Application of semigroup theory to reaction-diffusion equations

Martino Pitruzzella

16 May 2012
Outline

Aim of the talk, introduction and motivation
Summary of semigroup theory
 - Definitions
 - Example
 - Theorem
 - Hille Yoshida theorem
 - More definitions and theorems
How the theory is applied
 - Laplace operator
 - Abstract evolution equation
 - Reaction-diffusion equations
Principle of linearized stability
Example: Turing instability on interval
The aim of this seminar talk is to show how semigroup theory can be used to study evolution equations of the kind:
The aim of this seminar talk is to show how semigroup theory can be used to study evolution equations of the kind:

$$\dot{x} = Ax + N(x), \ x(0) = x_0, \ x_0 \in X$$
The aim of this seminar talk is to show how semigroup theory can be used to study evolution equations of the kind:
\[\dot{x} = Ax + N(x), \quad x(0) = x_0, \quad x_0 \in X \]
where X is a Banach space, $A : D(A) \subset X \to X$ is a linear operator and $N : X \to X$ is (non-linear) and smooth.
The aim of this seminar talk is to show how semigroup theory can be used to study evolution equations of the kind:

\[\dot{x} = Ax + N(x) , \quad x(0) = x_0 , \quad x_0 \in X \]

where \(X \) is a Banach space, \(A : D(A) \subset X \rightarrow X \) is a linear operator and \(N : X \rightarrow X \) is (non-linear) and smooth. In particular we are interested in reaction-diffusion systems of the form:

\[\dot{u} = D\Delta u + Cu + f(u) \]
The aim of this seminar talk is to show how semigroup theory can be used to study evolution equations of the kind:
\[\dot{x} = Ax + N(x) , \ x(0) = x_0 , \ x_0 \in X \]
where \(X \) is a Banach space, \(A : D(A) \subset X \to X \) is a linear operator and \(N : X \to X \) is (non-linear) and smooth.
In particular we are interested in reaction-diffusion systems of the form: \(\dot{u} = D \Delta u + Cu + f(u) \)
on a bounded domain \(\Omega \subset \mathbb{R}^m (m \leq 3) \) with Dirichlet or Neumann conditions on its piecewise smooth boundary \(\partial \Omega \) where \(u = (u_1, .., u_n)^T, D = diag(d_1, .., d_n) \) is a diagonal matrix, \(C = (c_{ij}) \) and \(f = (f_1, .., f_n)^T. \)
The aim of this seminar talk is to show how semigroup theory can be used to study evolution equations of the kind:
\[\dot{x} = Ax + N(x) , \ x(0) = x_0 , \ x_0 \in X \]
where \(X \) is a Banach space, \(A : D(A) \subset X \to X \) is a linear operator and \(N : X \to X \) is (non-linear) and smooth.
In particular we are interested in reaction-diffusion systems of the form:
\[\dot{u} = D\Delta u + Cu + f(u) \]
on a bounded domain \(\Omega \subset \mathbb{R}^m (m \leq 3) \) with Dirichlet or Neumann conditions on its piecewise smooth boundary \(\partial \Omega \) where
\[u = (u_1, .., u_n)^T, \ D = \text{diag}(d_1, .., d_n) \text{ is a diagonal matrix,} \]
\[C = (c_{ij}) \text{ and } f = (f_1, .., f_n)^T. \]
Semigroup theory is a way to see evolution equations of the form:
\[\frac{d}{dt} u(t) = R(u(t)) \] where \(R \) is an operator, as ODEs on a Banach function space.
A semigroup is a set \((S, \ast)\) with a binary operation \(\ast\) which is associative: \(\forall x, y, z \in S, (x \ast y) \ast z = x \ast (y \ast z)\)
A semigroup is a set \((S, \ast)\) with a binary operation \(\ast\) which is associative: \(\forall x, y, z \in S, (x \ast y) \ast z = x \ast (y \ast z)\)

We are interested in semigroups of bounded linear operators on a Banach space \(X\). A one-parameter family
\[
T = T(t) = \{ T(t) \mid t \in \mathbb{R}_+ \}, \quad T(t) : X \to X
\]
A semigroup is a set \((S, *)\) with a binary operation \(*\) which is associative: \(\forall x, y, z \in S, (x * y) * z = x * (y * z)\)

We are interested in semigroups of bounded linear operators on a Banach space \(X\). A one-parameter family \(T = T(t) = \{ T(t) \mid t \in \mathbb{R}_+ \}, T(t) : X \to X\) satisfying:

\(\blacktriangleright\) \(T(0) = I\)
Definitions

A semigroup is a set \((S, \ast)\) with a binary operation \(\ast\) which is associative: \(\forall x, y, z \in S, (x \ast y) \ast z = x \ast (y \ast z)\)

We are interested in semigroups of bounded linear operators on a Banach space \(X\). A one-parameter family
\[T = T(t) = \{ T(t) \mid t \in \mathbb{R}_+ \} , \quad T(t) : X \to X \]
satisfying:
\[
\begin{align*}
&\text{\(T(0) = I\)} \\
&\text{\(T(t + s) = T(t)T(s)\), \(\forall t, s \in \mathbb{R}_+\)}
\end{align*}
\]
A semigroup is a set \((S, \ast)\) with a binary operation \(\ast\) which is associative:
\[\forall x, y, z \in S, (x \ast y) \ast z = x \ast (y \ast z)\]

We are interested in semigroups of bounded linear operators on a Banach space \(X\). A one-parameter family
\[T = T(t) = \{ T(t) | t \in \mathbb{R}_+ \}, T(t) : X \to X\]
satisfying:

- \(T(0) = I\)
- \(T(t + s) = T(t)T(s), \forall t, s \in \mathbb{R}_+\)
- \(T(t)w \to x\) as \(t \to 0^+, \forall x \in X\)
Definitions

A semigroup is a set \((S, \ast)\) with a binary operation \(\ast\) which is associative: \(\forall x, y, z \in S, (x \ast y) \ast z = x \ast (y \ast z)\)

We are interested in semigroups of bounded linear operators on a Banach space \(X\). A one-parameter family

\[
T = T(t) = \{ T(t) \mid t \in \mathbb{R}_+ \}, \ T(t) : X \to X
\]

satisfying:

\[
\begin{align*}
&\quad T(0) = I \\
&\quad T(t + s) = T(t)T(s), \forall t, s \in \mathbb{R}_+ \\
&\quad T(t)w \to x \text{ as } t \to 0^+, \forall x \in X
\end{align*}
\]

Is called a strongly continous semigroup or \(C^0\) semigroup.
Definitions

If instead of the last condition we had:
If instead of the last condition we had:

\[\lim_{t \to 0^+} T(t) = I \]

then \(T \) is called uniformly continuous.
Definitions

If instead of the last condition we had:

\[\lim_{t \to 0^+} T(t) = I \]

then \(T \) is called uniformly continuous.

