Stability of Travelling Waves

Waves: Spectrum & Evans Function
Björn Sandstede

- Professor, Division of Applied Mathematics, Brown University, Providence
- Author of *Stability of travelling waves (2002)*
Last Lecture

Differential Equation

\[T(\lambda) \]

Spectrum

Waves

definition of waves

Dichotomies

Theorem 1
Differential Equation

\[U_t = A(\partial_x)U + N(U) \]
Differential Equation

\[U_t = A(\partial_x)U + N(U) \]

Wave solution

\[Q(x - ct) \]
Differential Equation

\[U_t = A(\partial_x)U + N(U) \]

Linearized Equation

Wave solution

\[Q(x - ct) \]

\[\xi = x - ct \]
Differential Equation
\[U_t = A(\partial_x)U + N(U) \]

Wave solution
\[Q(x - ct) \]

Linearized Equation
\[\xi = x - ct \]

Eigenvalue Equation
\[\frac{d}{d\xi} u = A(\xi; \lambda)u \]

U = e^{\lambda t}u
Differential Equation

\[U_t = A(\partial_x)U + N(U) \]

Wave solution

\[Q(x - ct) \]

Linearized Equation

\[U = e^{\lambda t}u \]

Eigenvalue Equation

\[\frac{d}{d\xi} u = A(\xi; \lambda)u \]

\[T(\lambda)u = \frac{du}{d\xi} - A(\cdot; \lambda)u \]
Differential Equation
\[U_t = A(\partial_x)U + N(U) \]

Wave solution
\[Q(x - ct) \]

Linearized Equation
\[U = e^{\lambda t}u \]

Eigenvalue Equation
\[\frac{d}{d\xi}u = A(\xi; \lambda)u \]

Spectrum
\[T(\lambda)u = \frac{du}{d\xi} - A(\cdot; \lambda)u \]
Theorem 1
Theorem 1

Spectrum

Resolvent
Theorem 1

Point Spectrum

Essential Spectrum

Resolvent
Theorem 1

Point Spectrum

Essential Spectrum

Resolvent

Exponentional dichotomies on \mathbb{R}^+ and on \mathbb{R}^- with $i_+(\lambda) = i_-(\lambda)$
Theorem 1

Exponentional dichotomies on \mathbb{R}^+ and on \mathbb{R}^- with $i_+(\lambda) = i_-(\lambda)$
Theorem 1

- Point Spectrum
- Essential Spectrum
- Resolvent
- Exponentional dichotomies on \mathbb{R}^+ and on \mathbb{R}^- with $i_+(\lambda) = i_-(\lambda)$
- Other function
- Exponentional dichotomy on \mathbb{R}
Point Spectrum

Essential Spectrum

Resolvent

Instable wave if totally in right half plane
Waves

Most common types

__________________________ Homogeneous rest states
Waves

Most common types

Homogeneous rest states

Front and back
Waves

Most common types

Homogeneous rest states

Front and back

Pulse
Waves

Most common types

- Homogeneous rest states
- Front and back
- Pulse
- Periodic wave train
Homogeneous rest states

The matrix $A(\xi; \lambda)$ is independent of position and has eigenvalues μ.
Homogeneous rest states

The matrix $A(\xi; \lambda)$ is independent of position and has eigenvalues μ.

Exponential dichotomy on \mathbb{R} exists iff $\text{Re} \, \mu \neq 0$.
Homogeneous rest states

The matrix $A(\xi; \lambda)$ is independent of position and has eigenvalues μ.

Exponential dichotomy on \mathbb{R} exists iff $\text{Re} \, \mu \neq 0$.

λ in resolvent set if $A(\xi; \lambda)$ is hyperbolic
Homogeneous rest states

The matrix $A(\xi; \lambda)$ is independent of position and has eigenvalues μ.

Exponential dichotomy on \mathbb{R} exists iff $\text{Re} \, \mu \neq 0$.

$$\lambda$$ in resolvent set if $A(\xi; \lambda)$ is hyperbolic

$$\lambda$$ in essential spectrum if there is a purely imaginary eigenvalue μ.
Homogeneous rest states

The matrix $A(\xi; \lambda)$ is independent of position and has eigenvalues μ.

Exponential dichotomy on \mathbb{R} exists iff $\Re \mu \neq 0$.

\[\lambda \] in resolvent set if $A(\xi; \lambda)$ is hyperbolic

\[\lambda \] in essential spectrum if there is a purely imaginary eigenvalue μ.

point spectrum is empty.
Fronts and Backs

The wave has two asymptotic rest states

\[\lim_{\xi \to \pm \infty} Q(\xi) = Q_\pm \in \mathbb{R}^N \]
Fronts and Backs

The wave has two asymptotic rest states

\[\lim_{\xi \to \pm \infty} Q(\xi) = Q_\pm \in \mathbb{R}^N \]

Assume that for \(\xi \) large there exist matrices of \(A(\xi; \lambda) \).

\[A_\pm(\lambda) = \tilde{A}_\pm + \lambda B_\pm \]
Fronts and Backs

The wave has two asymptotic rest states

\[\lim_{\xi \to \pm \infty} Q_\xi = Q_\pm \in \mathbb{R}^N \]

Assume that for \(\xi \) large there exist matrices of \(A_\xi(\lambda) \).

