5]);

>> opt=contset(opt,’Backward’,0);

>> opt=contset(opt,’Maxnumpoints’,300);

>>[x332,v332,s332,h332,f332]=cont(@limitpointmap,x0,v0,opt);

first point found

tangent vector to first point found

elapsed time = 5.2 secs

npoints curve = 300

>> cpl(x332,v332,s332,[6 5]);

This test is run by typing LeslieGower33 in the command window.
The curve ends at a GPD point on the flip curve computed in Run 20. A picture of this curve
and the flip curve of Run 20 are given in Figure 13.

The fold curve of M2
LG is tangent to the straight line of PD points at a GPD. For a close view

see Figure 14.
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Similarly, we can compute a fold curve of M2
LG that is tangentially born on the horizontal

straight line of flip points. We consider Run 4 where a PD point was detected and then
compute the flip curve in this PD point. We call this Run 23:

>>>>>>> flip curve <<<<<<<

>> global x15 v15 s15 opt cds fpmds pdmds

>> p1(fpmds.ActiveParams)=x15(end,s15(3).index);

>> x1=x15(1:4,s15(3).index);

>> opt=contset(opt,’Maxnumpoints’,40);

>> [x0,v0]=init_PDm_PDm(@LeslieGower,x1,p1,[11 13],1);

>> opt=contset(opt,’Backward’,0);

>> [x341,v341,s341,h341,f341]=cont(@perioddoublingmap,x0,v0,opt);

first point found

tangent vector to first point found

elapsed time = 0.6 secs

npoints curve = 40

>> cpl(x341,v341,s341,[6 5]);

>> opt=contset(opt,’Backward’,1);

>> opt=contset(opt,’Maxnumpoints’,20);

>> [x342,v342,s342,h342,f342]=cont(@perioddoublingmap,x0,v0,opt);

first point found

tangent vector to first point found

label = GPD , x = ( 0.000000 0.000000 32.686981 23.681384 0.170849 0.021904 )

Normal form coefficient of GPD = -9.813682e-009

label = GPD , x = ( 0.000000 0.000000 32.686981 23.681384 0.170849 0.103960 )

Normal form coefficient of GPD = -3.239219e-009

elapsed time = 0.8 secs

npoints curve = 20

cpl(x342,v342,s342,[6 5]);

This test is run by typing LeslieGower34 in the command window.
The continuation leads to a horizontal straight line of flip points, with two GPD bifurcation
points. Now we take a point on the straight line of flip points between the two GPD points,
where (cyj , cjy) = (0.450625; 0.2201). Then we compute a curve of fixed points of M2

LG,
starting from the PD point. We call this Run 24:

>>>>> fixed points curve of the second iterate<<<<

>> global x15 v15 s15 opt cds fpmds

>> x1=x15(1:4,s15(3).index);p1=p;

>> p1(fpmds.ActiveParams)=x15(5,s15(3).index);

>> opt=contset(opt,’MaxNumPoints’,300);

>> [x2,v2]=init_PDm_FP2m(@LeslieGower,x1,p1,s15(3),0.01,1);

>>[x35,v35,s35,h35,f35]=cont(@fixedpointmap,x2,[],opt);

first point found

tangent vector to first point found

label = LP, x = ( -11.313105 6.463612 54.415142 9.852869 0.167365 )

normal form coefficient of LP =-1.750138e-003
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elapsed time = 1.7 secs

npoints curve = 300

>> cpl(x35,v35,s35,[1 5])

This test is run by typing LeslieGower35 in the command window. We note that the vector
v2 is not used in the continuation run.

10.3 A Cod Stock model

10.3.1 The model, its fixed points and their stability properties

The roots of the present model can be found in [8, 9, 11]. The model that we use is a
two-dimensional difference equation (145) with seven parameters described in [59] as follows

x1,t+1 = F.e−β1x2,tx2,t + (1− µ1)e
−β2x2,tx1,t

x2,t+1 = P.e−β3x2,tx1,t + (1− µ2)x2,t
(145)

where x1,t and x2,t are the immature and mature parts of the population at time t respectively.
F is the fecundity ( that is the number of newborns per adult), and P , 0 < P ≤ 1, is
the fraction of the immature population that survive and enter the mature stage one time
unit later. µ2 may be interpreted as natural death rate. µ1 combines natural death and
maturation, so µ1 ≥ P . The corresponding parameters βi, i = 1, 2, 3 will be referred to as
cannibalism parameters. Thus, F is reduced by the factor e−β1x2 due to cannibalism practised
by the mature part of the population. In a similar way the remaining part of the immature
population (1 − µ1) is reduced by the factor e−β2x2 , and finally the survival from immature
stage to the mature stage is reduced by the factor e−β3x2 due to cannibalism practised by
individuals in the mature stage. In the model (145) we do not consider cannibalism within
the stages.
The map (145) is implemented in the mapfile NAFStock.m.
Clearly, the vector (x∗1, x

∗
2) = (0, 0) is a trivial fixed point of (145). Evaluation of the Jacobian

of (145) at the trivial fixed point gives,
(

1− µ1 F
P 1− µ2

)
(146)

The fixed point is stable if

R =
F.P + (1− µ1)µ2

µ2
< 1 (147)

A nontrivial fixed point (x∗1, x
∗
2) of the model must satisfy:

x∗1 = F.e−β1x∗

2x∗2 + (1− µ1)e
−β2x∗

2x∗1
x∗2 = P.e−β3x∗

2x∗1 + (1− µ2)x
∗
2

(148)

By the second equation of (148), we have

x∗1 =
µ2
P
eβ3x∗

2x∗2 (149)

where x∗2 must satisfy the nonlinear equation

g(x∗2) =
F.P

µ2
e−(β1+β3)x∗

2 + (1− µ1)e
−β2x∗

2 − 1 = 0 (150)
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One can show that the nontrivial fixed point is stable when:

(1− µ1)e
−β2x∗

2(2− (β1 − β2 + β3)µ2x
∗
2) + 2(1− µ2) + (β1 − β3)µ2x

∗
2 > 0 (151)

and
1 + (1− β1x

∗
2)µ2 − (1− µ1)e

−β2x∗

2(1− (β1 − β2 + β3)µ2x
∗
2) > 0 (152)

hold.

10.3.2 Numerical stability analysis of the model

Following [59] we consider three special parameter ranges of (145). We note that all normal
form coefficients in our computations are small in absolute value; this is caused by the expo-
nentials in the definition of the map and does not indicate that the sign of the coefficients
cannot be trusted.