Moreover if:

\[\| T(t) \| \leq 1, \forall t \geq 0, \] \(T \) is called semigroup of contractions.
Definition of semigroup generator

The infinitesimal generator C of the semigroup $T(t)$ is defined as:

$$Cw = \lim_{t \to 0^+} T(t)w - w$$

It is defined on its domain $D(C) \subseteq X$, the set where the limit exists. It is proven that $D(C)$ is dense in X and C is a closed operator.
Definition of semigroup generator

The infinitesimal generator C of the semigroup $T(t)$ is defined as:

$$Cw = \lim_{t \to 0^+} \frac{T(t)x - x}{t}$$
The infinitesimal generator C of the semigroup $T(t)$ is defined as:

$$CW = \lim_{t \to 0^+} \frac{T(t)x - x}{t}$$

It is defined on its domain $D(C) \subseteq X$, the set where the limit exists.
Definition of semigroup generator

The infinitesimal generator C of the semigroup $T(t)$ is defined as:

$$Cw = \lim_{t \to 0^+} \frac{T(t)x - x}{t}$$

It is defined on its domain $D(C) \subseteq X$, the set where the limit exists.

It is proven that $D(C)$ is dense in X and C is a closed operator.
Examples

- If X is the Banach space of bounded uniformly continuous functions on \mathbb{R}_+ with supremum norm.
Examples

- If X is the Banach space of bounded uniformly continuous functions on \mathbb{R}_+ with supremum norm. Define $(T(t)f)(\theta) = f(\theta + t), f \in X, \theta \geq 0, t \geq 0$.
Examples

- If X is the Banach space of bounded uniformly continuous functions on \mathbb{R}_+ with supremum norm.
 Define $(T(t)f)(\theta) = f(\theta + t), f \in X, \theta \geq 0, t \geq 0$ then $T(t)$ is a C^0 semigroup with generator $(Cf)(\theta) = f'(\theta)$ with domain $D(C) \equiv \{ f \in X : f$ differentiable and $f' \in X \}$
Examples

- If X is the Banach space of bounded uniformly continuous functions on \mathbb{R}_+ with supremum norm.
 Define $(T(t)f)(\theta) = f(\theta + t)$, $f \in X$, $\theta \geq 0$, $t \geq 0$ then $T(t)$ is a C^0 semigroup with generator $(Cf)(\theta) = f'(\theta)$ with domain $D(C) \equiv \{ f \in X : f$ differentiable and $f' \in X \}$

- If C is a bounded operator on a Banach space X then $T(t) = e^{Ct} = \sum_{n=0}^{\infty} \frac{(Ct)^n}{n!}$ is a C^0 semigroup.
Examples

- If X is the Banach space of bounded uniformly continuous functions on \mathbb{R}_+ with supremum norm. Define $(T(t)f)(\theta) = f(\theta + t), f \in X, \theta \geq 0, t \geq 0$ then $T(t)$ is a C^0 semigroup with generator $(Cf)(\theta) = f'(\theta)$ with domain $D(C) \equiv \{f \in X : f \text{ differentiable and } f' \in X\}$

- If C is a bounded operator on a Banach space X then $T(t) = e^{Ct} = \sum_{n=0}^{\infty} \frac{(Ct)^n}{n!}$ is a C^0 semigroup. Its generator is C.

Martino Pitruzzella
Application of semigroup theory to reaction-diffusion equations
Properties of C^0 semigroups

If $T(t)$ is a C^0 semigroup on X then:
Properties of C^0 semigroups

If $T(t)$ is a C^0 semigroup on X then:

- $\exists \omega \in \mathbb{R}$ and $M \geq 1$ such that $\| T(t) \| \leq Me^{\omega t}, \forall t \geq 0$
Properties of C^0 semigroups

If $T(t)$ is a C^0 semigroup on X then:

- $\exists \omega \in \mathbb{R}$ and $M \geq 1$ such that $\|T(t)\| \leq Me^{\omega t}, \forall t \geq 0$
- $t \mapsto T(t)x$ is continuous on $[0, \infty), \forall x \in X$
Properties of C^0 semigroups

If $T(t)$ is a C^0 semigroup on X then:

- $\exists \omega \in \mathbb{R}$ and $M \geq 1$ such that $\|T(t)\| \leq Me^{\omega t}$, $\forall t \geq 0$
- $t \mapsto T(t)x$ is continuous on $[0, \infty)$, $\forall x \in X$
- If C is the infinitesimal generator of $T(t)$ then:
Properties of C^0 semigroups

If $T(t)$ is a C^0 semigroup on X then:

- $\exists \omega \in \mathbb{R}$ and $M \geq 1$ such that $\|T(t)\| \leq Me^{\omega t}, \forall t \geq 0$
- $t \mapsto T(t)x$ is continuous on $[0, \infty), \forall x \in X$
- If C is the infinitesimal generator of $T(t)$ then:
 - $T(t)x \in D(C)$ and $\frac{d}{dt}(T(t)x) = CT(t)x = T(t)Cx$
 - $\forall x \in D(C), t \in \mathbb{R}_+$
So the question is: given a (closed) operator C, is it the generator of a C^0 semigroup?
So the question is: given a (closed) operator C, is it the generator of a C^0 semigroup? answer:
Theorem (Hille-Yoshida, contraction case):
A linear operator C on a Banach space X is the generator of a C^0 semigroup of contractions on X \iff
So the question is: given a (closed) operator C, is it the generator of a C^0 semigroup? answer:

Theorem (Hille-Yoshida, contraction case):

A linear operator C on a Banach space X is the generator of a C^0 semigroup of contractions on X \iff

- C is closed and densely defined
Hille-Yoshida theorem

So the question is: given a (closed) operator C, is it the generator of a C^0 semigroup? Answer:

Theorem (Hille-Yoshida, contraction case):
A linear operator C on a Banach space X is the generator of a C^0 semigroup of contractions on X \iff

- C is closed and densely defined
- $(0, \infty) \subset \rho(C)$, the resolvent set of C, and
 $\|R(\lambda)\| = \|(\lambda I - C)^{-1}\| \leq \lambda^{-1}, \forall \lambda > 0$
More Definitions and theorems

Definition: let H be a Hilbert space. A linear operator A with domain $D(A) \subset H$ is said to be dissipative
More Definitions and theorems

Definition: let H be a Hilbert space. A linear operator A with domain $D(A) \subset H$ is said to be dissipative if

$$<Ax,x> + <x,Ax> \leq 0, \forall x \in D(A)$$
More Definitions and theorems

Definition: let H be a Hilbert space. A linear operator A with domain $D(A) \subset H$ is said to be dissipative if

$$< Ax, x > + < x, Ax > \leq 0, \forall x \in D(A)$$

Theorem

- If $T(t)$ is a C^0 contraction semigroup on a Hilbert space $H \Rightarrow$ its infinitesimal generator is dissipative.
More Definitions and theorems

