Bibliography

Coullet, P. & Eckmann, J.-P. [1980], Iterated Maps on the Interval as a Dynamical System, Birkhauser, Boston, MA.

Ilyashenko, Yu. & Li, Weigu. [1999], Nonlocal Bifurcations, American Mathematical Society, Providence, RI.

Kielhöfer, H. [2004], *Bifurcation Theory: An Introduction with Applications to PDEs*, Springer-Verlag, New York.

Index

□, 9
◇, 9
○, 9
⊕, 9
→, 261
C^n, 9
R^n, 9

adjacency matrix, 20
Arnold diffusion, 170
attractor, 26
 Lorenz, 304
 geometric, 304
 strange, 26
Bautin example, 231
bifurcation, 174
 Andronov-Hopf, 186
 diagram, 175
fold, 34, 177, 201
 in a population model, 207, 230
 in Hénon map, 232
 in Ricker map, 212
 of limit cycles, 257
 subcritical, 208
 supercritical, 208
 in CSTR, 186
Hopf, 186
 examples of, 230
 in a predator-prey model, 231
 in Brusselator, 201
 in control, 258
 in Lorenz system, 258, 300
 subcritical, 187, 304
 supercritical, 187
 limit point, 177, 201
 local, 173
 Neimark-Sacker, 202
 in adaptive control, 259
 in delayed logistic map, 228
 of limit cycle, 257
 supercritical, 215
 period-doubling, 202, 296
 of limit cycles, 257
 pitchfork, 182
 in Lorenz system, 258
 saddle-node, 253
 torus, 257
 transcritical, 182
 in CSTR, 186
 Cantor set, 271
 capacity
 carrying, 129, 230
 digestion/handling, 132
 center, 57
 characteristic polynomial, 38
 Classical Mechanics, 143
 codimension, 174
 condition
 bifurcation, 174
 cone, 281
 genericity, 173, 176
 conjugacy
 smooth, 27
 topological, 27, 283, 305
 constant
 Feigenbaum, 213, 273
 Lipschitz, 94
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>of motion</td>
<td>128</td>
</tr>
<tr>
<td>continuous-flow stirred tank reactor</td>
<td>183</td>
</tr>
<tr>
<td>contraction</td>
<td></td>
</tr>
<tr>
<td>linear</td>
<td>46, 51</td>
</tr>
<tr>
<td>Contraction Mapping Principle</td>
<td>95</td>
</tr>
<tr>
<td>Criterion</td>
<td></td>
</tr>
<tr>
<td>Bendixson</td>
<td>124</td>
</tr>
<tr>
<td>Dulac</td>
<td>125</td>
</tr>
<tr>
<td>Routh-Hurwitz</td>
<td>111</td>
</tr>
<tr>
<td>cross-section</td>
<td>87, 301</td>
</tr>
<tr>
<td>curve</td>
<td></td>
</tr>
<tr>
<td>horizontal</td>
<td>276</td>
</tr>
<tr>
<td>vertical</td>
<td>277</td>
</tr>
<tr>
<td>cycle</td>
<td>24</td>
</tr>
<tr>
<td>exponentially orbitally stable</td>
<td>90</td>
</tr>
<tr>
<td>hyperbolic</td>
<td>109</td>
</tr>
<tr>
<td>saddle</td>
<td>109</td>
</tr>
<tr>
<td>simple</td>
<td>86</td>
</tr>
<tr>
<td>slow-fast</td>
<td>160</td>
</tr>
<tr>
<td>decomposition</td>
<td></td>
</tr>
<tr>
<td>Jordan</td>
<td>71</td>
</tr>
<tr>
<td>orthogonal</td>
<td>185</td>
</tr>
<tr>
<td>partial fraction</td>
<td>48</td>
</tr>
<tr>
<td>determinant</td>
<td>9</td>
</tr>
<tr>
<td>diameter</td>
<td>278</td>
</tr>
<tr>
<td>diffeomorphism</td>
<td>26</td>
</tr>
<tr>
<td>direct sum</td>
<td>39</td>
</tr>
<tr>
<td>distance</td>
<td>16</td>
</tr>
<tr>
<td>domain</td>
<td></td>
</tr>
<tr>
<td>connected</td>
<td>124</td>
</tr>
<tr>
<td>doubly-connected</td>
<td>125</td>
</tr>
<tr>
<td>fundamental</td>
<td>63, 64, 203–205, 209</td>
</tr>
<tr>
<td>simply connected</td>
<td>124</td>
</tr>
<tr>
<td>dynamical system</td>
<td>18</td>
</tr>
<tr>
<td>chaotic</td>
<td>273</td>
</tr>
<tr>
<td>ecological modelling</td>
<td>126</td>
</tr>
<tr>
<td>eigenspace</td>
<td></td>
</tr>
<tr>
<td>generalized</td>
<td></td>
</tr>
<tr>
<td>for complex eigenvalues</td>
<td>41</td>
</tr>
<tr>
<td>stable</td>
<td>47</td>
</tr>
<tr>
<td>unstable</td>
<td>47</td>
</tr>
<tr>
<td>eigenvalue</td>
<td>37</td>
</tr>
<tr>
<td>critical</td>
<td>173, 233</td>
</tr>
<tr>
<td>determining</td>
<td>286</td>
</tr>
<tr>
