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Gradient Systems
Definition (Gradient Systems on R™)

A system of differential equations of the form

X" = —grad V(X),

where X = (z1,...,2z,) and V : R" — R is a C*°-function, and
ov ov
gradV—VV— (8_{[;1”8_%) 0

The vector field grad V is called the gradient of V.
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Gradient Systems
Definition (Gradient Systems on R™)

A system of differential equations of the form

X" = —grad V(X),

where X = (z1,...,2z,) and V : R" — R is a C*°-function, and

gradV:VV:(

v v
Oxy 0z, )

The vector field grad V is called the gradient of V.

Note: the negative sign in this system is traditional. And

—grad V(X) = grad (-V(X)).
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Important equality

The following equality is fundamental:

DVx(Y)= grad V(X) Y.

This says that the derivative of V' at X evaluated at
Y = (y1,...,yn) € R™ is given by the dot product of the vectors
grad V(X) and Y.
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Important equality
The following equality is fundamental:
DVx(Y)= grad V(X) Y.

This says that the derivative of V' at X evaluated at

Y = (y1,...,yn) € R™ is given by the dot product of the vectors
grad V(X) and Y.

This follows immediately from the formula
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Important equality
The following equality is fundamental:
DVx(Y)= grad V(X) Y.

This says that the derivative of V' at X evaluated at

Y = (y1,...,yn) € R™ is given by the dot product of the vectors
grad V(X) and Y.

This follows immediately from the formula

Let X (t) be a solution of the gradient system X' = —grad V(X) with

X (0) = Xo, and let V : R” — R be the derivative of V along this
solution. That is

V(X) = Sv(xm).
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Proposition

The function V is a Lyapunov function for the system

X' = —grad V(X). Moreover, V(X) =0 if and only if X is an
equilibrium point.
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Proposition

The function V is a Lyapunov function for the system
X' = —grad V(X). Moreover, V(X) =0 if and only if X is an
equilibrium point.

Proof.

By the chain rule, we have
V(X) = DVx(X')

= grad V(X)) (—grad V(X))
= —|grad V(X)|? <0.

In particular, V(X) = 0 if and only if grad V(X) = 0. O
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Proposition

The function V is a Lyapunov function for the system
X' = —grad V(X). Moreover, V(X) =0 if and only if X is an
equilibrium point.

Proof.

By the chain rule, we have
V(X) = DVx(X)
= grad V(X) - (—grad V(X))
= —|grad V(X)|? <0.

In particular, V(X) = 0 if and only if grad V(X) = 0. O

v

Remark: Lyapunov functions are scalar functions that may be used to
prove the stability of an equilibrium of an ODE.
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Immediate consequence:
If X* is an isolated minimum of V', then X™* is an asymptotically stable
equilibrium of the gradient system.
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Immediate consequence:
If X* is an isolated minimum of V', then X™* is an asymptotically stable
equilibrium of the gradient system.

The fact that X* is isolated guarentees that V < 0 in a neighbourhood
of X* (not including X*).
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Level surfaces

To understand a gradient flow geometrically, we look at the level

surfaces of the function V : R™ — R. These are the subsets V~!(c)
with ¢ € R.
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Level surfaces

To understand a gradient flow geometrically, we look at the level

surfaces of the function V : R™ — R. These are the subsets V~!(c)
with ¢ € R.

If X € V71(c) is a regular point, that is grad V(X) # 0, then V~1(c)
looks like a ’surface’ of dimension n — 1 near X.
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Level surfaces

To understand a gradient flow geometrically, we look at the level
surfaces of the function V : R™ — R. These are the subsets V~!(c)
with ¢ € R.

If X € V71(c) is a regular point, that is grad V(X) # 0, then V~1(c)
looks like a ’surface’ of dimension n — 1 near X.

If all points in V~1(¢) are regular points, then we say that c is a reqular
value for V.
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Level surfaces

To understand a gradient flow geometrically, we look at the level
surfaces of the function V : R™ — R. These are the subsets V~!(c)
with ¢ € R.

If X € V71(c) is a regular point, that is grad V(X) # 0, then V~1(c)
looks like a ’surface’ of dimension n — 1 near X.

If all points in V~1(¢) are regular points, then we say that c is a regular
value for V.