10.3.3 Case study 1

We consider the case where the cannibalism pressures on the newborns, immature population
and those on the threshold of entering the mature stage are equal, i.e., β1 = β2 = β3 = β.
Thus, the model (145) is rewritten as

x1,t+1 = F.e−βx2,tx2,t + (1− µ1)e
−βx2,tx1,t

x2,t+1 = P.e−βx2,tx1,t + (1− µ2)x2,t
(153)

This map is implemented in the mapfile Rfish.m.
The nontrivial solution of this model can be expressed by

(x∗1, x
∗
2) = (

µ2
β.P

K,
1

β
lnK) (154)

where

K =
1

2
(1− µ1) +

√
F.P

µ2
+

(1− µ1)2

4
=

1− µ1
2

+

√
(1− µ1)2 + 4(R− 1)

2
(155)

We do a numerical bifurcation analysis of (153) by starting from the model parameters β =
1, P = 0.5, µ1 = 0.5, F = 120 and µ2 = 0.9. For the above parameter set the nontrivial fixed
point (x∗1, x

∗
2) = (32.2814, 2.1305) is computed from (154) and is stable. We do a numerical

continuation of fixed points back and forth where F is the free parameter, we refer to this as
Run 1. We obtain the following MatContM output:

>> global cds fpmds;

>> p=[120;0.5;0.5;0.9;1];ap=1;

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt = contset(opt,’Backward’,0);

>> opt = contset(opt,’Singularities’,1);
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Figure 15: The invariant curve for β1 = β2 = β3 = 1, µ1 = P = 0.5, µ2 = 0.9,F = 130.62.

>> opt = contset(opt,’MaxNumPoints’,300);

>>> curve of fixed points <<<

>> [x0,v0]=init_FPm_FPm(@Rfish,[32.28140;2.1305], p, ap,1);

>> [x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = NS , x = ( 34.287724 2.171557 130.609334 )

normal form coefficient of NS = -5.721873e-004

elapsed time = 1.1 secs

npoints curve = 200

>> cpl(x1,v1,s1,[3 1]);

>> opt = contset(opt,’MaxNumPoints’,1250);

>>opt = contset(opt,’Backward’,1);

>> [x2,v2,s2,h2,f2]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = BP , x = ( 0.000000 0.000000 0.900000 )

elapsed time = 3.9 secs

npoints curve = 1250

cpl(x2,v2,s2,[3 1]);

This test is run by typing CodStock1 in the command window.
Two bifurcation points are detected along the fixed point curve, a branch point (BP) and
a supercritical Neimark-Sacker point (supercriticality follows from the fact that the normal
form coefficient of the NS point is negative). The nontrivial fixed point is stable only for
0.9 < F < 130.609334. The dynamics beyond the upper threshold is a stable invariant curve
which surrounds the unstable fixed point. Such a curve is shown in Figure 15.
The new branch of fixed points that was encountered in Run 1 for F = 0.9 is computed in
Run 2 and gives the following MatContM output:

>> global x1 v1 s1 h1 f1 fpmds

>> opt = contset;

>>>>> Branch switching at BPm >>>>>>>

>> xx2=x2(1:2,s2(2).index);p1=p;p1(fpmds.ActiveParams)=x2(3,s2(2).index);

>> opt=contset(opt,’Backward’,1);

>> opt=contset(opt,’MaxNumPoints’,300);
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>> [x2,v2]=init_BPm_FPm(@Rfish,xx2,p1,s2(2),0.0001,1);

>> [x6,v6,s6,h6,f6]=cont(@fixedpointmap,x2,v2,opt);

first point found

tangent vector to first point found

label = BP , x = ( 0.000000 0.000000 0.900000 )

label = PD , x = ( 0.000000 0.000000 3.300000 )

normal form coefficient of PD = 8.753732e-002

elapsed time = 1.3 secs

npoints curve = 300

>> cpl(x6,v6,s6,[3 2])

This test is run by typing CodStock2 in the command window.
Clearly, the new branch is the trivial branch of fixed points. The trivial fixed point is stable
before the BP point and unstable afterwards where the basic reproductive number R in (147)
becomes larger than 1.
Now we compute the Neimark-Sacker bifurcation curve forth and back, by starting from the
NS point of Run 1, with two free parameters F and µ2. We call this Run 3:

>> global opt fpmds nsmds cds

>>>>>>> Fixed points >>>>

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>>>>>>> NS curve starting from the NS point >>>>

>> xx2=x1(1:2,s1(2).index);p1=p;

>> p1(fpmds.ActiveParams)=x1(3,s1(2).index);

>>>>>>> NS curve starting from the NS point >>>>

[x2,v2]=init_NSm_NSm(@Rfish,xx2,p1,[1 4],1);

opt=contset(opt,’Singularities’,1)

opt=contset(opt,’IgnoreSingularity’,[5]);

opt=contset(opt,’MaxNumPoints’,2750);

[x31,v31,s31,h31,f31]=cont(@neimarksackermap,x2,v2,opt);

first point found

tangent vector to first point found

label = R3 , x = ( 61.127825 3.001853 399.586101 0.505977 -0.500000 )

Normal form coefficient of R3 : Re(c_1) = -4.134443e-001

elapsed time = 25.5 secs

npoints curve = 2750

opt = contset(opt,’Backward’,1);

opt=contset(opt,’MaxNumPoints’,150);

[x32,v32,s32,h32,f32]=cont(@neimarksackermap,x2,v2,opt);

first point found

tangent vector to first point found

label = R2 , x = ( 32.714248 2.069443 117.303643 0.997942 -1.000000 )

Normal form coefficient of R2 : [c , d] = -1.518117e-004, -3.075159e-003

elapsed time = 2.0 secs

npoints curve = 150
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Figure 16: An exact 3-cycle close to the R3 point, where F = 399.5861 and µ2 = 0.444715 .

This test is run by typing CodStock3 in the command window.
In Run 3, we find a resonance 1:3 point. Since its normal form coefficient is negative, the
bifurcation picture near the R3 point is qualitatively the same as presented in [33], Fig. 9.12.
In particular, there is a region near the R3 point where a stable invariant closed curve coex-
ists with an unstable equilibrium. For parameter values close to the R3 point, the map has
a saddle cycle of period three. An exact 3-cycle near the R3 point is C3 = {X1, X2, X3} where

X1 = (58.66425, 2.31385), X2 = (94.32305, 4.18521), X3 = (26.16934, 3.04173)

This cycle and the parameter values are given in Figure 16. The multipliers of the fixed point
of the third iterate in X1 are λ1 = 1.03980469 and λ2 = 0.356852, thus confirming the saddle
character. This 3-cycle can be depicted using X1 and the above values of the parameters and
then simulation of the nontrivial fixed point (154) and plotting the resulting points.
If we continue the fixed point of the third iterate of the map starting from X3 for decreasing
values of µ2 then it gains stability at a fold point for µ2 = 0.444666. This stable 3-cycle loses
its stability again at a PD point for µ2 = 0.499060 after which a series of successive period
doubling bifurcations occur such that new orbits of period 3.2k, k = 1, 2, ..., are created. A
6-cycle is given by C6 = {X1, X2, X3, X4, X5, X6} where

X1 = (49.79841, 1.68883), X2 = (129.26567, 5.43071), X3 = (9.78778, 2.95507)

X4 = (61.74516, 1.70878), X5 = (1.29237, 6.43133), X6 = (4.24233, 3.26836)

This cycle is depicted in Figure 17. A 12-cycle with parameter values is given in Figure 18.