Stable and unstable dichotomies on \(\mathbb{R}^\pm \) are connected.
The wave has two asymptotic rest states
\[\lim_{\xi \to \pm \infty} Q(\xi) = Q_{\pm} \in \mathbb{R}^N. \]

Assume that for \(\xi \) large there exist matrices of \(A(\xi; \lambda) \).

Stable and unstable dichotomies on \(\mathbb{R}^\pm \) are connected.

\[A_{\pm}(\lambda) = \tilde{A}_{\pm} + \lambda B_{\pm} \]

in resolvent set iff \(A_{\pm}(\lambda) \) is hyperbolic, \(i_+(\lambda) = i_-(\lambda) \) and \(N(P_-(0; \lambda)) \oplus R(P_+(0; \lambda)) = \mathbb{C}^n \) hold.
Fronts and Backs

The wave has two asymptotic rest states

\[\lim_{\xi \to \pm \infty} Q(\xi) = Q_\pm \in \mathbb{R}^N \]

Assume that for large \(\xi \) there exist matrices \(A(\xi; \lambda) \).

Stable and unstable dichotomies on \(\mathbb{R}^\pm \) are connected.

\[A_\pm(\lambda) = \tilde{A}_\pm + \lambda B_\pm \]

\[\lambda \text{ in resolvent set iff } A_\pm(\lambda) \text{ is hyperbolic, } i_+(\lambda) = i_- (\lambda) \text{ and } \]

\[N(P-(0; \lambda)) \oplus R(P+(0; \lambda)) = \mathbb{C}^n \]

\[\lambda \text{ in point spectrum iff } A_\pm(\lambda) \text{ is hyperbolic, } i_+(\lambda) = i_- (\lambda) \text{ and } \]

\[N(P-(0; \lambda)) \cap R(P+(0; \lambda)) \neq \{0\} \text{ hold.} \]
The wave has two asymptotic rest states
\[\lim_{\xi \to \pm \infty} Q(\xi) = Q_\pm \in \mathbb{R}^N \]
Assume that for \(\xi \) large there exist matrices of \(A(\xi; \lambda) \).

Stable and unstable dichotomies on \(\mathbb{R}^\pm \) are connected.

\[\lambda \text{ in resolvent set iff } A_\pm(\lambda) \text{ is hyperbolic, } i_+(\lambda) = i_-(\lambda) \text{ and } \]
\[N(P_-(0; \lambda)) \oplus R(P_+(0; \lambda)) = \mathbb{C}^n \]
\[\lambda \text{ in point spectrum iff } A_\pm(\lambda) \text{ is hyperbolic, } i_+(\lambda) = i_-(\lambda) \text{ and } \]
\[N(P_-(0; \lambda)) \cap R(P_+(0; \lambda)) \neq \{0\} \]
\[\lambda \text{ in essential spectrum iff none of the above.} \]
Pulses

The wave is a front (or back) with $Q_\pm = Q_0$.
Pulses

The wave is a front (or back) with $Q_{\pm} = Q_0$. Thus $i_+(\lambda) = i_-(\lambda)$ always holds.
Pulses

The wave is a front (or back) with $Q_\pm = Q_0$. Thus $i_+ (\lambda) = i_- (\lambda)$ always holds.

λ in resolvent set iff $A_\pm (\lambda)$ is hyperbolic and $N(P_-(0; \lambda)) \oplus R(P_+(0; \lambda)) = \mathbb{C}^n$ holds.
Pulses

The wave is a front (or back) with $Q_\pm = Q_0$. Thus $i_+(\lambda) = i_-(\lambda)$ always holds.

\[\lambda\text{ in resolvent set iff } A_\pm(\lambda) \text{ is hyperbolic and } N(P_-(0; \lambda)) \oplus R(P_+(0; \lambda)) = \mathbb{C}^n \text{ holds.}\]

\[\lambda \text{ in point spectrum iff } A_\pm(\lambda) \text{ is hyperbolic and } N(P_-(0; \lambda)) \cap R(P_+(0; \lambda)) \neq \{0\} \text{ holds.}\]
Pulses

The wave is a front (or back) with \(Q_\pm = Q_0 \).