If X is a nonregular point for V', then grad V(X) =0, so X is a critical
point for the function V, since all partial derivatives of V' vanish at X.
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Level surfaces

To understand a gradient flow geometrically, we look at the level
surfaces of the function V : R™ — R. These are the subsets V~!(c)
with ¢ € R.

If X € V71(c) is a regular point, that is grad V(X) # 0, then V~1(c)
looks like a ’surface’ of dimension n — 1 near X.

If all points in V~1(¢) are regular points, then we say that c is a regular
value for V.

If X is a nonregular point for V', then grad V(X) =0, so X is a critical
point for the function V, since all partial derivatives of V' vanish at X.

In the case n = 2, V~1(c) is a simple curve through X when X is a
regular point. And if ¢ is a regular value, then the level set V~1(c) is a
union of simple (or nonintersecting) curves.
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Suppose that Y is a vector that is tangent to the level surface V~!(c)
at X. Then we can find a curve «(¢) in this level set for which
~'(0) =Y. Since V is constant along -, it follows that

_4d
Cdt|,_,

DVx(Y) Von(t) =0.
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Suppose that Y is a vector that is tangent to the level surface V~!(c)
at X. Then we can find a curve «(¢) in this level set for which
~'(0) =Y. Since V is constant along -, it follows that

d

DVx(Y) = T
t=0

Von(t) =0.

Thus, we have gradV (X) - Y =0, or, in other words, grad V(X) is
perpendicular to every tangent vector to the level set V7"1(c) at X.
That is, the vector field grad V(X)) is perpendicular to the level
surfaces V~!(c) at all regular points of V.
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Theorem (Properties of Gradient Systems)

For the system X' = —grad V(X), the following holds:
Q If c is a reqular value of V', then the vector field is perpendicular to
the level set V=1(c).
@ The critical points of V are the equilibrium points of the system.
@ If a critical point is an isolated minimum of V', then this point is
an asymptotically stable equilibrium point.
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Example, for n = 2

Let V : R? — R be the function V(x,y) = 2%(z — 1) + y2.
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Example, for n = 2

Let V : R? — R be the function V(x,y) = 2%(z — 1) + y2.
Then the gradient system, for X = (z,y)7,

X' =F(X) = —grad V(X)

is given by

{ ¥ = 2z(x—-1)2z-1)
y = —2y.
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Example, for n = 2

The system

{ o = —2a(x—1)(2x—1)

/

y = -2,

has three equilibrium points: (0,0), (3,0) and (1,0). The linearization
at these three points yield the following matrices:

DF(0,0) = (_02 _02>, DF(%,O)z(é _02>,
DF(1,0) = (_2 0 )

0 -2

Hence (0,0) and (1,0) are sinks, while (3,0) is a saddle.
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Example, for n = 2

N
P

Figure: The level sets and phase portrait for the gradient
system determined by V (z,y) = 2%(z — 1)% + 4.
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Example, for n = 2

Other observations:
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Example, for n = 2

Other observations:

e Both the z- and y-axes are invariant, as are the lines x = % and
=1
o The stable curve at (1,0) is the line 2 = 1.

o The unstable curve at (3,0) is the interval (0,1) on the z-axis.
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Passage

A lot of gradient systems can be understood quite well.




Passage

A lot of gradient systems can be understood quite well.

Examples of gradient systems are the Cahn-Hilliard equation, the

extended Fisher-Kolmogorov equation and the Swift-Hohenberg
equation.
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Cahn-Hilliard equation

The Cahn-Hilliard equation is given, in general, by

Ou = A(=Au+ F'(u))
= —V*(V?u— F'(u))

ou 0% [(0%u ,
o —@(@—FW))’

where u = u(z,t), x € Q € R™ and F is a smooth function having two
degenerate minima, e.g.,
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Cahn-Hilliard equation

The Cahn-Hilliard equation is given, in general, by

Ou = A(=Au+ F'(u))
= —V*(V?u— F'(u))

ou 0% [(0%u y
o —@(@—FW)’

where u = u(z,t), x € Q € R™ and F is a smooth function having two
degenerate minima, e.g.,

The function F' is called the potential.
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Applications

The Cahn-Hilliard equation (after John W. Cahn and John E. Hilliard)
describes phase separation in binary alloys: Spinodal decomposition.
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Applications

The Cahn-Hilliard equation (after John W. Cahn and John E. Hilliard)
describes phase separation in binary alloys: Spinodal decomposition.