We note that for µ2 ∈ [0.444666, 0.499060] we have bistability of a fixed point of the map
and a fixed point of the third iterate.

We now consider the map near the detected R2 point computed in Run 3. Since the
normal form coefficients c and d are both negative, we are precisely in the situation of [33],
Fig. 9.10 (case s = −1). For a region of parameter values close to the R2 point the map has
an unstable 2-cycle that coexists with a stable closed invariant curve. Crossing a bifurcation
curve, the 2-cycle simultaneously undergoes a NS bifurcation. By branch switching in the R2

point, we compute the NS branch of the second iterate, which corresponds to H(2) in [33], Fig.
9.10. Further, from the R2 point a flip curve originates. Computing the flip curve, reveals that
a flip bifurcation exists in a small vicinity of the parameter µ2 = 0.997942. This is consistent
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Figure 17: An exact 6-cycle for F = 399.5861, P = µ1 = 0.5, µ2 = 0.508 and β = 1.

with the analysis in [59] of the reduced model in Case 1. A figure of the Neimark-Sacker
curve in Run 3, the flip curve through the R2 point and the branch of NS points of the second
iterate is given in Figure 19. A magnified picture of these curves is given in Figure 20. This
Figure can be compared (qualitatively, of course) with [33], Fig. 9.10.
We now continue the fixed point (x∗1, x

∗
2) = (15.360; 13.183289) along the straight line F = 114

with P = µ1 = 0.5, µ2 = 0.1 and β = 1 and varying µ2. We note that the fixed point is initially
stable, and call this Run 4:

>> global opt cds fpmds

>>> curve of fixed points <<<

p=[114;0.5;0.5;0.1;1];ap=4;

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>> opt = contset(opt,’Backward’,1);

>> opt = contset(opt,’Singularities’,1);

>> opt = contset(opt,’MaxNumPoints’,394);

[x0,v0]=init_FPm_FPm(@Rfish,[15.36;13.183289], p, ap,1);

[x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = PD , x = ( 32.053569 2.055439 0.998335 )

normal form coefficient of PD = 2.952363e-003

elapsed time = 1.6 secs

npoints curve = 394

This test is run by typing CodStock4 in the command window.
The flip points in Figure 19 below the R2 point have a positive normal form coefficient.
Hence a supercritical stable 2-cycle is born when crossing the flip curve, which coexists with
an unstable fixed point of the map.
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10.3.4 Case study 2

Now we turn to the case where the cannibalism pressure on the newborn is dominating and
decreases as age increases, i.e., β1 > β2 > β3. For the numerical stability analysis of the fixed
point we consider the parameter set µ1 = µ2 = P = 0.5, F = 55 and βi = 4− i, i = 1, 2, 3. For
these parameters the fixed point (x∗1, x

∗
2) = (2.8213, 1.01868) is numerically computed from

(149) and (150). We note that it is an unstable fixed point. Now, in Run 5, we continue fixed
points where F is the free parameter.

>> global opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>>> curve of fixed point <<<

[x0,v0]=init_FPm_FPm(@NAFstock,[2.8213;1.01868], p, ap,1);

[x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = NS , x = ( 2.718282 1.000000 50.903622 )

normal form coefficient of NS = -3.717346e-002

label = BP , x = ( -0.000000 -0.000000 0.500000 )

elapsed time = 2.2 secs

npoints curve = 560

This test is run by typing CodStock5 in the command window.
Run 5 shows that the fixed point is stable for small values of the fecundity, i.e., between BP
and NS. When F exceeds the threshold Fc = 50.903622, i.e., when the inequality sign in (152)
is reversed, we find a stable invariant curve.
Now we continue with free parameter β1 . We refer to this as Run 6:

>> global opt cds fpmds

>> p=[55;0.5;0.5;0.5;3;2;1];ap=5;

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>>> curve of fixed points <<<

[x0,v0]=init_FPm_FPm(@NAFstock,[2.8213;1.01868], p, ap,1);

[x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = NS , x = ( 3.132638 1.072181 2.793847 )

normal form coefficient of NS = -2.864118e-002

label = PD , x = ( 60.897776 3.007941 0.332657 )

normal form coefficient of PD = 3.603081e-001

elapsed time = 5.5 secs

npoints curve = 1560

This test is run by typing CodStock6 in the command window.
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Figure 18: An exact 12-cycle for F = 399.5861, P = µ1 = 0.5, µ2 = 0.556571 and β = 1.

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

450

R3  

R2  

µ
2

F

 NS curve

 PD curve

Figure 19: Neimark-Sacker bifurcation curve of Run 3 and the flip curve through the R2

point.

97



0.9 0.95 1 1.05 1.1

80

100

120

140

160

180

200

R2  

µ
2

F

PD curve 
 NS curve of the second iterate

Figure 20: Close up of the flip curve and the NS curve of the second iterate rooted in the R2

point.

The fixed point is stable between the PD and NS points, i.e., where β1 ∈ [2, 2.7987] , β2 =
2, β3 = 1. We proceed with the numerical investigation of stability where β2 is free, in Run 7:

>> global opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>>> curve of fixed point <<<

[x0,v0]=init_FPm_FPm(@NAFstock,[2.8213;1.01868], p, ap,1);

[x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = NS , x = ( 2.932052 1.038207 1.258253 )

normal form coefficient of NS = -3.139363e-002

elapsed time = 0.8 secs

npoints curve = 50

This test is run by typing CodStock7 in the command window.
We find that the fixed point is unstable before NS and stable afterwards, i.e., where β1 =
3, β2 ∈ [1, 1.258201] , β3 = 1. Next, we continue with β3 free, in Run 8:

>global opt cds fpmds

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>>> curve of fixed point <<<

>> [x0,v0]=init_FPm_FPm(@NAFstock,[2.8213;1.01868], p, ap,1);

>> [x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,opt);
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first point found

tangent vector to first point found

label = NS , x = ( 2.926588 1.001660 1.070402 )

normal form coefficient of NS = -3.266591e-002

label = PD , x = ( 8.864167 0.362921 8.805179 )

normal form coefficient of PD = 1.144210e+000

elapsed time = 2.0 secs

npoints curve = 500

This test is run by typing CodStock8 in the command window.
By monitoring the multipliers in Run 8 (stored in f1) it is found that the fixed point is
stable between the NS and PD points, i.e., the fixed point is stable where β1 = 3, β2 = 2, β3 ∈
[1.070402, 2]. Since the normal form coefficient of the PD point is positive, a stable 2-cycle is
born where β3 > 8.805179. Moreover, it can be seen that increasing β3, the cannibalism of
the immature on the threshold of entering the mature age, results in a wider range of stability
than increasing β1.
For a further analysis we ignore the condition β1 > β2 > β3 and compute the Neimark-Sacker
curve, by starting at the NS point in Run 6, with free parameters F and β3, this is Run 9:

>>>> NS curve starting in NSm >>>>>>

>> global x1 v1 s1 opt fpmds nsmds

>>>xx2=x1(1:2,s1(2).index);p1=p;p1(fpmds.ActiveParams)=x1(3,s1(2).index);