Thus \(i_+(\lambda) = i_-(\lambda) \) always holds.

\[\lambda \] in resolvent set iff \(A_\pm(\lambda) \) is hyperbolic and
\[N(P_-(0; \lambda)) \oplus R(P_+(0; \lambda)) = \mathbb{C}^n \] holds.

\[\lambda \] in point spectrum iff \(A_\pm(\lambda) \) is hyperbolic and
\[N(P_-(0; \lambda)) \cap R(P_+(0; \lambda)) \neq \{0\} \] holds.

\[\lambda \] in essential spectrum iff none of the above.
Periodic Wave Train

The wave Q is L-periodic, therefore $A(\xi; \lambda)$ is too.
Periodic Wave Train

The wave Q is L-periodic, therefore $A(\xi; \lambda)$ is too.

By Floquet theory the evolution operator has the form:
Periodic Wave Train

The wave Q is L-periodic, therefore $A(\xi; \lambda)$ is too.

By Floquet theory the evolution operator has the form:

- $\Phi(\xi, 0; \lambda) = \Phi_{\text{per}}(\xi; \lambda)e^{R(\lambda)\xi}$
The wave Q is L-periodic, therefore $A(\xi; \lambda)$ is too.

By Floquet theory the evolution operator has the form:

- $\Phi(\xi, 0; \lambda) = \Phi_{\text{per}}(\xi; \lambda)e^{R(\lambda)\xi}$
- $\Phi_{\text{per}}(\xi + L; \lambda) = \Phi_{\text{per}}(\xi; \lambda)$
Periodic Wave Train

The wave \(Q \) is \(L \)-periodic, therefore \(A(\xi; \lambda) \) is too.

By Floquet theory the evolution operator has the form:

- \(\Phi(\xi, 0; \lambda) = \Phi_{\text{per}}(\xi; \lambda)e^{R(\lambda)\xi} \)
- \(\Phi_{\text{per}}(\xi + L; \lambda) = \Phi_{\text{per}}(\xi; \lambda) \)
- \(\Phi_{\text{per}}(0; \lambda) = \text{id} \)
Periodic Wave Train

The wave \(Q \) is \(L \)-periodic, therefore \(A(\xi; \lambda) \) is too.

By Floquet theory the evolution operator has the form:

\[
\begin{align*}
\Phi(\xi, 0; \lambda) &= \Phi_{\text{per}}(\xi; \lambda)e^{R(\lambda)\xi} \\
\Phi_{\text{per}}(\xi + L; \lambda) &= \Phi_{\text{per}}(\xi; \lambda) \\
\Phi_{\text{per}}(0; \lambda) &= \text{id} \\
R(\lambda) &\in \mathbb{C}^{n \times n}
\end{align*}
\]
Periodic Wave Train

The wave Q is L-periodic, therefore $A(\xi; \lambda)$ is too.

By Floquet theory the evolution operator has the form:

- $\Phi(\xi, 0; \lambda) = \Phi_{\text{per}}(\xi; \lambda)e^{R(\lambda)\xi}$
- $\Phi_{\text{per}}(\xi + L; \lambda) = \Phi_{\text{per}}(\xi; \lambda)$
- $\Phi_{\text{per}}(0; \lambda) = \text{id}$
- $R(\lambda) \in \mathbb{C}^{n \times n}$

In resolvent set if the evolution operator has no subspectrum on the unit circle.
Periodic Wave Train

The wave Q is L-periodic, therefore $A(\xi; \lambda)$ is too.

By Floquet theory the evolution operator has the form:

\begin{itemize}
 \item $\Phi(\xi, 0; \lambda) = \Phi_{\text{per}}(\xi; \lambda)e^{R(\lambda)\xi}$
 \item $\Phi_{\text{per}}(\xi + L; \lambda) = \Phi_{\text{per}}(\xi; \lambda)$
 \item $\Phi_{\text{per}}(0; \lambda) = \text{id}$
 \item $R(\lambda) \in \mathbb{C}^{n \times n}$
\end{itemize}

- in resolvent set if the evolution operator has no subspectrum on the unit circle.
- in essential spectrum if there is a purely imaginary eigenvalue of $R(\lambda)$
The wave Q is L-periodic, therefore $A(\xi; \lambda)$ is too.

By Floquet theory the evolution operator has the form:

$$
\begin{align*}
\Phi(\xi, 0; \lambda) &= \Phi_{\text{per}}(\xi; \lambda) e^{R(\lambda)\xi} \\
\Phi_{\text{per}}(\xi + L; \lambda) &= \Phi_{\text{per}}(\xi; \lambda) \\
\Phi_{\text{per}}(0; \lambda) &= \text{id} \\
R(\lambda) &\in \mathbb{C}^{n \times n}
\end{align*}
$$

- In resolvent set if the evolution operator has no subspectrum on the unit circle.
- In essential spectrum if there is a purely imaginary eigenvalue of $R(\lambda)$
- Point spectrum is empty.
Instability types

Absolute instability
Instability types

Absolute instability

Convective instability
The Evans function

We assume a Morse index k. Then we obtain ordered bases
\[u_{k+1}(\lambda), \ldots, u_n(\lambda) \text{ and } u_1(\lambda), \ldots, u_k(\lambda) \]
of spaces $R(P_+(0; \lambda))$ and $N(P_-(0; \lambda))$.
The Evans function

We assume a Morse index k. Than we obtain ordered bases $u_{k+1}(\lambda), \ldots, u_n(\lambda)$ and $u_1(\lambda), \ldots, u_k(\lambda)$ of spaces $R(P_+(0; \lambda))$ and $N(P_-(0; \lambda))$.