Definition: let H be a Hilbert space. A linear operator A with domain $D(A) \subset H$ is said to be dissipative if

$$<Ax, x> + <x, Ax> \leq 0, \forall x \in D(A)$$

Theorem

- If $T(t)$ is a C^0 contraction semigroup on a Hilbert space $H \Rightarrow$ its infinitesimal generator is dissipative.
- If A is dissipative, densely defined and the range of $I - A$ is dense in $H \Rightarrow$ the closure \overline{A} of A generates a contraction semigroup.
Definition: let H be a Hilbert space. A linear operator A with domain $D(A) \subset H$ is said to be dissipative if
$$< Ax, x > + < x, Ax > \leq 0, \forall x \in D(A)$$

Theorem

- If $T(t)$ is a C^0 contraction semigroup on a Hilbert space $H \Rightarrow$ its infinitesimal generator is dissipative.
- If A is dissipative, densely defined and the range of $I - A$ is dense in $H \Rightarrow$ the closure \overline{A} of A generates a contraction semigroup.
- If A is densely defined and both A and its adjoint A^* are densely defined and dissipative \Rightarrow the closure \overline{A} of A generates a contraction semigroup.
More Definitions and theorems

Definition: let H be a Hilbert space. A linear operator A with domain $D(A) \subset H$ is said to be dissipative if

$$< Ax, x > + < x, Ax > \leq 0, \forall x \in D(A)$$

Theorem

- If $T(t)$ is a C^0 contraction semigroup on a Hilbert space $H \Rightarrow$ its infinitesimal generator is dissipative.

- If A is dissipative, densely defined and the range of $I - A$ is dense in $H \Rightarrow$ the closure \overline{A} of A generates a contraction semigroup.

- If A is densely defined and both A and its adjoint A^* are densely defined and dissipative \Rightarrow the closure \overline{A} of A generates a contraction semigroup.
More Definitions and theorems

We will need also the following:
We will need also the following:

Theorem:
Suppose \(f : \Omega \times \mathbb{R}^n \to \mathbb{R} \) is smooth, where \(\Omega \subset \mathbb{R}^m \) is bounded and \(\partial \Omega \) is smooth and \(k > \frac{m}{2} \).
More Definitions and theorems

We will need also the following:

Theorem:

Suppose $f : \Omega \times \mathbb{R}^n \rightarrow \mathbb{R}$ is smooth, where $\Omega \subset \mathbb{R}^m$ is bounded and $\partial \Omega$ is smooth and $k > \frac{m}{2}$ ⇒ $F : s \rightarrow f(\cdot, s(\cdot))$ from $[H^k(\Omega)]^n \rightarrow H^k(\Omega)$ is well defined and smooth. Here $H^k(\Omega)$ is the Sobolev space of (equivalence classes of) functions $u : \Omega \rightarrow \mathbb{R}$ that have weak derivatives up to and including order k in $L^2(\Omega)$ with the norm

$$|u|_{k, \Omega}^2 = \left[\int_{\Omega} \sum_{|\alpha| \leq k} |D^\alpha u|^2 dx \right]^{1/2}$$
More Definitions and theorems

Definition:
Let $0 < \theta \leq \frac{\pi}{2}$ and $\Delta_\theta = \{ \xi \in \mathbb{C} | \xi \neq 0, |\arg \xi| < \theta \}$.
More Definitions and theorems

Definition:
Let $0 < \theta \leq \frac{\pi}{2}$ and $\Delta_\theta = \{\xi \in \mathbb{C} | \xi \neq 0, |\arg \xi| < \theta \}$. A semigroup $T(t)$ is said to be analytic of angle $\theta \in (0, \frac{\pi}{2}]$ if
Definition:
Let $0 < \theta \leq \frac{\pi}{2}$ and $\Delta_\theta = \{\xi \in \mathbb{C} \mid \xi \neq 0, |\arg\xi| < \theta\}$. A semigroup $T(t)$ is said to be analytic of angle $\theta \in (0, \frac{\pi}{2}]$ if

- $T(0) = I$ and $T(\xi_1 + \xi_2) = T(\xi_1)T(\xi_2)$ for all $\xi_{1,2} \in \Delta_\delta$
More Definitions and theorems

Definition:
Let $0 < \theta \leq \frac{\pi}{2}$ and $\Delta_\theta = \{ \xi \in \mathbb{C} | \xi \neq 0, \arg \xi < \theta \}$. A semigroup $T(t)$ is said to be analytic of angle $\theta \in (0, \frac{\pi}{2}]$ if

- $T(0) = I$ and $T(\xi_1 + \xi_2) = T(\xi_1)T(\xi_2)$ for all $\xi_{1,2} \in \Delta_\delta$
- $\xi \mapsto T(\xi)$ is analytic in the sector Δ_θ
More Definitions and theorems

Definition:
Let $0 < \theta \leq \frac{\pi}{2}$ and $\Delta_\theta = \{ \xi \in \mathbb{C} | \xi \neq 0, |\arg \xi| < \theta \}$. A semigroup $T(t)$ is said to be analytic of angle $\theta \in (0, \frac{\pi}{2}]$ if

- $T(0) = I$ and $T(\xi_1 + \xi_2) = T(\xi_1)T(\xi_2)$ for all $\xi_{1,2} \in \Delta_\delta$
- $\xi \mapsto T(\xi)$ is analytic in the sector Δ_θ
- $|T(\xi)x - x| \to 0$ as $|\xi| \to 0$ in any closed subsector of Δ_θ, $\forall x \in X$
More Definitions and theorems

Theorem:
Suppose A is a closed operator with dense domain such that:

- There exists $\delta \in (0, \frac{\pi}{2}]$ such that the resolvent of A contains the sector $\Delta_{\frac{\pi}{2} + \delta}$.
- For each $\epsilon \in (0, \delta)$ there exists $M_{\epsilon} > 1$ such that $\|R(\lambda, A)\| \leq M_{\epsilon} / |\lambda|$ for all $0 \neq \lambda \in \Delta_{\frac{\pi}{2} + \delta} - \epsilon$.

In this case A is called a sectorial operator of angle δ.