>>>[x2,v2]=init_NSm_NSm(@NAFstock,xx2,p1,[1 7],1);

opt=contset(opt,’IgnoreSingularity’,[5]);

>>> [x31,v31,s31,h31,f31]=cont(@neimarksackermap,x2,v2,opt);

first point found

tangent vector to first point found

label = R4 , x = ( 3.119219 1.003084 58.799673 1.131015 -0.000000 )

Normal form coefficient of R4 : A = -4.610753e+000 + -1.142472e+000 i

elapsed time = 1.2 secs

npoints curve = 100

This test is run by typing CodStock9 in the command window.
Since |A| > 1 in the R4 point in Run 9, two cycles of period 4 of the map are born. An exact
stable 4-cycle for β3 = 1.131015 and F = 58.9 is given by C4 = {X1, X2, X3, X4} where
X1 = (3.21494, 1.035797);X2 = (2.93066, 1.01606),
X3 = (3.031476, 0.97239);X4 = (3.31453, 0.99085)
We present this cycle in Figure 21. The multipliers of the fourth iterate of the map in X1 are
λ1 = 0.999819 and λ2 = 0.996348, confirming the stability of the 4-cycle.

To compute the stability domain of the 4-cycle we note that since |A| > 1, there are two
half-lines of fold bifurcation curves of the fourth iterate that emanate from the R4 point. In
the next run, Run 10, we compute these fold curves and present these curves in Figure 22.
The stable fixed points of the fourth iterate exist in the wedge between the two half-lines;
they lose their stability when encountering the half-lines. We note that the stable 4-cycles
exist in a wide parameter region but there is no bistability with fixed points of the original
map.

>>> curve of fixed point <<<
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Figure 21: An exact 4-cycle for µ1 =
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first point found

tangent vector to first point found

label = NS , x = ( 2.718282 1.000000 50.903622 )

normal form coefficient of NS = -3.717346e-002

elapsed time = 0.6 secs

npoints curve = 50

>>>> NS curve starting in NSm >>>>>>

first point found

tangent vector to first point found

label = R4 , x = ( 3.119219 1.003084 58.799673 1.131015 -0.000000 )

Normal form coefficient of R4 : A = -4.610753e+000 + -1.142472e+000 i

elapsed time = 1.9 secs

npoints curve = 200

>>>>>>>>>>>>>>>>switching at R4 to LP41 <<<<<<<<<<

first point found

tangent vector to first point found

elapsed time = 5.4 secs

npoints curve = 250

>>>>>>>>>>>>>>>>switching at R4 to the second LP41 <<<<<

first point found

tangent vector to first point found

elapsed time = 5.6 secs

npoints curve = 250

This test is run by typing CodStock10 in the command window.
The Neimark-Sacker curve, starting from the NS point in Run 8, where µ2 and β3 are free
parameters is computed in Run 11:

>>>> NS curve starting in NSm >>>>>>

>>> xx2=x1(1:2,s1(2).index);p1=p;p1(fpmds.ActiveParams)=x1(3,s1(2).index);

>>> [x2,v2]=init_NSm_NSm(@NAFstock,xx2,p1,[4 7],1);

>>> opt=contset(opt,’IgnoreSingularity’,[5]);

>>>[x31,v31,s31,h31,f31]=cont(@neimarksackermap,x2,v2,opt);

100



first point found

tangent vector to first point found

label = R4 , x = ( 3.011107 0.988367 0.511112 1.104883 -0.000000 )

Normal form coefficient of R4 : A = -4.675831e+000 + -1.079711e+000 i

label = R3 , x = ( 5.026676 0.735955 0.910954 1.795572 -0.500000 )

Normal form coefficient of R3 : Re(c_1) = -1.581503e+000

label = R2 , x = ( 6.126237 0.627511 1.395201 1.995804 -1.000000 )

Normal form coefficient of R2 : [c , d] = 6.737115e-002, -1.789202e-001

elapsed time = 1.1 secs

npoints curve = 50

This test is run by typing CodStock11 in the command window.

10.3.5 Case study 3

In the last case we assume β1 < β2 < β3. We consider the parameter set µ1 = µ2 = P =
0.5, F = 200 and βi = i, i = 1, 2, 3. The fixed point

(x∗1, x
∗
2) = (72.8206, 1.33341) (156)

is computed from (149) and (150). We note that this is an unstable fixed point. Now we
continue the fixed point (156) where F is the free parameter, we call this Run 12:

> global opt cds fpmds

>> p=[200;0.5;0.5;0.5;1;2;3];ap=1;

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>>> curve of fixed points <<<

>> [x0,v0]=init_FPm_FPm(@NAFstock,[72.8206;1.33341], p, ap,1);

>> [x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = PD , x = ( 25.184229 1.056945 64.424674 )

normal form coefficient of PD = 1.818819e-001

elapsed time = 4.8 secs

npoints curve = 1500

This test is run by typing CodStock12 in the command window.
In Run 12 there is a supercritical flip bifurcation at the instability threshold, hence a stable
2-cycle is born for F > 64.424674. The fixed point is unstable before the PD point and stable
afterwards. The new branch of fixed points of the second iterate is given in Figure 23.
We proceed with the continuation of fixed points where β1 is free, we call this Run 13:

>> global opt cds fpmds

>> p=[200;0.5;0.5;0.5;1;2;3];ap=5;

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>>> curve of fixed point <<<

>> [x0,v0]=init_FPm_FPm(@NAFstock,[72.8206;1.33341], p, ap,1);
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>>[x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,v0,opt);

first point found

tangent vector to first point found

label = PD , x = ( 49.555931 1.231597 1.337322 )

normal form coefficient of PD = 4.474137e-003

label = NS , x = ( 6.567122 0.731554 4.410725 )

normal form coefficient of NS = -7.669904e-003

elapsed time = 5.0 secs

npoints curve = 1500

This test is run by typing CodStock13 in the command window.
The fixed point is stable between the PD and NS points, i.e., when β1 ∈ [1.337322, 2] , β2 =
2, β3 = 3. Due to the positive sign of the normal form coefficient of the PD point, a stable
2-cycle coexists with the unstable fixed point of the map for β1 < 1.337322.
The fixed point (x∗1, x

∗
2) in (156), remains unstable under variation of the parameter β2, hence

increasing the cannibalism pressure on the immature part is not a stabilizing factor from a
dynamical point of view. We now continue with the free parameter β3, we call this Run 14:

>> global opt cds fpmds

>> p=[200;0.5;0.5;0.5;1;2;3];ap=7;

>> opt = contset;

>> opt = contset(opt,’Multipliers’,1);

>>> curve of fixed point <<<

>>[x0,v0]=init_FPm_FPm(@NAFstock,[72.8206;1.33341], p, ap,1);