<td>multiple</td>
<td>40</td>
</tr>
<tr>
<td>simple</td>
<td>39</td>
</tr>
<tr>
<td>eigenvector</td>
<td>38</td>
</tr>
<tr>
<td>generalized</td>
<td>40</td>
</tr>
<tr>
<td>energy</td>
<td>144, 165</td>
</tr>
<tr>
<td>kinetic</td>
<td>147, 166</td>
</tr>
<tr>
<td>potential</td>
<td>147, 166</td>
</tr>
<tr>
<td>Kepler</td>
<td>163</td>
</tr>
<tr>
<td>equation</td>
<td></td>
</tr>
<tr>
<td>branching</td>
<td>183</td>
</tr>
<tr>
<td>Brusselator</td>
<td>199</td>
</tr>
<tr>
<td>characteristic</td>
<td>38</td>
</tr>
<tr>
<td>logistic</td>
<td>129</td>
</tr>
<tr>
<td>van der Pol</td>
<td>153</td>
</tr>
<tr>
<td>equilibrium</td>
<td>24</td>
</tr>
<tr>
<td>hyperbolic</td>
<td>108</td>
</tr>
<tr>
<td>internal</td>
<td>127</td>
</tr>
<tr>
<td>nontrivial</td>
<td>127</td>
</tr>
<tr>
<td>positive</td>
<td>127</td>
</tr>
<tr>
<td>saddle</td>
<td>108</td>
</tr>
<tr>
<td>saddle-focus</td>
<td>285</td>
</tr>
<tr>
<td>saddle-node</td>
<td>253</td>
</tr>
<tr>
<td>saddle-saddle</td>
<td>33</td>
</tr>
<tr>
<td>simple</td>
<td>146</td>
</tr>
<tr>
<td>equivalence</td>
<td></td>
</tr>
<tr>
<td>local</td>
<td>28</td>
</tr>
<tr>
<td>orbital</td>
<td>139, 287</td>
</tr>
<tr>
<td>smooth</td>
<td>26</td>
</tr>
<tr>
<td>topological</td>
<td>26, 305</td>
</tr>
<tr>
<td>of complex ODEs</td>
<td>188</td>
</tr>
<tr>
<td>of families</td>
<td>175</td>
</tr>
<tr>
<td>evolution</td>
<td>16</td>
</tr>
<tr>
<td>Feichtinger model</td>
<td>231</td>
</tr>
<tr>
<td>Feigenbaum</td>
<td></td>
</tr>
<tr>
<td>cascade</td>
<td>213</td>
</tr>
<tr>
<td>constant</td>
<td>273</td>
</tr>
<tr>
<td>universality</td>
<td>294</td>
</tr>
<tr>
<td>Fibonacci</td>
<td></td>
</tr>
<tr>
<td>law</td>
<td>30</td>
</tr>
<tr>
<td>numbers</td>
<td>70</td>
</tr>
<tr>
<td>first Lyapunov coefficient</td>
<td>197</td>
</tr>
<tr>
<td>FitzHugh-Nagumo model</td>
<td>296</td>
</tr>
<tr>
<td>fixed point</td>
<td>24</td>
</tr>
<tr>
<td>hyperbolic</td>
<td>100</td>
</tr>
</tbody>
</table>
saddle, 100
 infinite-dimensional, 275
Floquet multiplier, 86
flow, 18
 gradient, 146
 Hamiltonian, 166
focus, 56
 stable, 57
 unstable, 57
formula
 Cauchy integral, 44
Fredholm
 decomposition, 47
 solvability condition, 246
function
 Hamiltonian, 144
 multilinear, 245
generator, 19
 infinitesimal, 21
 of translation, 30
Green Theorem, 124
Grobman-Hartman Theorem
 for maps, 100
 global, 99
 for ODEs, 108
 global, 103
Gronwall Lemma, 81
group property, 18
Hénon map, 232, 295
Hadamard Graph Transform, 219, 235
Hamilton-Cayley Theorem, 38
Hamiltonian, 144, 165
 system, 144
Heisenberg equation, 70
heteroclinic structure, 170
homeomorphism, 26, 279, 288
homoclinic explosion, 303, 305
homoclinic structure, 103, 284
 of cycle, 170
Implicit Function Theorem, 88, 119, 153, 176, 179, 181, 183, 186, 190, 192, 209, 210, 223
Intermediate Value Theorem, 262, 283
invariant curve
 closed, 215
 stable, 222, 230
invariant set, 25
 asymptotically stable, 26
 globally, 26
 stable, 26
 strange, 26
invariant torus, 169, 257
Inverse Function Theorem, 77, 181, 198, 206
 Lipschitz, 96
involution, 168
isoclines, 126
Jacobi identity, 168
Jordan
 block, 40
 chain, 40
 length of, 40
 curve, 117
 equivalent, 125
 decomposition, 71
Jury criteria, 81
Law of Mass Action, 126
Leibnitz rule, 168
Lemeray diagram, 23
Li–Yorke Theorem, 262
Lie algebra, 168
Lienard system, 160
limit cycle, 121
 stable, 285
 linearization, 287
Liouville
 formula, 86
 Theorem, 166
Liouville-Arnold Theorem, 168
Lorenz
 attractor, 304
 system, 112, 258, 300, 305
Lorenz system, 294
Lotka-Volterra system, 126
Lyapunov
 function, 109, 132
 Theorem, 84
Lyapunov-Schmidt reduction, 182