\Rightarrow A generates a bounded analytic semigroup of angle δ.
Theorem:
Suppose A is a closed operator with dense domain such that:

- There exists $\delta \in (0, \pi/2]$ such that the resolvent of A contains the sector $\Delta \frac{\pi}{2} + \delta$
Theorem:
Suppose A is a closed operator with dense domain such that:

- There exists $\delta \in (0, \frac{\pi}{2}]$ such that the resolvent of A contains the sector $\Delta \frac{\pi}{2} + \delta$
- For each $\epsilon \in (0, \delta)$ there exists $M_\epsilon > 1$ such that $\| R(\lambda, A) \| \leq M_\epsilon / |\lambda|$ for all $0 \neq \lambda \in \overline{\Delta} \frac{\pi}{2} + \delta - \epsilon$

In this case A is called a sectorial operator of angle δ.
More Definitions and theorems

Theorem:
Suppose A is a closed operator with dense domain such that:

- There exists $\delta \in (0, \frac{\pi}{2}]$ such that the resolvent of A contains the sector $\Delta \frac{\pi}{2} + \delta$
- For each $\epsilon \in (0, \delta)$ there exists $M_\epsilon > 1$ such that $\| R(\lambda, A) \| \leq M_\epsilon / |\lambda|$ for all $0 \neq \lambda \in \overline{\Delta \frac{\pi}{2} + \delta - \epsilon}$

In this case A is called a sectorial operator of angle δ.
\Rightarrow A generates a bounded analytic semigroup of angle δ.
More Definitions and theorems

Definition:
A C^0 semigroup of bounded linear operators $T(t)$ is said to be compact if $T(t)$ is compact $\forall t > 0$
More Definitions and theorems

Definition:
A C^0 semigroup of bounded linear operators $T(t)$ is said to be compact if $T(t)$ is compact $\forall t > 0$

Theorem:
A C^0 semigroup with generator C is compact \Leftrightarrow
More Definitions and theorems

Definition:
A C^0 semigroup of bounded linear operators $T(t)$ is said to be compact if $T(t)$ is compact $\forall t > 0$

Theorem:
A C^0 semigroup with generator C is compact \iff

$\implies t \to T(t)$ is norm continuous on $(0, \infty)$
More Definitions and theorems

Definition:
A C^0 semigroup of bounded linear operators $T(t)$ is said to be compact if $T(t)$ is compact $\forall t > 0$

Theorem:
A C^0 semigroup with generator C is compact \iff
- $t \to T(t)$ is norm continuous on $(0, \infty)$
- $R(\lambda, C) = (\lambda I - C)^{-1}$ is compact for some $\lambda \in \rho(C)$ (i.e. $\forall \lambda \in \rho(C)$)
More Definitions and theorems

Definition:
A C^0 semigroup of bounded linear operators $T(t)$ is said to be compact if $T(t)$ is compact $\forall t > 0$

Theorem:
A C^0 semigroup with generator C is compact \iff
- $t \to T(t)$ is norm continuous on $(0, \infty)$
- $R(\lambda, C) = (\lambda I - C)^{-1}$ is compact for some $\lambda \in \rho(C)$ (i.e. $\forall \lambda \in \rho(C)$)

Theorem:
Suppose C is the generator of a C^0 semigroup $T(t)$ and $A \in L(Z)$ is a bounded operator \Rightarrow
More Definitions and theorems

Definition:
A C^0 semigroup of bounded linear operators $T(t)$ is said to be compact if $T(t)$ is compact $\forall t > 0$

Theorem:
A C^0 semigroup with generator C is compact \iff

- $t \to T(t)$ is norm continuous on $(0, \infty)$
- $R(\lambda, C) = (\lambda I - C)^{-1}$ is compact for some $\lambda \in \rho(C)$ (i.e. $\forall \lambda \in \rho(C)$)

Theorem:
Suppose C is the generator of a C^0 semigroup $T(t)$ and $A \in L(Z)$ is a bounded operator $\Rightarrow C + A$ generates a C^0 semigroup S
More Definitions and theorems

Definition:
A C^0 semigroup of bounded linear operators $T(t)$ is said to be compact if $T(t)$ is compact $\forall t > 0$

Theorem:
A C^0 semigroup with generator C is compact \iff

$\quad t \rightarrow T(t)$ is norm continuous on $(0, \infty)$

$\quad R(\lambda, C) = (\lambda I - C)^{-1}$ is compact for some $\lambda \in \rho(C)$ (i.e. $\forall \lambda \in \rho(C)$)

Theorem:
Suppose C is the generator of a C^0 semigroup $T(t)$ and $A \in L(Z)$ is a bounded operator $\Rightarrow C + A$ generates a C^0 semigroup S

\quad if T is analytic $\Rightarrow S$ is analytic

\quad if T is compact $\Rightarrow S$ is compact
First we consider the Laplace operator:
\[\Delta u = \left(\frac{\partial^2}{\partial x^2} + \cdots + \frac{\partial^2}{\partial x^m} \right) u. \]
where \(u \) is a function on \(\Omega \), with \(u = 0 \) on \(\partial \Omega \).

The Laplace operator can be extended to a closed, self-adjoint operator \(A : D(A) \subset L^2(\Omega) \to L^2(\Omega) \) with dense domain \(D(A) \) given by the closure of the set:
\[C^2_0(\Omega) = \{ u \in C^2(\Omega) | u = 0 \text{ on } \partial \Omega \}. \]

The space \(L^2(\Omega) \) is a Hilbert space and \(A \) is dissipative because for \(u \in C^2_0(\Omega) \) we have:
\[\langle \Delta u, u \rangle \leq 0 \Rightarrow \langle Au, u \rangle \leq 0 \text{ for } u \in D(A). \]

Therefore \(A \) generates a contraction semigroup on \(L^2(\Omega) \).

Moreover the semigroup generated by \(A \) is also analytic and compact.
First we consider the Laplace operator:

\[\Delta u = \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_m^2} \right) u. \]