>> [x1,v1,s1,h1,f1]=cont(@fixedpointmap,x0,[],opt);

first point found

tangent vector to first point found

label = PD , x = ( 64.840130 1.640192 2.241879 )

normal form coefficient of PD = 2.748627e-003

label = NS , x = ( 29.976635 2.996639 0.768503 )

normal form coefficient of NS = -4.177821e-004

elapsed time = 3.6 secs

npoints curve = 930

This test is run by typing CodStock14 in the command window.
The fixed point is stable between the PD and NS points, i.e., when β1 = 1, β2 = 2, β3 ∈
[2, 2.241879]. From the sign of the normal form coefficient of the PD point, we see that a
stable 2-cycle is born when β3 exceeds the threshold stability β3 = 2.241879. An exact stable
2-cycle for P = µ1 = µ2 = 0.5, β1 = 1, β2 = 2, β3 = 2.2510715 and F = 200 is given by

C2 = {X1, X2} = {(66.459403, 1.69537); (63.349999, 1.578968)}

We proceed with computing the Neimark-Sacker point encountered in Run 14, where F and
β3 are free in the continuation, we call this Run 15:

>>xx2=x1(1:2,s1(3).index);p1=p;p1(fpmds.ActiveParams)=x1(3,s1(3).index);

>>> curve of NS <<<

>>[x2,v2]=init_NSm_NSm(@NAFstock,xx2,p1,[1 7],1);

>> opt = contset;
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>>[x31,v31,s31,h31,f31]=cont(@neimarksackermap,x2,v2,opt);

first point found

tangent vector to first point found

label = R3 , x = ( 36.106260 2.711598 0.582753 0.898279 -0.500000 )

Normal form coefficient of R3 : Re(c_1) = -4.750337e-001

label = R2 , x = ( 49.265517 2.192296 0.835266 1.185576 -1.000000 )

Normal form coefficient of R2 : [c , d] = -5.112120e-004, -1.100939e-003

elapsed time = 13.5 secs

npoints curve = 400

first point found

tangent vector to first point found

label = R4 , x = ( 16.751436 3.820439 0.354409 0.476980 -0.000000 )

Normal form coefficient of R4 : A = -3.921588e+000 + -2.056128e+000 i

elapsed time = 8.6 secs

npoints curve = 150

This test is run by typing CodStock15 in the command window.
The R3 point has the same characteristics (i.e. normal form coefficients with the same sign)
as that in Run 3. The R4 point has the same characteristics (absolute value and sign of
real and imaginary part) as that in Run 9. By the results obtained in Run 15 there are
unstable 3-cycles and stable 4-cycles of fixed points near the R3 and R4 points, respectively.
We continue by computing the Neimark-Sacker curve forth and back where µ2 and β3 are the
free parameters, we call this Run 16:

>>> curve of NS <<<

first point found

tangent vector to first point found

label = R3 , x = ( 36.106260 2.711598 0.582753 0.898279 -0.500000 )

Normal form coefficient of R3 : Re(c_1) = -4.750337e-001

label = R2 , x = ( 49.265517 2.192296 0.835266 1.185576 -1.000000 )

Normal form coefficient of R2 : [c , d] = -5.112120e-004, -1.100939e-003

elapsed time = 13.5 secs

npoints curve = 400

first point found

tangent vector to first point found

label = R4 , x = ( 16.751436 3.820439 0.354409 0.476980 -0.000000 )

Normal form coefficient of R4 : A = -3.921588e+000 + -2.056128e+000 i

elapsed time = 8.7 secs

npoints curve = 150

This test is run by typing CodStock16 in the command window.
The R3 and R2 points have the same characteristics (i.e. normal form coefficients with

the same sign) as those in Run 3. The R4 point has the same characteristics (absolute value
and sign of real and imaginary part) as that in Run 9.
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Figure 23: Branch of fixed points of the second iterate and of the original map in (F, x1)
space.

10.4 Heteroclinic and homoclinic connections and tangencies

The examples of heteroclinic and homoclinic connections and tangencies are collected in the
directory Testruns/Connections.

Examples of the continuation of heteroclinic connections are given in Hettestrun and
Hettesthenon. In Hettestrun we consider the generalized Hénon map (GHM)

F :

(
x1
x2

)
7→
(

x2
α− βx1 − x22 +Rx1x2 + Sx32

)
, (157)

which appears in numerous theoretical studies of homoclinic bifurcations. The code is the
following:

global hetds vhet shet

C=[0.46661702380495,0.51950188769804 ,0.48317182408537 ,

0.47311690109635 ,0.6123,0.841195, 1.22990435,0.6419816,0.1347307,

-0.14345697, -0.33379938281268,-0.38062126993587,-0.40424194997464,

-0.41621339121235,-0.42230324914752,-0.42861702380495;

0.46661702380495,0.37639405084666,

0.43915841488454, 0.45696220552142, 0.2067,-0.276064,

-1.3327006,-1.0930203,-0.7998431,-0.6233856,

-0.49516248970159,-0.46255049612568,-0.44591635361118,-

0.43743735402657,-0.43311132511221,-0.42861702380495];

p=[0.3;-1.057;-0.5;0];

ap=[2];

opt = contset;

[x0,v0]=init_Het_Het(@Ghmap,C, p, ap,2);

opt=contset(opt,’MaxNumpoints’,30);

opt=contset(opt,’Singularities’,1);
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opt=contset(opt,’Backward’,1);

opt = contset(opt,’AutDerivative’,0);

[xhet,vhet,shet,hhet,fhet]=cont(@heteroclinic,x0,[],opt);

cpl(xhet,vhet,shet,[35 16])

We note that the connection consists of 16 mesh points x1, . . . , x16 in 2D space. The
components of the initial points are input via the 2 × 16 matrix C where the first column
contains the components of the starting point and the last column contains the components
of the endpoint. The continuation vector has 35 components. The first 32 components
indicate the coordinates of the mesh points, column by column, the following 2 indicate YU
and YS in the Riccati equations [30], respectively and the last component is the value of the
control parameter β. Hence the Figure that is generated by the cpl command will represent
the second component of the 8th mesh point x8 as a function of the free parameter β. The
output of the run is as follows:

first point found

tangent vector to first point found

label = LP , x = ( 0.450332 0.450332 0.464235 0.427916

0.486124 0.391578 0.542144 0.295162

0.680067 0.035058 0.973257 -0.628904 1.192852

-1.382567 0.417078 -0.981090 -0.036976 -0.709741

-0.254175 -0.571162 -0.355358 -0.504248 -0.402531

-0.472468 -0.424600 -0.457463 -0.434950 -0.450395

-0.439810 -0.447070 -0.444117 -0.444117 -0.004376

-0.005822 -1.009322 )

label = LP , x = ( 0.471227 0.471227 0.487755

0.443527 0.517117 0.392578 0.597800 0.245433 0.806172

-0.186179 1.203153 -1.234826 0.805668 -1.173190

0.258458 -0.870745 -0.069068 -0.666717 -0.241453

-0.552315 -0.330135 -0.491249 -0.375727 -0.459196 -

0.399232 -0.442484 -0.411379 -0.433796 -0.417667

-0.429288 -0.424423 -0.424423 0.000144 0.000193 -1.070206 )

elapsed time = 12.9 secs

npoints curve = 30

During the continuation two limit points of the connection (heteroclinic tangencies) are
found, see Figure 24.