The Evans function $D(\lambda)$ is designed to locate non-trivial intersections of $R(P_+(0; \lambda))$ and $N(P_-(0; \lambda))$.

The Evans function

We assume a Morse index k. Than we obtain ordered bases $u_{k+1}(\lambda), \ldots, u_n(\lambda)$ and $u_1(\lambda), \ldots, u_k(\lambda)$ of spaces $R(P_+(0; \lambda))$ and $N(P_-(0; \lambda))$.

The Evans function $D(\lambda)$ is designed to locate non-trivial intersections of $R(P_+(0; \lambda))$ and $N(P_-(0; \lambda))$.

Definition 4.1 (The Evans function) The Evans function is defined by

$$D(\lambda) = \det[u_1(\lambda), \ldots, u_n(\lambda)].$$
The Evans function

We assume a Morse index \(k \). Than we obtain ordered bases
\[u_{k+1}(\lambda), \ldots, u_n(\lambda) \text{ and } u_1(\lambda), \ldots, u_k(\lambda) \]
of spaces \(R(P_+(0; \lambda)) \text{ and } N(P_-(0; \lambda)) \).

The Evans function \(D(\lambda) \) is designed to locate non-trivial intersections of \(R(P_+(0; \lambda)) \text{ and } N(P_-(0; \lambda)) \).

Definition 4.1 (The Evans function) The Evans function is defined by
\[
D(\lambda) = \det[u_1(\lambda), \ldots, u_n(\lambda)].
\]

The Evans function is 0 iff \(\lambda \) is in the spectrum of \(T \).
The Evans function

We assume a Morse index k. Than we obtain ordered bases $u_{k+1}(\lambda), \ldots, u_n(\lambda)$ and $u_1(\lambda), \ldots, u_k(\lambda)$ of spaces $R(P_+(0; \lambda))$ and $N(P_-(0; \lambda))$.

The Evans function $D(\lambda)$ is designed to locate non-trivial intersections of $R(P_+(0; \lambda))$ and $N(P_-(0; \lambda))$.

Definition 4.1 (The Evans function) The Evans function is defined by

$$D(\lambda) = \det[u_1(\lambda), \ldots, u_n(\lambda)].$$

The Evans function is 0 iff λ is in the point spectrum of T.

$$D(\lambda) = N(P_-(0; \lambda)) \cap R(P_+(0; \lambda))$$
Theorem 4.1 The Evans function $D(\lambda)$ is analytic in $\lambda \in \Omega$ and has the following properties.

- $D(\lambda) \in \mathbb{R}$ whenever $\lambda \in \mathbb{R} \cap \Omega$.
- $D(\lambda) = 0$ if, and only if, λ is an eigenvalue of T.
- The order of λ_* as a zero of the Evans function $D(\lambda)$ is equal to the algebraic multiplicity of λ_* as an eigenvalue of T.
Theorem 4.1 The Evans function $D(\lambda)$ is analytic in $\lambda \in \Omega$ and has the following properties.
- $D(\lambda) \in \mathbb{R}$ whenever $\lambda \in \mathbb{R} \cap \Omega$.
- $D(\lambda) = 0$ if, and only if, λ is an eigenvalue of T.
- The order of λ_* as a zero of the Evans function $D(\lambda)$ is equal to the algebraic multiplicity of λ_* as an eigenvalue of T.

Diagram:

- Differential Equation
 - $T(\lambda)$
- Spectrum
- Waves
 - definition of waves
- Dichotomies
 - Theorem 1
Theorem 4.1 The Evans function $D(\lambda)$ is analytic in $\lambda \in \Omega$ and has the following properties.

- $D(\lambda) \in \mathbb{R}$ whenever $\lambda \in \mathbb{R} \cap \Omega$.
- $D(\lambda) = 0$ if, and only if, λ is an eigenvalue of T.
- The order of λ_* as a zero of the Evans function $D(\lambda)$ is equal to the algebraic multiplicity of λ_* as an eigenvalue of T.

Differential Equation

\[D(\lambda) \]

\[T(\lambda) \]

Spectrum

Waves

definition of waves

Theorem 1

Dichotomies