where \(u \) is a function on \(\Omega \), with \(u = 0 \) on \(\partial \Omega \).
First we consider the Laplace operator:
\[\Delta u = \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_m^2} \right) u. \]
where \(u \) is a function on \(\Omega \), with \(u = 0 \) on \(\partial \Omega \). The Laplace operator can be extended to a closed, self-adjoint operator \(A : D_A \subset L^2(\Omega) \rightarrow L^2(\Omega) \) with dense domain \(D_A \) given by the closure of the set:
\[C_0^2(\Omega) = \left\{ u \in C^2(\Omega) | u = 0 \text{ on } \partial \Omega \right\} \text{ in } H^2(\Omega) \]
First we consider the Laplace operator:
\[\Delta u = \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_m^2} \right) u. \]
where \(u \) is a function on \(\Omega \), with \(u = 0 \) on \(\partial \Omega \). The Laplace operator can be extended to a closed, self-adjoint operator
\(A : D_A \subset L^2(\Omega) \to L^2(\Omega) \) with dense domain \(D_A \) given by the closure of the set:
\[C^2_0(\Omega) = \left\{ u \in C^2(\Omega) | u = 0 \text{ on } \partial \Omega \right\} \text{ in } H^2(\Omega) \]
The space \(L^2(\Omega) \) is a Hilbert space and \(A \) is dissipative because for \(u \in C^2_0(\Omega) \) we have: \(< \Delta u, u > \leq 0 \Rightarrow < Au, u > \leq 0 \) for \(u \in D_A \).
First we consider the Laplace operator:
\[\Delta u = \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_m^2} \right) u. \]
where \(u \) is a function on \(\Omega \), with \(u = 0 \) on \(\partial \Omega \). The Laplace operator can be extended to a closed, self-adjoint operator \(A : D_A \subset L^2(\Omega) \to L^2(\Omega) \) with dense domain \(D_A \) given by the closure of the set:
\[C^2_0(\overline{\Omega}) = \left\{ u \in C^2(\overline{\Omega}) \mid u = 0 \text{ on } \partial \Omega \right\} \text{ in } H^2(\Omega) \]
The space \(L^2(\Omega) \) is a Hilbert space and \(A \) is dissipative because for \(u \in C^2_0(\overline{\Omega}) \) we have: \(\langle \Delta u, u \rangle \leq 0 \Rightarrow \langle Au, u \rangle \leq 0 \) for \(u \in D_A \). Therefore \(A \) generates a contraction semigroup on \(L^2(\Omega) \).
First we consider the Laplace operator:
\[\Delta u = \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_m^2} \right) u. \]
where \(u \) is a function on \(\Omega \), with \(u = 0 \) on \(\partial \Omega \). The Laplace operator can be extended to a closed, self-adjoint operator \(A : D_A \subset L^2(\Omega) \to L^2(\Omega) \) with dense domain \(D_A \) given by the closure of the set:
\[C^2_0(\Omega) = \left\{ u \in C^2(\Omega) \mid u = 0 \text{ on } \partial \Omega \right\} \text{ in } H^2(\Omega) \]
The space \(L^2(\Omega) \) is a Hilbert space and \(A \) is dissipative because for \(u \in C^2_0(\Omega) \) we have: \(< \Delta u, u > \leq 0 \Rightarrow < Au, u > \leq 0 \) for \(u \in D_A \). Therefore \(A \) generates a contraction semigroup on \(L^2(\Omega) \).
Moreover the semigroup generated by \(A \) is also analytic and compact.
The domain D_A is a Banach space with the same norm of $H^2(\Omega)$. We define now \tilde{A} as the restriction of A to the subspace $D_A^2 = \{ u \in D_A | Au \in D_A \}$ and $\tilde{T}(t)$ the restriction of $T(t)$ to the subspace D_A of $L^2(\Omega)$.
The domain D_A is a Banach space with the same norm of $H^2(\Omega)$. We define now \tilde{A} as the restriction of A to the subspace $D_{A^2} = \{u \in D_A | Au \in D_A\}$ and $\tilde{T}(t)$ the restriction of $T(t)$ to the subspace D_A of $L^2(\Omega)$. We do this because the substitution operator associated with the non-linearity is smooth, hence the non-linear part is well defined and smooth in D_A.
Laplace operator

The domain D_A is a Banach space with the same norm of $H^2(\Omega)$. We define now \tilde{A} as the restriction of A to the subspace $D_{A^2} = \{u \in D_A | Au \in D_A\}$ and $\tilde{T}(t)$ the restriction of $T(t)$ to the subspace D_A of $L^2(\Omega)$. We do this because the substitution operator associated with the non-linearity is smooth, hence the non-linear part is well defined and smooth in D_A.

In the case of Neumann boundary conditions the result is valid as well and A defined as before still generates a contraction semigroup.
Abstract evolution equations

Next, given a Banach space X, we consider evolution equations of the form:

$$\dot{u} = Cu + f(u),$$

$u(0) = u_0, u, u_0 \in X$ where C is the generator of a C_0 semigroup $T(t)$ on X and $f: X \to X$ is smooth of class C^k.

The solution to this equation satisfies the integral equation (Duhamel's formula):

$$u(t) = T(t)u_0 + \int_0^t T(t-s)f(u(s)) \, ds$$

Since f is locally Lipschitz and $\|T(t)\| \leq Me^{\omega t}$, Picard iteration shows that $C + f$ generates a non-linear C_0 semigroup $F(t)$.

Since the integral equation above is not defined for $\forall t \in \mathbb{R}^+$, this semigroup is only defined on an interval $[0, \alpha)$.

Application of semigroup theory to reaction-diffusion equations
Abstract evolution equations

Next, given a Banach space X, we consider evolution equations of the form: $\dot{u} = Cu + f(u)$, $u(0) = u_0$, $u, u_0 \in X$
Abstract evolution equations

Next, given a Banach space X, we consider evolution equations of the form: $\dot{u} = Cu + f(u)$, $u(0) = u_0$, $u, u_0 \in X$ where C is the generator of a C^0 semigroup $T(t)$ on X and $f : X \to X$ is smooth of class C^k.
Abstract evolution equations

Next, given a Banach space X, we consider evolution equations of the form: $\dot{u} = Cu + f(u)$, $u(0) = u_0$, $u, u_0 \in X$ where C is the generator of a C^0 semigroup $T(t)$ on X and $f : X \to X$ is smooth of class C^k.

The solution to this equation satisfies the integral equation (Duhamel’s formula):

$$u(t) = T(t)u_0 + \int_0^t T(t - s)f(u(s))ds$$
Next, given a Banach space X, we consider evolution equations of the form: $\dot{u} = Cu + f(u)$, $u(0) = u_0$, $u, u_0 \in X$ where C is the generator of a C^0 semigroup $T(t)$ on X and $f : X \rightarrow X$ is smooth of class C^k. The solution to this equation satisfies the integral equation (Duhamel’s formula):

$$u(t) = T(t)u_0 + \int_0^t T(t - s)f(u(s))ds$$

Since f is locally Lipschitz and $\|T(t)\| \leq Me^{\omega t}$, Picard iteration shows that $C + f$ generates a non-linear C^0 semigroup $F(t)$.
Next, given a Banach space X, we consider evolution equations of the form: \[\dot{u} = Cu + f(u), \quad u(0) = u_0, \quad u, u_0 \in X \] where C is the generator of a C^0 semigroup $T(t)$ on X and $f : X \to X$ is smooth of class C^k.

The solution to this equation satisfies the integral equation (Duhamel’s formula):
\[u(t) = T(t)u_0 + \int_0^t T(t-s)f(u(s))\,ds \]

Since f is locally Lipschitz and $\|T(t)\| \leq Me^{\omega t}$, Picard iteration shows that $C + f$ generates a non-linear C^0 semigroup $F(t)$. Since the integral equation above is not defined $\forall t \in \mathbb{R}_+$, this semigroup is only defined on an interval $[0, \alpha)$.