Hettesthenon is a test very similar to Hettestrun. There are more mesh points (48
instead of 16) and α is chosen as the free parameter instead of β. The graphical output in
Figure 25 presents the first component of each mesh point as a function of α.

Examples of the continuation of heteroclinic tangencies are given in HetTtestrun, HetTtestrun2
and HetTtestrun3D. In HetTtestrun the computations in Hettestrun are executed first, then
the first discovered tangency is continued forward and backward in two free parameters α and
β. A two-parameter picture of the computed branches is presented in Figure 26.
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Figure 24: A branch of heteroclinic connections in the Generalized Hénon map. The second
component of the 8th mesh point is presented as a function of the free parameter β.
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Figure 25: A branch of heteroclinic connections in the Generalized Hénon map. The first
component of the each mesh point is presented as a function of the free parameter α.
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Figure 26: A two-parameter picture of a branch of heteroclinic tangencies in the Generalized
Hénon map.

Hettestrun3D is a rather artificial 3D test. It uses a 3D extension of (157) with an
additional parameter G.

F :




x1
x2
x3


 7→




x2
α− βx1 − x22 +Rx1x2 + Sx32

Gx3


 , (158)

10.5 Computation of one-dimensional invariant manifolds

The test examples on computing invariant manifolds are in the subdirectory InvManifolds

of the directory Testruns.

10.5.1 Heteroclinic connections in 2D space

We consider again the generalized Hénon map (157). In the first run we compute the stable
manifold in a saddle fixed point x1, the unstable manifold in another saddle fixed point x0,
and the intersection points of the two manifolds. The run is the following:

global opt

opt=contset;

x0=[ .4666170238; .4666170238];

x1=[-.4286170238; -.4286170238];

p0=[0.3,-1.057,-0.5,0];

optM=init_FPm_1DMan(@Ghmap,x1,p0,2);

% Smanifold

optM.function=’Smanifold’;

optM.distanceInit=-optM.distanceInit;

optM.eps=1e-10;

optM.nmax=15000;
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optM.deltaMax=0.001;

optM.deltak=1e-5;

optM.deltaAlphaMax=0.001;

optM.deltaAlphaLowMax=0.0001;

[a,l]=growman(optM);

% Umanifold

optM=init_FPm_1DMan(@Ghmap,x0,p0,2);

optM.function=’Umanifold’;

optM.distanceInit=1e-5;

optM.eps=1e-10;

optM.nmax=15000;

optM.deltaMax=0.001;

optM.deltak=1e-5;

optM.deltaAlphaMax=0.001;

optM.deltaAlphaLowMax=0.0001;

[b,l]=growman(optM);

% plot

figure

ylim([-2,2]);

xlim([-2,2]);

line(x0(1),x0(2),’marker’,’.’,’color’,’k’)

line(x1(1),x1(2),’marker’,’.’,’color’,’k’)

line(a(1,:),a(2,:),’color’,’b’)

line(b(1,:),b(2,:),’color’,’r’)

% heteroclinic orbit

%het=findintersections(b,a,2);

het=Projectie2(b,a,2);

c=het{1};

d=het{2};

line(c(1,:),c(2,:),’color’,’g’,’marker’,’.’)

line(d(1,:),d(2,:),’color’,’m’,’marker’,’.’)

which is executed by typing Manifolds2DHet in the command line. We note the following:

• x0, x1 are two saddle fixed points of (157) for the parameter values in p0.

• The call to init FPm 1DMan initializes a computation of invariant manifolds to start
from x1 and sets default values in the structure optM. The last entry (“2”) sets the
number of iterations, not the dimension of the phase space.

• The next 8 lines specify that a stable manifold is to be grown and sets several user-
chosen values for the fields of the structure optM. optM will later be used as the opt man

structure in SManifold.

• The command

[a,l]=growman(optM);
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computes the manifold. The output a is a 2× 15000 array whose columns contain the
coordinates of 15000 points on the stable manifold of x1. The scalar l is the arclength
of the computed part of the stable manifold.

• Similarly, the command

[b,l]=growman(optM);

delivers a 2× 15000 array b whose columns contain the coordinates of 15000 points on
the unstable manifold of x0. The scalar l is the arclength of the computed part of the
unstable manifold.

• The output of the command

het=Projectie2(b,a,2);

is a cell array whose cells contain the orbits discovered among the intersection points
of the two computed manifolds b and a. We note that the unstable manifold is the
first input argument, the stable manifold is second. The last argument (2) indicates the
iteration number. The output can be inspected in the command window as

>> het

het =

2 x 1 cell array

[2 x 7 double]

[2 x 6 double]

So two heteroclinic connections of the second iterate of the map are found, consisting
of 7 and 6 points, respectively.

• In the next lines, the two connecting orbits are put into the MatContM Figure by
green and magenta lines, respectively.

The output is the following:

>> Manifolds2DHet

accepted points: 1000; arc length: 0.63119

accepted points: 2000; arc length: 1.2712

...

accepted points: 15000; arc length: 9.611

Joint Nmax: 15000. Manifold length: 9.611

Elapsed time is 11.505337 seconds.

accepted points: 1000; arc length: 0.6465

accepted points: 2000; arc length: 1.2864

...

109



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 27: Computation of heteroclinic connections in the Generalized Hénon map.

accepted points: 15000; arc length: 9.6701

Joint Nmax: 15000. Manifold length: 9.6701

Elapsed time is 3.816045 seconds.

Elapsed time is 2.105612 seconds.

Elapsed time is 2.108011 seconds.

>>

After each manifold computation the number of computed points and the arclength of the
manifold are given, as well as the elapsed time. At the end of the output the elapsed time
span in the intersection algorithm Projectie2.m, i.e. the time spent to find all intersection
points plus the time spent to compute the connections, is given. The graphical output is seen
in Figure 27.

10.5.2 A homoclinic connection in 2D space and its continuation

We consider again the generalized Hénon map (157). In the next run we compute the stable
and unstable manifolds in a saddle fixed point x0, the intersection points of the two manifolds
and the orbits that connect these points. We then continue an (approximation to a) homoclinic
orbit under variation of a parameter and discover two homoclinic tangencies. The run is the
following:

clear all

global opt

opt=contset;

x0=[-1.621146385;-1.621146385];

p0=[-0.4,1.03,-0.1,0];

optM=init_FPm_1DMan(@Ghmap,x0,p0,1);

% Umanifold

optM.function=’Umanifold’;

optM.distanceInit = 1e-5;
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optM.distanceInit=-optM.distanceInit;

optM.eps=1e-10;

optM.nmax=20000;

optM.deltaMax=0.011;

optM.deltak=1e-5;

optM.deltaAlphaMax=0.001;

optM.deltaAlphaLowMax=0.0001;

[a,l]=growman(optM);

% Smanifold

optM.function=’Smanifold’;

% n.b. some parameters are used only here, ex: NtwMax

[b,l]=growman(optM);

% plot

figure

ylim([-2,1]);

xlim([-2,1]);

line(x0(1),x0(2),’marker’,’.’,’color’,’k’)

line(a(1,:),a(2,:),’color’,’r’)

line(b(1,:),b(2,:),’color’,’k’)

% homocline curves

%hom=findintersections(a,b,1);

hom=Projectie2(a,b,1);

% plot some homoclinic curves

% the primaries (the 2 longest curves)

c=hom{4};

d=hom{end};

line(c(1,:),c(2,:),’color’,’g’,’marker’,’.’)

line(d(1,:),d(2,:),’color’,’m’,’marker’,’.’)