manifold
 center, 240
 parameter-dependent, 251
 center–unstable, 234
 local, 239
 equilibrium, 178
 invariant, 286, 296, 300, 304
 slow, 298

map
 t-shift, 18
 adaptive control, 259
 correspondence, 88
 delayed logistic, 228
 delayed logistic, 110
 horseshoe, 278, 282
 linear
 planar, 42
 linear hyperbolic, 47
 in Banach space, 52
 Lipschitz, 94
 logistic, 265, 266
 saw-tooth, 303, 305
 surjective, 26
 tent, 266

Markov graph, 262

matrix
 adjoint, 246
 monodromy, 86
 nilpotent, 71
 semisimple, 71
 transpose, 9

matrix product
 bialternate, 81

method of unknown coefficients, 194

metric, 16
 equivalent, 30

minimal period, 86

model
 chemostat, 156
 feedback control, 258
 Lotka-Volterra, 126, 132, 144, 164
 generalized, 132
 perturbed, 149
 of infectious diseases, 157
 population, 207, 212, 228, 230
 prey-predator, 155
 rock-scissor-paper, 162
 Rosenzweig-MacArthur, 135

monodromy matrix, 86

multiplier, 86
 nontrivial, 86
 trivial, 86

nerve impulse, 296

Newton Law, 147

node, 56
 stable, 56
 unstable, 56

norm, 16
 equivalent, 45
 Euclidean, 9
 Lyapunov, 60
 operator, 43
 supremum, 18

normal coordinates, 93

normal form, 173
 for flip bifurcation, 207
 on the critical center manifold, 249
 for fold bifurcation, 178, 202
 on the critical center manifold, 246, 249
 for Hopf bifurcation, 186
 on the critical center manifold, 247
 for Neimark-Sacker bifurcation, 214
 on the critical center manifold, 250
 for pitchfork bifurcation, 182
 for transcritical bifurcation, 182
 on a center manifold, 245
 topological, 176