Definition (Spinodal decomposition)

When binary alloys are cooled rapidly to low temperatures below the
critical point, they tend to form quickly inhomogeneities forming a
granular structure.
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Applications

The Cahn-Hilliard equation (after John W. Cahn and John E. Hilliard)
describes phase separation in binary alloys: Spinodal decomposition.

Definition (Spinodal decomposition)

When binary alloys are cooled rapidly to low temperatures below the
critical point, they tend to form quickly inhomogeneities forming a
granular structure.

~» PATTERNS
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120 140 160 180

Figure: Microstructural evolution under the Cahn-Hilliard equation,
demonstrating distinctive coarsening and phase separation.
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Many more applications

There are many more applications of the CH-equation:
e Electric voltage

o Reacting chemicals

n)
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Many more applications

There are many more applications of the CH-equation
e Electric voltage
o Reacting chemicals

For my masterthesis: Patterns in musselbeds.
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Connection between CH-equation and gradient systems
We introduce the functional

W(u)z/Q{F(u)—l—%]VQUF} dz,

where the function F'(u), as before, is smooth with two degenerate
minima.
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Connection between CH-equation and gradient systems
We introduce the functional

W(u)z/Q{F(u)—i—%]VQUF} dz,

where the function F'(u), as before, is smooth with two degenerate
minima.

The function F'(u) is a so-called double well potential.

EX E 0 1 2
u
024

Figure: The double well potential F(u) = tu? — Ju?.
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Connection between CH-equation and gradient systems
One can show:

% = —Kgrad W(u) = —-KV*(V?u — F'(u)),

where K is some positive constant or function. !
Here, the notion of Hilbert space is needed!

HFife]
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Connection between CH-equation and gradient systems

One can show:

ou

o = —Kgrad W(w) = ~KVA(V2u — F'(w),

where K is some positive constant or function. !
Here, the notion of Hilbert space is needed!

Hence the Cahn-Hilliard equation is a gradient system, and W a
Lyapunov function.

HFife]

efanie Postma (Universiteit Leiden)Pattern formation in gradient systems March 7, 2012 20 / 32



Connection between CH-equation and gradient systems

One can show:

% = —Kgrad W(u) = —-KV*(V?u — F'(u)),

where K is some positive constant or function. !

Here, the notion of Hilbert space is needed!

Hence the Cahn-Hilliard equation is a gradient system, and W a
Lyapunov function.

Remark: This is a very simple explanation of the CH-equation as a
gradient system.

HFife]
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Other equations
The Cahn-Hilliard equation, for F'(u) = 4—11u4 —gu, is

ot 0x? ’
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Other equations
The Cahn-Hilliard equation, for F(u) = tu* — 1u?, is

Ou_ 0 [Pu_ - 5
ot 0x2 | Oa2 vmuwr

Another fourth order parabolic differential equation, for f(u) = u — u3:

ou _ 84u 82u

where v > 0 and 5 € R.
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Other equations
The Cahn-Hilliard equation, for F(u) = tu* — 1u?, is

du ? (% 5
A A

Another fourth order parabolic differential equation, for f(u) = u — u3:

ou _ 84u 82u

where v > 0 and 5 € R.

B>0: FExtended Fisher-Kolmogorov equation (EFK),

B<0: Swift-Hohenberg equation (SH).
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Other equations
The Cahn-Hilliard equation, for F(u) = tu* — 1u?, is

du ? (% 5
A A

Another fourth order parabolic differential equation, for f(u) = u — u3:

ou _ 84u 82u

where v > 0 and 5 € R.

B>0: FExtended Fisher-Kolmogorov equation (EFK),
B<0: Swift-Hohenberg equation (SH).

Note that parameters v and 5 can be combined into a single parameter
via a scaling of the spatial coordinate.
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The EFK- and SH-equation, for various nonlinearities f(u), again serve
as a model in many applications:

e pattern formation in a variety of complex fluids and biological
materials

o travelling water waves in a shallow channel.
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The Fisher-Kolmogorov equation

A simular, more simple equation, for § > 0 and v = 0:

ou 9% 3
=5 tu—u".

ot Ox2

The Fisher-Kolmogorov equation (FK).
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The Fisher-Kolmogorov equation

A simular, more simple equation, for § > 0 and v = 0:

ou 9% 3
=5 tu—u".

ot da?
The Fisher-Kolmogorov equation (FK).