Application of semigroup theory to reaction-diffusion equations

Martino Pitruzzella

Abstract evolution equation

Laplace operator

Principle of linearized stability

Example: Turing instability on interval

Reaction-diffusion equations
We consider now an n-component reaction-diffusion system:

$$
\frac{d}{dt}u_i = d_i \Delta u_i + \sum_{j=1}^{n} c_{ij} u_j + f_i(u), \quad (i = 1, \ldots, n)
$$

on a bounded domain $\Omega \subset \mathbb{R}^m$ ($m \leq 3$) with Dirichlet or Neumann conditions on its smooth boundary $\partial \Omega$, where d_i and c_{ij} are real numbers, $d_i > 0$, $f_i: \mathbb{R}^n \to \mathbb{R}$ are smooth functions in u_1, \ldots, u_n with $f_i(0) = 0$.
We consider now an n-component reaction-diffusion system:

$$\frac{d}{dt} u_i = d_i \Delta u_i + \sum_{j=1}^{n} c_{ij} u_j + f_i(u), \quad (i = 1, \cdots, n).$$

on a bounded domain $\Omega \subset \mathbb{R}^m (m \leq 3)$.

Reaction-diffusion equations

- Aim of the talk, introduction and motivation
- Summary of semigroup theory
- How the theory is applied
- Principle of linearized stability
- Example: Turing instability on interval
We consider now an n-component reaction-diffusion system:

$$\frac{d}{dt} u_i = d_i \Delta u_i + \sum_{j=1}^{n} c_{ij} u_j + f_i(u), \quad (i = 1, \cdots, n).$$

on a bounded domain $\Omega \subset \mathbb{R}^m (m \leq 3)$ with Dirichlet or Neumann conditions on its smooth boundary $\partial \Omega$.

We consider now an n-component reaction-diffusion system:

$$\frac{d}{dt} u_i = d_i \Delta u_i + \sum_{j=1}^{n} c_{ij} u_j + f_i(u), \quad (i = 1, \cdots, n).$$

on a bounded domain $\Omega \subset \mathbb{R}^m \,(m \leq 3)$ with Dirichlet or Neumann conditions on its smooth boundary $\partial \Omega$ where d_i and c_{ij} are real numbers, $d_i > 0$.
We consider now an n-component reaction-diffusion system:

$$\frac{d}{dt} u_i = d_i \Delta u_i + \sum_{j=1}^{n} c_{ij} u_j + f_i(u), \quad (i = 1, \ldots, n).$$

on a bounded domain $\Omega \subset \mathbb{R}^m (m \leq 3)$ with Dirichlet or Neumann conditions on its smooth boundary $\partial \Omega$ where d_i and c_{ij} are real numbers, $d_i > 0$, $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ are smooth functions in u_1, \ldots, u_n with $f_i(0) = 0$.
We write this system as \(\dot{u} = D\Delta u + Cu + f(u) \) where
\(u = (u_1, ..., u_n)^T \),
\(D = \text{diag}(d_1, ..., d_n) \) is a diagonal matrix,
\(C = (c_{ij}) \) and
\(f = (f_1, ..., f_n)^T \).
Reaction-diffusion equations

We write this system as $\dot{u} = D\Delta u + Cu + f(u)$ where $u = (u_1, .., u_n)^T$, $D = \text{diag}(d_1, .., d_n)$ is a diagonal matrix, $C = (c_{ij})$ and $f = (f_1, .., f_n)^T$.

Let $\tilde{A}_i : D_{A_i}^2 \rightarrow D_{A_i}$ be the operator defined as before, i.e. the extension of $d_i\Delta$ restricted to $D_{A_i}^2$.
We write this system as $\dot{u} = D\Delta u + Cu + f(u)$ where
\[u = (u_1, \ldots, u_n)^T, \quad D = \text{diag}(d_1, \ldots, d_n) \text{ is a diagonal matrix,} \]
\[C = (c_{ij}) \text{ and } f = (f_1, \ldots, f_n)^T. \]

Let $\tilde{A}_i : D_{A_i} \rightarrow D_{A_i}$ be the operator defined as before, i.e. the extension of $d_i\Delta$ restricted to D_{A_i}. Set also the new space $X = D_{A_1} \times \cdots \times D_{A_n}$ and $\tilde{A} = \tilde{A}_1 \times \cdots \times \tilde{A}_n$. So we have that \tilde{A} generates a compact analytic semigroup on X.

Reaction-diffusion equations

Martino Pitruzzella

Application of semigroup theory to reaction-diffusion equations
Reaction-diffusion equations

We write this system as \(\dot{u} = D\Delta u + Cu + f(u) \) where
\(u = (u_1, \ldots, u_n)^T \), \(D = \text{diag}(d_1, \ldots, d_n) \) is a diagonal matrix,
\(C = (c_{ij}) \) and \(f = (f_1, \ldots, f_n)^T \).

Let \(\tilde{A}_i : D_{A_i}^2 \to D_{A_i} \) be the operator defined as before, i.e. the
extension of \(d_i\Delta \) restricted to \(D_{A_i}^2 \). Set also the new space
\(X = D_{A_1} \times \cdots \times D_{A_n} \) and \(\tilde{A} = \tilde{A}_1 \times \cdots \times \tilde{A}_n \). So we have that \(\tilde{A} \) generates a compact analytic semigroup on \(X \). Then also \(\tilde{A} + C \) generates a compact analytic semigroup.
We write this system as \(\dot{u} = D\Delta u + Cu + f(u) \) where
\(u = (u_1, .., u_n)^T \), \(D = \text{diag}(d_1, .., d_n) \) is a diagonal matrix,
\(C = (c_{ij}) \) and \(f = (f_1, .., f_n)^T \).

Let \(\tilde{A}_i : D_{A_i^2} \to D_{A_i} \) be the operator defined as before, i.e. the extension of \(d_i\Delta \) restricted to \(D_{A_i^2} \). Set also the new space
\(X = D_{A_1} \times \cdots \times D_{A_n} \) and \(\tilde{A} = \tilde{A}_1 \times \cdots \times \tilde{A}_n \). So we have that \(\tilde{A} \) generates a compact analytic semigroup on \(X \). Then also \(\tilde{A} + C \) generates a compact analytic semigroup. By the theorem above we have that \(f : X \to X \) is a smooth function. So by Picard Iteration we have that \(D\Delta + C + f \) generates a \(C^0 \) semigroup.
Principle of linearized stability

The principle of linearized stability in the finite dimensional case says that, if 0 is an equilibrium of the system of differential equations $\dot{u} = f(u)$ and all the eigenvalues of the Jacobian matrix Df have real part less than zero, then the zero solution is stable. We see now how this result is also valid for evolution equations under some assumptions.
Consider the equation: \(\dot{u}(t) = A(u(t)) + f(u(t)), u(0) = u_0, t > 0 \)
where \(A \) is a sectorial operator on \(X \) and \(f : X \to X \) is smooth and suppose 0 is a solution. We have \(u(t) = F(t)u_0 \), where \(F(t) \) is the non linear semigroup associated with the equation above.
Consider the equation: $\dot{u}(t) = A(u(t)) + f(u(t)) , u(0) = u_0, \ t > 0$
where A is a sectorial operator on X and $f : X \to X$ is smooth and
suppose 0 is a solution. We have $u(t) = F(t)u_0$, where $F(t)$ is the non linear semigroup associated with the equation above.
Definition: The zero solution of the equation above is called stable in X if $\forall \epsilon > 0, \exists \delta > 0$ such that: $u_0 \in X, \|u(0)\| \leq \delta \Rightarrow$
the solution is defined $\forall t > 0 \ , \ \|u(t)\| \leq \epsilon , \ \forall t \geq 0$.

