Numerical Bifurcation Analysis of Maps: Project

1 Model description

Consider the following discrete-time Hopfield model with delay for two coupled neurons

$$F(x,y):\begin{pmatrix} x_1\\ x_2\\ x_3\\ y_1\\ y_2\\ y_3 \end{pmatrix} \mapsto \begin{pmatrix} ax_1 + T_{11}S(b_1x_2) + T_{12}S(b_2y_3)\\ x_1\\ x_2\\ ay_1 + T_{22}S(b_2y_2) + T_{21}S(b_1x_3)\\ y_1\\ y_2 \end{pmatrix}$$
(1)

with passive decay a, gain factors $b_i > 0$ and coupling strength T_{ij} (i, j = 1, 2). The units activity x and y can be at steady state, excited (more positive) or suppressed (negative). The unit output is determined by a sigmoid function of the activity S(u) = 1/(1 + exp(-u)). Each unit has delayed self-excitation $(T_{ii} > 0)$ or self-inhibition $(T_{ii} < 0)$ and cross-communication that can be both excitatory $(T_{ij} > 0)$ or inhibitory $(T_{ij} < 0)$, with $i \neq j$.

2 A single neuron

Consider the case $T_{12} = 0, a = .25$ and study the (x_1, x_2) -subsystem with T_{11} and b_1 as free parameters. Here b_1 is positive and $T_{11} \in \mathbb{R}$. Give characteristic phase portraits for each region.

3 Interactions of neurons

Now we fix a = .25, $b_1 = b_2 = 4$ and $T_{11} = -T_{22} = -2$. Determine a numerical bifurcation diagram with free parameters (T_{12}, T_{21}) in the region $[-15, 15] \times [-15, 15]$.

- 1. Compute bifurcation curves corresponding to the first iterate.
- 2. Determine the pieces of the Neimark-Sacker bifurcations resulting in stable invariant curves. Use simulations to find phase-locking on the invariant curve. Use this as a starting point to compute several Arnol'd tongues.
- 3. Find bifurcation curves for the second iterate, in particular, compute the secondary Neimark-Sacker curve for the second iterate emerging from flip-NS points of the first iterate.
- 4. Determine the codim 2 bifurcations with only critical and stable multipliers. Describe the unfolding of these bifurcations based on the normal form coefficients.
- 5. Compute the secondary bifurcations near these bifurcations, excluding global ones. When bifurcations of tori are involved such as near double NS, flip-NS or fold-NS find an Arnol'd tongue that crosses this boundary.
- 6. Give characteristic phase portraits (in the (x_1, y_1) -plane around the codim 2 bifurcations of item 3.

Essay

Write an essay about your findings. Send it to meijerhgeewi.utwente.nl before April 24th.