Nonlinear reaction-diffusion equation, which is extensively studied.

Stefanie Postma (Universiteit Leiden)Pattern formation in gradient systems March 7, 2012 23 / 32



The stationary solutions of the FK-equation satisfy the ODE:

"

u' = —u+ud. (1)




The stationary solutions of the FK-equation satisfy the ODE:

"

u' = —u+ud. (1)

C

.
N

-1

7
;

Figure: The phase plane of (1) in the (u,v) = (u, u’)-plane.
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The stationary solutions of the FK-equation satisfy the ODE:

"

u' = —u+ud. (1)

C

.
N

-1

7
;

Figure: The phase plane of (1) in the (u,v) = (u, u’)-plane.
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Bounded solutions of the FK-equation:

e Constant solutions: u(x) = 0 (unstable), u(z) =1, u(z) = —1
(stable).

e Two kinks or heteroclinic solutions connecting (u,u’) = (£1,0):

u(x) = £ tanh (\%)

@ Periodic solutions: Infinitely many solutions, which oscillate
around u = 0.
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Introduce the energy functional or Hamiltonian:

which is constant along solutions of (1).

«~s The classical energy of a particle in a potential.
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Introduce the energy functional or Hamiltonian:

B(u) = 3()? - {0~ 12,

which is constant along solutions of (1).

«~s The classical energy of a particle in a potential.

In connection with the Hamiltonian: an action functional, Lagrangian

T(u) = / (%(u')2+i(1—u2)2> da.

Here J(u) is a Lyapunov function for the flow of the original
FK-equation.

action:
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The EFK- and SH-equation
The Extended Fisher-Kolmogorov equation

ou oM 9% 3
E——w‘i‘ﬂwﬁ-U—u, ﬂ>0.
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The EFK- and SH-equation
The Extended Fisher-Kolmogorov equation

ou ' +5&
Ox2

E——@ +u—u3, 5> 0.

The Swift-Hohenberg equation

2 2
88_7::_(1—1_%) +au—ud, aeR

can be rescaled to

ot Ozt Ox? ’
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General equation

Equations of the general form

ou _ 84 2u

where f(u) is a nonlinear function.
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General equation

Equations of the general form

ou _ 84 2u

where f(u) is a nonlinear function.

For example,

f(u) =u—u®  and therefore F(u) = /f(s) ds = %uZ Y
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General equation

where we set f(u)

Again interested in the stationary (time-independent) solutions:
3

—’)’U/I”-i-,@u”-i-f(u) =0,
=UuU—u".

n)
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General equation

Again interested in the stationary (time-independent) solutions:

_vu//// +l8u/l + f(u) — 0’
where we set f(u) = u — u®.

The energy functional or Hamiltonian is

B(u) =~y + D+ Dl 4 B,

Here F'(u) is the potential.
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General equation
Again interested in the stationary (time-independent) solutions:
g y
_'-)/’U/”// +/8u/l + f(u) — 07
where we set f(u) = u — u®.

The energy functional or Hamiltonian is

E(U) _ —’}/’U/,UW + %(ul/)2 +

B

5 ()% + F(u).

Here F'(u) is the potential.

The Lagrangian action associated with this Hamiltonian is

() = / (%(u")2+§(u’)2—p(u))) da.

Here J(u) is a Lyapunov function for the flow of the original general
form of the EFK-equation.
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Comparison

The functional for the Cahn-Hilliard equation:
L o2, 12
W(u) = F(u) + §|V ul® b dx.

The functional for the general stationary equation:

J(u) = / (%(u")Q + g(u')2 —F(u))) dz.
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Comparison

The functional for the Cahn-Hilliard equation:
L o2, 12
W(u) = F(u) + §|V ul® b dx.

The functional for the general stationary equation:

J(u) = / (%(u”)Q + g(u')2 —F(u))) dz.

Both Lyapunov functions!
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Last remarks

A lot of research has been done for these type of equations.
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Last remarks

A lot of research has been done for these type of equations.

Goal for my master thesis:

To describe the patterns found in musselbeds, using the Cahn-Hilliard
equation.
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Thank you for your attention!
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