Consider the equation: \(\dot{u}(t) = A(u(t)) + f(u(t)), u(0) = u_0, t > 0 \)
where \(A \) is a sectorial operator on \(X \) and \(f : X \to X \) is smooth and suppose 0 is a solution. We have \(u(t) = F(t)u_0 \), where \(F(t) \) is the non linear semigroup associated with the equation above.

Definition: The zero solution of the equation above is called stable in \(X \) if \(\forall \epsilon > 0, \exists \delta > 0 \) such that: \(u_0 \in X, \|u(0)\| \leq \delta \Rightarrow \)
the solution is defined \(\forall t > 0, \|u(t)\| \leq \epsilon, \forall t \geq 0. \)

The zero solution is called asymptotically stable is it is stable and moreover \(\exists \delta_0 > 0 \) such that if \(\|u(0)\| \leq \delta_0 \) then
\(\lim_{t \to \infty} \|u(t)\| = 0 \)
Principle of linearized stability

The spectral bound of a sectorial operator A is defined as:
\[s(A) = \sup \{ \Re \lambda \mid \lambda \in \sigma(A) \}. \]
Principle of linearized stability

The spectral bound of a sectorial operator A is defined as:

$$s(A) = \sup \{ \Re \lambda \mid \lambda \in \sigma(A) \}.$$

Theorem (Principle of linear stability):
Suppose $s(A) < 0$ and $F : X \to X$ is smooth in a neighborhood of 0.

Therefore the zero solution is asymptotically stable.
Principle of linearized stability

The spectral bound of a sectorial operator A is defined as:
$s(A) = \sup \{ \Re \lambda \mid \lambda \in \sigma(A) \}$.

Theorem (Principle of linear stability):
Suppose $s(A) < 0$ and $F : X \to X$ is smooth in a neighborhood of 0.
Then $\forall \omega \in [0, -s(A)]$ there exists positive constants $M = M(\omega), r = r(\omega)$ such that if $u_0 \in X, u_0 \geq r \Rightarrow$ we have that the solution is defined $\forall t > 0$ and $\|u(t)\| \leq Me^{-\omega t} \|u_0\|, t \geq 0$
Therefore the zero solution is asymptotically stable.
Turing instability

Let's consider the following reaction-diffusion system of two coupled equations on the interval $[0, \pi]$ for $u = u(t, x)$:

$$\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \frac{\partial^2 u}{\partial x^2} + f_1(u, v) \\
\frac{\partial v}{\partial t} &= d_2 \frac{\partial^2 v}{\partial x^2} + f_2(u, v)
\end{align*}$$

with $u(t, 0) = u(t, \pi) = 0$ and $f_1(0, 0) = f_2(0, 0) = 0$.

Then $(u, v) = (0, 0)$ is an homogeneous solution, that is a solution of:

$$\begin{align*}
\frac{\partial u}{\partial t} &= f_1(u, v) \\
\frac{\partial v}{\partial t} &= f_2(u, v)
\end{align*}$$

The Jacobian matrix is:

$$Df = \begin{pmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{pmatrix}$$
Turing instability

Let's consider the following reaction-diffusion system of two coupled equations on the interval $[0, \pi]$ for $u = u(t, x)$:

$$
\frac{\partial u}{\partial t} = d_1 \frac{\partial^2 u}{\partial x^2} + f_1(u, v)
$$

$$
\frac{\partial v}{\partial t} = d_2 \frac{\partial^2 v}{\partial x^2} + f_2(u, v)
$$

with $u(t, 0) = u(t, \pi) = 0$ and f_1 and f_2 are smooth functions. This is a particular case covered by the previous theory so the system defines a nonlinear local semigroup on $H^2([0, \pi])$. Assume that $f_1(0, 0) = 0 = f_2(0, 0)$.
Turing instability

Let’s consider the following reaction-diffusion system of two coupled equations on the interval \([0, \pi]\) for \(u = u(t, x)\):
\[
\frac{\partial u}{\partial t} = d_1 \frac{\partial^2 u}{\partial x^2} + f_1(u, v) \\
\frac{\partial v}{\partial t} = d_2 \frac{\partial^2 v}{\partial x^2} + f_2(u, v)
\]
with \(u(t, 0) = u(t, \pi) = 0\) and \(f_1\) and \(f_2\) are smooth functions. This is a particular case covered by the previous theory so the system defines a nonlinear local semigroup on \(H^2([0, \pi])\). Assume that \(f_1(0, 0) = 0 = f_2(0, 0)\) then \((u, v) = (0, 0)\) is an homogeneous solution, that is a solution of:
\[
\frac{\partial u}{\partial t} = f_1(u, v) \\
\frac{\partial v}{\partial t} = f_2(u, v)
\]
Let’s consider the following reaction-diffusion system of two coupled equations on the interval $[0, \pi]$ for $u = u(t, x)$:

\[
\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \frac{\partial^2 u}{\partial x^2} + f_1(u, v) \\
\frac{\partial v}{\partial t} &= d_2 \frac{\partial^2 v}{\partial x^2} + f_2(u, v)
\end{align*}
\]

with $u(t, 0) = u(t, \pi) = 0$ and f_1 and f_2 are smooth functions. This is a particular case covered by the previous theory so the system defines a nonlinear local semigroup on $H^2([0, \pi])$.