% some secondaries

%e=hom{12};

%f=hom{13};

%g=hom{14};

%h=hom{15};

%line(e(1,:),e(2,:),’color’,’g’,’marker’,’.’)

%line(f(1,:),f(2,:),’color’,’m’,’marker’,’.’)

%line(g(1,:),g(2,:),’color’,’c’,’marker’,’.’)

%line(h(1,:),h(2,:),’color’,’y’,’marker’,’.’)

%% continuation of the primary curve

opt=contset;

opt=contset(opt,’MaxNumPoints’,100);

opt=contset(opt,’Singularities’,1);

opt=contset(opt,’MinStepsize’,1e-8);

[x0hom,v0hom]=init_Hom_Hom(@Ghmap,[x0,c],p0,2,1);

[xhomc1,vhomc1,shomc1,hhomc1,fhomc1]=cont(@homoclinic,x0hom,[],opt);

opt=contset(opt,’Backward’,1);

[xhomc2,vhomc2,shomc2,hhomc2,fhomc2]=cont(@homoclinic,x0hom,[],opt);
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figure

cpl(xhomc1,vhomc1,shomc1,[size(xhomc1,1),14])

cpl(xhomc2,vhomc2,shomc2,[size(xhomc2,1),14])

figure

cpl(xhomc1,vhomc1,shomc1,[size(xhomc1,1),1])

cpl(xhomc2,vhomc2,shomc2,[size(xhomc2,1),1])

and the code is executed by typing Manifolds2DHom in the command line. Comparing this
code to the one in §10.5.1 we note the following:

• The iteration number is 1 (hence the last argument in the call to intersections.m is
1.

• hom is a cell array and each cell is a matrix whose columns constitute an orbit of the
map. The largest ones are c=hom{4} with 12 columns and d=hom{end} with 13 columns.

• c is used to start a continuation of homoclinic connections under variation of the second
system parameter, i.e. β.

• The continuation vector has 29 components, namely 26 = 2× 13 for the coordinates of
the points of the connection (starting with the saddle fixed point), 2 for the auxiliary
variables in the Riccati equations and finally the parameter β.

The output of the run is as follows:

>> Manifolds2DHom

accepted points: 1000; arc length: 9.5926

accepted points: 2000; arc length: 19.7458

...

accepted points: 20000; arc length: 207.2231

Joint Nmax: 20000. Manifold length: 207.2231

Elapsed time is 4.821864 seconds.

accepted points: 1000; arc length: 9.6978

accepted points: 2000; arc length: 19.9522

...

accepted points: 20000; arc length: 205.7572

Joint Nmax: 20000. Manifold length: 205.7572

Elapsed time is 12.191296 seconds.

Elapsed time is 4.131338 seconds.

Elapsed time is 4.143104 seconds.

first point found

tangent vector to first point found

label = LP , x = ( -1.586184 -1.586184 -1.577441 -1.559458 -1.559458 -1.505227

-1.505227 -1.345694 -1.345694 -0.912769 -0.912769 -0.014347 -0.014347 0.508497

0.508497 -0.643536 -0.643536 -1.288377 -1.288377 -1.501234 -1.501234 -1.562632

-1.562632 -1.579706 -1.579706 -1.584408 0.001557 0.000713 0.996980 )

label = LP , x = ( -1.704645 -1.704645 -1.693470 ...

label = LP , x = ( -1.586178 -1.586178 -1.559718 ...

label = LP , x = ( -1.704628 -1.704628 -1.668280 ...
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Figure 28: Computation of homoclinic connections in the Generalized Hénon map.

label = LP , x = ( -1.585974 -1.585974 -1.507525 ...

label = LP , x = ( -1.704037 -1.704037 -1.589365 ... )

elapsed time = 1.3 secs

npoints curve = 100

first point found

tangent vector to first point found

label = LP , x = ( -1.704646 -1.704646 -1.701241 -1.693428 -1.693428 -1.667816

-1.667816 -1.584737 -1.584737 -1.324817 -1.324817 -0.606406 -0.606406 0.622168

0.622168 -0.076398 -0.076398 -1.091542 -1.091542 -1.515021 -1.515021 -1.649305

-1.649305 -1.688765 -1.688765 -1.700118 -0.000016 -0.000008 1.109763 )

label = LP , x = ( -1.586185 -1.586185 -1.583315 ...

label = LP , x = ( -1.704649 -1.704649 -1.703615 ...

label = LP , x = ( -1.586195 -1.586195 -1.585255 ...

label = LP , x = ( -1.704783 -1.704783 -1.704469 ...

label = LP , x = ( -1.586555 -1.586555 -1.586248 ... )

elapsed time = 0.8 secs

npoints curve = 100

The code also generates three figures. In Figure 28 the two manifolds and two homoclinic
connections (c and d) are shown. In Figure 29 the continuation of the homoclinic connection is
illustrated by plotting the second coordinate of the seventh point versus the free parameter β.
Apparently a large number of limit points (i.e. homoclinic tangencies) is discovered. However,
by plotting in Figure 30 the first coordinate of the saddle fixed point versus the free parameter
we see that there are really only two tangencies and the homoclinic connection moves forward
and backward between the two. The illusion in Figure 29 is created by the fact that as a
side-effect of the continuation the orbit points shift along the manifolds. (the choice of the
second coordinate of the seventh point is arbitrary)
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Figure 29: Continuation of a homoclinic connection: second coordinate of seventh point versus
parameter β.
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Figure 30: Continuation of a homoclinic connection: first coordinate of saddle point versus
parameter β.

10.5.3 The unstable manifold of the 3D Euler-Lorenz map

The Euler-Lorenz map is a 3D map with parameters σ, r, b, h given by

F :




x
y
z


 7→




x+ hσ(y − x)
y + h(rx− y − xz)
z + h(xy − bz))


 . (159)

Formally, this map arises when numerically solving the Lorenz equations (with parameters
σ, r, b) by using the forward Euler method with steplength h. The origin is always a fixed
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point of the map and we will use standard parameter values for which the origin has a one-
dimensional unstable manifold and a two-dimensional stable manifold. We consider the run:

%% Euler-Lorenz test Umanifold

clear all

%

global opt

opt=contset;

x0=[0,0,0]’;

sig=10;r=8.37;b=8/3;h=0.1;

p0=[sig,r,b,h];

optM=init_FPm_1DMan(@EulerLorenz,x0,p0,1);

optM.NwtMax=50;

optM.nmax=60000;

optM.deltaMax=0.11;

optM.Arc=500;

optM.distanceInit=1e-4;

optM.searchListLength=100;

[M,l]=growman(optM);

% plot

figure

plot3(M(1,:),M(2,:),M(3,:))

This run is executed by typing Manifold3DU in the command line. We note that it is not
needed to specify that the unstable manifold is to be computed.

