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Synaptic Processing

Post-synaptic
CUFrémL— V).
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Vs < 0 : inhibitory.
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Synaptic Processing

. Two common choicedN@p:
1

n(t) = (é - E) ) ™" — e MH(1),

n(t) = ce " H(t).

- Conductance change from train of
APs: gt) =gy n(t—"Tn).



Dendritic Processing

Basic uniform cable equation:

OV (x,t) V(x,t)
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Green’s function:

Gooli,t) = ———e~t/Te=2"/(4D1)
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(General solution:

t oo
Ve, t) = / dt"/ di'Goo(w — 2"t — ) (1)) + / di'Goo(x — 2, )V (2, 0).
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Firing Rates

-~ Spike train@ =9 o~ Tn

- Short-time average: Qg = f, the
iInstantaneous firing rate.

- For a single population with self-

feedback we get equations like
Qg =wof(g).



1D Tissue Level Model

Qg = | wlwy)fg.t = Dlw.y)/v)dy

Voltage V (&, x,t) at position & > 0 along cable:

ov._ vV 0V _
o T o —I_DC)—QQ + 1(&,x,1).

I = synaptic input, proportional to a conductance change

t o0
g(&, . t) = / dsn(t — s) / dyW (&, x,y) f(h(y.s — D(x,y)/v)).
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1D Tissue Level Model

Axo-dendritic weights can be decomposed in the product form

W& z,y) = P(§w(|lr —yl).

Then the equation for A takes the form

t s o0
hx,t) = .-‘{f dsF'(t — s)/ ds'n(s — s’)/ dyw(|x —y|) f(h(y,s" — D(x.y)/v))

Fi) = [ dspoc(en



flg(x,t—DI(x,y)/v))




One-dimensional model
without dendrites or axonal

Bz, t) / /a@h@\}{f@z (z —y,t — 5))dyds.

Spatially uniform resting state h(z,t) = hg, defined by

ho = (o) | w(lyl)dy
We linearize by letting h(x,t) — ho + h(x,1),
so that f(h) — f(ho) + f'(ho)h.



Linearization around resting
. §Otate
hw¢w=@£ o) [ wllyDhe =yt = s)dyds.

8 = f'(ho).

Solutions are of the form ee ZP‘T with

L= wBiN0), @)= [ wllyhe Py,



Instability Analysis

The uniform steady state is linearly stable if
Re(A(p)) < 0 Vp e R\O.
Chosing n(t) = oze_‘:“tH(t), we get 7(t) = (1 + \a)™*
so that 1 = xk3(1 + A/ a) hd(p),

A=a(w(p)kB — 1),

w(p)ef <1,

() < —

W —.
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e For 3 < 3. we have kii(p) < Killmax < 1//3 for all p and the resting state is linearly stable.

o At the critical point 3 = . we have S.kw(p.) =1 and S.xw(p) < 1 for all p # p.. Hence, A(p) < 0 for all
p # pe, but A(p.) = 0. This signals the point of a static instability due to excitation of the pattern e=*7<=.

e Beyond the bifurcation point, 3 > 3., A(p.) > 0 and this pattern grows with time. In fact there will
typically exist a range of values of p € (p1,p2) for which A(p) > 0, signalling a set of growing patterns. As

the patterns grow, the linear approximation breaks down and nonlinear terms dominate behaviour.

o The saturating property of f(u) tends to create patterns with finite amplitude, that scale as /3 — 3. close

to bifurcation and have wavelength 27 /p..

o If p. = 0 then we would have a bulk instability resulting in the formation of another homogeneous state.



Example: Mexican Hat
Function

Biologically motivated choice for w(z) :

”LU(:U) — A [e—’}“l|$| _ 1“6—’}“2|$|] .
A =1, short-range excitation and long-range inhibition,

A = —1, short-range inhibition and long-range excitation.

~ 71 V2
w(p) = 2A | —— —T ~ |,
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Full Model

t 8 o0
hic,t) = .-‘{/ dsF'(t — 5)/ ds'n(s — .5"')/ dyw(|x —y|)f(h(y,s" — D(x,y)/v)),
with D(z,y) = |z — y|.
The homogenous steady state h(x,t) = hg is

* OO

ho = k. (ho) /

J 0

L= wBw(p, \)n(A)EF(A).

l’ﬁ(p:)\):/ dyw(|ype= e Mul/v B = f'(ho).

F(s)ds/ dyw(|yl). so that we obtain



Full Model

In the limit v — oo, w(p, \) — w(p).
Then, for n(t) = ae " “*H(t), we have
1+ N a = kB(p)F(N).
For a dynamic instability to occur, we must have

Re(A) = 0 and Im(A) # 0, i.e. there must be a pair
w,p # 0s.t. A =1w and

1+ iw/a = kB (p)F (iw).



Full Model

e o~

Defining C(w) = Re(F(iw)), S(w) = Im(F(iw)), where
Clw) = [ dsF(s) costes) <IC(O)]
Equating the real afld imaginary parts, we get
1 = kBO(P)C(w), w/a = KPib(p)S(w).

Dividing the second equation by the first gives

g = H(w), with H(w) := %



Instability Analysis

Bifurcation condition 5 = [, for a dynamic instability

ﬁdﬁ:@(pmin) — C(i) )

Biturcation condition § = (3, for a static instability
ot () = 7
sRW\Pmax) — 7~ -
P 0(0)
Assuming W(pmin) < 0 < W(Pmax ),
dynamic Turing instability if 5 < (5 and ppin # 0,

static Turing instability if 8, < 8 and pmax # 0.



Instability Analysis

Mexican hat with A = 1:

No Turing instability because py,n = 0.
Bulk oscillations instead of static patterns when

ilp) <~ G wO), g2 = TR0

De
1 — \/F /2/"}1
Mexican hat with A = —

Prmin = Pe and ppayx = 0. Turing instability when

) C(we), .
w(0) < — o) (pe)|-




Doubly Periodic Square

Function




Doubly Periodic Hexagonal
Funrtinn
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