Assume that $f_1(0, 0) = 0 = f_2(0, 0)$ then $(u, v) = (0, 0)$ is an homogeneous solution, that is a solution of:

\[
\begin{align*}
\frac{\partial u}{\partial t} &= f_1(u, v) \\
\frac{\partial v}{\partial t} &= f_2(u, v)
\end{align*}
\]

The Jacobian matrix is: $Df = \begin{pmatrix} \frac{\partial f_1}{\partial u} & \frac{\partial f_1}{\partial v} \\ \frac{\partial f_2}{\partial u} & \frac{\partial f_2}{\partial v} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$
Turing instability

The eigenvalues are found by:
\[\lambda^2 - (\text{Tr } M)\lambda + \text{Det } M = 0 = \lambda^2 - (m_{11} + m_{22})\lambda + m_{11}m_{22} - m_{21}m_{12} \]
Turing instability

The eigenvalues are found by:
\[\lambda^2 - (\text{Tr } M)\lambda + \text{Det } M = 0 = \lambda^2 - (m_{11} + m_{22})\lambda + m_{11} m_{22} - m_{21} m_{12} \]
Suppose the equilibrium is stable, that is: \(m_{11} + m_{22} < 0 \) and \(m_{11} m_{22} - m_{21} m_{12} > 0 \)
Turing instability

The eigenvalues are found by:
\[
\lambda^2 - (\text{Tr } M)\lambda + \text{Det } M = 0 = \lambda^2 - (m_{11} + m_{22})\lambda + m_{11}m_{22} - m_{21}m_{12}
\]
Suppose the equilibrium is stable, that is: \(m_{11} + m_{22} < 0\) and \(m_{11}m_{22} - m_{21}m_{12} > 0\)
Consider now the linearized system with diffusion terms.
Turing instability

The eigenvalues are found by:
\[\lambda^2 - (\text{Tr } M)\lambda + \text{Det } M = 0 = \lambda^2 - (m_{11} + m_{22})\lambda + m_{11}m_{22} - m_{21}m_{12} \]
Suppose the equilibrium is stable, that is: \(m_{11} + m_{22} < 0 \) and \(m_{11}m_{22} - m_{21}m_{12} > 0 \)
Consider now the linearized system with diffusion terms.
\[
\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \frac{\partial^2 u}{\partial x^2} + m_{11}u + m_{12}v \\
\frac{\partial v}{\partial t} &= d_2 \frac{\partial^2 v}{\partial x^2} + m_{21}u + m_{22}v
\end{align*}
\]
the right hand side of this equation is \((\tilde{A} + C)(u, v)\).
Turing instability

The eigenvalues are found by:
\[
\lambda^2 - (\text{Tr } M) \lambda + \text{Det } M = 0 = \lambda^2 - (m_{11} + m_{22}) \lambda + m_{11} m_{22} - m_{21} m_{12}
\]
Suppose the equilibrium is stable, that is: \(m_{11} + m_{22} < 0\) and \(m_{11} m_{22} - m_{21} m_{12} > 0\)
Consider now the linearized system with diffusion terms.
\[
\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \frac{\partial^2 u}{\partial x^2} + m_{11} u + m_{12} v \\
\frac{\partial v}{\partial t} &= d_2 \frac{\partial^2 v}{\partial x^2} + m_{21} u + m_{22} v
\end{align*}
\]
the right hand side of this equation is \((\tilde{A} + C)(u, v)\).
The spectrum of this operator consists of eigenvalues satisfying for all integer \(k\) the equation:
\[
\begin{vmatrix}
m_{11} - \lambda - k^2 d_1 & m_{12} \\
m_{21} & m_{22} - \lambda - k^2 d_2
\end{vmatrix} = 0
\]
Turing instability

So we get: $\lambda^2 + \lambda \left[k^2(d_1 + d_2 - (m_{11} + m_{22})) \right] + h(k^2) = 0$

where $h(k^2) = k^4 d_1 d_2 - k^2 (m_{11} d_2 + m_{22} d_1) + (m_{11} m_{22} - m_{21} m_{12})$.
Turing instability

So we get: \[\lambda^2 + \lambda \left[k^2 (d_1 + d_2 - (m_{11} + m_{22})) \right] + h(k^2) = 0 \]
where \[h(k^2) = k^4 d_1 d_2 - k^2 (m_{11} d_2 + m_{22} d_1) + (m_{11} m_{22} - m_{21} m_{12}) \].
Since \(\text{Tr} \ M < 0 \), conditions for instability are given by the function \(h(k^2) \). That is, if \(h(k^2) < 0 \) for some \(k \), then there is instability.
Turing instability

So we get: $\lambda^2 + \lambda \left[k^2 (d_1 + d_2 - (m_{11} + m_{22})) \right] + h(k^2) = 0$

where $h(k^2) = k^4 d_1 d_2 - k^2 (m_{11} d_2 + m_{22} d_1) + (m_{11} m_{22} - m_{21} m_{12})$.

Since $\text{Tr} \ M < 0$, conditions for instability are given by the function $h(k^2)$, That is, if $h(k^2) < 0$ for some k, then there is instability.

So we have: $h(k^2) = (d_1 d_2) k^4 - (m_{11} d_2 + m_{22} d_1) k^2 + \det M$

and to have $h(k^2) < 0$ the following must be satisfied:
Turing instability

So we get: $\lambda^2 + \lambda \left[k^2(d_1 + d_2 - (m_{11} + m_{22})) \right] + h(k^2) = 0$

where $h(k^2) = k^4d_1d_2 - k^2(m_{11}d_2 + m_{22}d_1) + (m_{11}m_{22} - m_{21}m_{12})$.

Since $\text{Tr } M < 0$, conditions for instability are given by the function $h(k^2)$, That is, if $h(k^2) < 0$ for some k, then there is instability.

So we have: $h(k^2) = (d_1d_2)k^4 - (m_{11}d_2 + m_{22}d_1)k^2 + \text{Det } M$

and to have $h(k^2) < 0$ the following must be satisfied:

- $m_{11}d_2 + m_{22}d_1 > 0$

and the minimum of $h(k^2)$ must be below 0, this gives:

- $\frac{(m_{11}d_2 + m_{22}d_1)^2}{4d_1d_2} > \text{Det } M$
Finally we have that, to have diffusion-driven instability the following conditions must be satisfied:

- $\text{Tr } M = m_{11} + m_{22} < 0$
- $\text{Det } M = m_{11} m_{22} - m_{21} m_{12} > 0$
- $m_{11} d_2 + m_{22} d_1 > 0$
- $\frac{(m_{11} d_2 + m_{22} d_1)^2}{4 d_1 d_2} > \text{Det } M$
Turing instability

Finally we have that, to have diffusion-driven instability the following conditions must be satisfied:

- \(\text{Tr } M = m_{11} + m_{22} < 0 \)
- \(\text{Det } M = m_{11} m_{22} - m_{21} m_{12} > 0 \)
- \(m_{11} d_2 + m_{22} d_1 > 0 \)
- \(\frac{(m_{11} d_2 + m_{22} d_1)^2}{4d_1 d_2} > \text{Det } M \)

In case these conditions are satisfied we have that the spatially homogeneous stable state becomes unstable if there is integer \(k \) in a range \(k_1 < k < k_2 \) where \(k_1 \) and \(k_2 \) are given by:

\[
k_{1,2}^2 = \frac{(m_{11} d_2 + m_{22} d_1)}{2d_1 d_2} \pm \frac{\sqrt{(m_{11} d_2 + m_{22} d_1)^2 - 4d_1 d_2 \text{Det } M}}{2d_1 d_2}
\]