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Theorem 4.1 The Evans function D(A) is analytic in A € € and has the following properties.
e D(A) € R whenever A € RN

e D(A) =0 if, and only if, A is an eigenvalue of T.

e The order of A, as a zero of the Evans function D(A) is equal to the algebraic multiplicity of
A, as an eigenvalue of T .
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