null-space, 245

operator
 doubling, 274
 evolution, 18

orbit, 22
 connecting, 25
 heteroclinic, 25
 homoclinic, 25, 285, 289
in Lorenz system, 301
periodic, 24, 281, 302, 304
in planar ODE, 119
isolated, 125
on closed invariant curve, 222
quasi-periodic, 168
ordering
lexicographic, 305
Sharkovsky, 265
ordinary differential equation, 22
linear, 52
hyperbolic, 60
orthogonal complement, 246
oscillator
Duffing’s, 148
harmonic, 148, 154
nonlinear, 110
van der Pol, 158, 230
part
imaginary, 9
real, 9
pendulum
elastic, 169
ideal, 148
phase portrait, 24
of a complex system, 188
of planar linear ODEs, 54
Poincaré
map, 88
for Hopf bifurcation, 189
for Lorenz system, 301
near homoclinic orbit, 290
Recurrence Theorem, 167
Poincaré map, 34
Poincaré-Bendixson Theorem, 120
point
ω-limit, 113
bifurcation, 174
equilibrium, 24
fixed, 24
turning, 177
Poisson bracket, 165, 168
predator, 126
prey, 126
product
matrix, 37
scalar, 9, 16
Quantum Mechanics, 70
Rössler system, 29
rate
growth, 230
harvest, 230
Rayleigh equation, 230
recurrence, 207, 212, 228
Reduction Principle, 240, 244
repellor, 26
resolvent, 44
resonant term, 196, 226
response
functional, 132
Holling Type II, 132
numerical, 132
Ricker map, 29, 212, 273
saddle, 55
standard, 177, 245
saddle quantity, 285, 296
saddle-focus, 285, 288, 294, 296, 298
Schwarzian derivative, 295
segment
cone, 78
line, 283
semiflow, 18
sequence, 279
kneading, 304
symbolic, 302
set
ω-limit, 113
compact, 280
connected, 74
invariant, 25, 222, 283, 298
closed, 281
stable, 102
unstable, 102
level, 145
Sharkovsky Theorem, 262, 265
shift dynamics, 20
shift map, 267
Shilnikov saddle-focus, 285
Shoshitaishvilly Theorem, 252
singularity, 177, 201
 fold, 178
Smale Horseshoe, 279, 285, 291, 294, 295
Smale horseshoe map
 and a homoclinic structure, 284
space
 Banach, 16
 metric, 16
 phase, 15
 state, 15
 complex, 16
 infinite-dimensional, 16
spectral
 bound, 81
 projector, 47
 resolvent formula, 51
 radius, 43, 58
spectrum, 38
stable manifold
 local, 102
state, 15
 steady, 24
strip
 horizontal, 278
 vertical, 278
subshift dynamics, 20
symbolic dynamics, 20
 one-sided, 266
system
 autonomous, 17
 conservative, 163
 continuous, 17
 deterministic, 16
 discrete-time, 19
 dynamical, 18
 first-order homogeneous, 158
 Hamiltonian, 144
 2m-dimensional, 165
 integrable, 165, 168
 invertible, 17
 linear
 planar, 54
 locally defined, 17
nonautonomous, 29
noninvertible, 17
parameters, 17
planar
 potential, 147
 slow-fast, 158
potential
 2m-dimensional, 166
 examples of, 148
reversible, 164
slow-fast, 298
smooth, 17
systems
 conjugate, 27
 diffeomorphic, 28
 equivalent, 26
 orbitally, 28
time, 15
 continuous, 15
 discrete, 15
 reparametrization, 190, 287
time-series, 22
trace, 9
transition matrix, 20
translation, 18
transverse segment, 117
trapping region, 89
travelling wave, 296
 periodic, 298
unit sphere, 9
unstable manifold
 local, 102
variation of constants, 81
vector field, 21
 divergence of, 146, 166
 Hamiltonian, 167