The output of the run is

>> Manifold3DU

Default chosen manifold: UManifold, with initial direction: -0.56258 -0.82674

To change those values redefine "function" and "direction"

accepted points: 1000; arc length: 55.854

accepted points: 2000; arc length: 98.9021

accepted points: 3000; arc length: 122.8654

WARNING: Recoverable ConvErr:NoConvergence

Warning: Recoverable ConvErr:NoConvergence

> In warnconsole (line 3)

In UManifold>findSegment (line 158)

In UManifold (line 38)

In growman (line 36)

In Manifold3DU (line 19)

accepted points: 4000; arc length: 159.0229

...

accepted points: 10000; arc length: 467.579

Joint maximum searched manifold length: 500.0451 in: 10626 points.

Elapsed time is 2.382000 seconds.
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Figure 31: The unstable manifold of the Euler-Lorenz map.

The warning about a recoverable convergence error does not mean that the algorithm
failed. Still, a large number of such warning is an indication that there might be problems;
preferably the computations should be redone with tighter convergence bounds. The picture
of the unstable manifold is given in Figure 31.
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[6] Brauer, F., and Castillo-Chávez, C., Mathematical Models in Population Biology and
Epidemiology, Springer-Verlag (2000).
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[29] T. Hüls, Bifurcation of connecting orbits with one nonhyperbolic fixed point for maps,
SIADS, Vol. 4, No. 4, 2005, 985-1007.

[30] R. Khoshsiar Ghaziani, W. Govaerts, Yu. A. Kuznetsov, and H.G. E Meijer, Numerical
continuation of connecting orbits of maps in Matlab, J. Diff. Eqns. Appl. 15:8 (2009)
849-875. DOI: 10.1080/10236190802357677.

[31] B. Krauskopf, and H. M. Osinga, Growing 1D and quasi 2D unstable manifolds of maps,
J. Comp. Physics 146 (1998) 404-419.

[32] B. Krauskopf, and H. M. Osinga, Growing unstable manifolds of planar maps, preprint,
1997.

[33] Kuznetsov, Yu.A., Elements of Applied Bifurcation Theory, 3rd edition, Springer-Verlag,
New York, (2004).

[34] Yu. A. Kuznetsov and V.V. Levitin, content: Integrated Environment for analysis of
dynamical systems. CWI, Amsterdam (1997): ftp://ftp.cwi.nl/pub/CONTENT

[35] Yu. A. Kuznetsov and H.G.E. Meijer, Numerical normal forms for codim 2 bifurcations
of maps with at most two critical eigenvalues, SISC 26(6), 1932-1954, (2005).

[36] Yu. A. Kuznetsov and H.G.E. Meijer, Remarks on interacting Neimark-Sacker bifurca-
tions, J. Diff. Eqns and Appl. 12(10) 2006, pp. 1009-1035.

[37] Leslie, P.H., and Gower, J.C., The properties of a stochastic model for two competing
species, Biometrika, 45, pp.316-330, (1958).

[38] Leslie, P.H., Park, T., and Mertz, D.B., The effect of varying the initial numbers on the
outcome of competition between two Tribolium species, J. of Animal Ecology 37,pp.9-23,
(1968).

118



[39] Linehan, J. E., Gregpy, R.S., and Schneider, D.C., Predation risk of age-0 cod(Gadus)
relative to depth and substrate in coastal water. J. Exp. Mar. Biol. Ecol. 263. 25-44,
(2001).

[40] matlab, The Mathworks Inc., http://www.mathworks.com

[41] Mestrom, W., Continuation of limit cycles in matlab, Master Thesis, Mathematical
Institute, Utrecht University, The Netherlands, (2002).

[42] Murray, J.D., Mathematical Biology, 2nd corrected edition, Berlin, Heidelberg, New
York: Springer, (1993).

[43] Myers, R.A., Blanchard, W., and Thompson, K. R., Summary of North Atlantic fish
recruitment 1942-1987. Can.Tech.Rep.Fish, (1990). & Aquat.Sci.1743.

[44] Ju. I. Neimark, Motions close to doubly-asymptotic motion, Soviet Math. Dokl., 8 (1967)
228-231.

[45] 124. N. Neirynck, B. Al-Hdaibat, W. Govaerts, Yu. A. Kuznetsov and H.G.E. Meijer,
Using MatContM in the study of a nonlinear map in economics.
Edited by: Gelfreich, V; FournierPrunaret, D; LopezRuiz, R; et al.
Conference: 5th International Workshop on Nonlinear Maps and their Applications
(NOMA) Location: Univ Coll Dublin, Sch Elect and Elect Engn, Dublin, IRELAND
Date: JUN 15-16, 2015.
NOMA15 INTERNATIONAL WORKSHOP ON NONLINEAR MAPS AND APPLI-
CATIONS
Book Series: Journal of Physics Conference Series Volume: 692 Article Number: 012013
Published: 2016

[46] N. Neirynck, W. Govaerts, Yu.A. Kuznetsov and H.G.E. Meijer, Numerical bifurcation
analysis of homoclinic orbits embedded in one-dimensional manifolds of maps, to appear
in ACM Transactions on Mathematical Software.

[47] Ju. I. Neimark, On some cases of periodic motions depending on parameters, Dokl. Akad.
Nauk SSSR., 129 (1959) 736-739. In Russian.

[48] S. Newhouse, J. Palis, and F. Takens, Bifurcations and stability of families of diffeomor-
phisms, Inst. Hautes Etudes Sci. Publ. Math., 57 (1983) 5-71.

[49] Ottersen, G., Environmental impact on variability in recruitment, larval growth and
distribution of Arcto-Norwegian cod, Dr Scient thesis, Geophysical Institute, University
of Bergen, (1996).

[50] J. Palis, and W. De Melo, Geometric Theory of Dynamical Systems, Springer-Verlag,
1982.

[51] J. Palis, and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic
Bifurcations: Fractal Dimensions and Infinitely Many Attractors, Cambridge University
Press, Cambridge, 1993.

[52] Polis, G. A., The evolution and dynamics of intraspecific predation, Ann. Rev. Ecol.Sys.
12, 225-251, (1981).

119



[53] Riet, A., A Continuation Toolbox in matlab, Master Thesis, Mathematical Institute,
Utrecht University, The Netherlands, (2000).

[54] R. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differ-
ential equations, Report IMM-NYU 333, New York University, 1964.

[55] R. Sacker, A new approach to the perturbation theory of invariant surfaces, Comm. Pure
Appl. Math., 18 (1965), 717–732.
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