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From the lab of Wytse Wadman



The Neuron

• Nernst potential
• Single Compartment
• Hodgkin-Huxley formalism
• Voltage dependent conductance
• Giant squid axon
• Reduced models
• Leaky integrate and fire neurons



Balancing diffusion and electric potential

Taken from Izhikevich



Membrane

Taken from Izhikevich



The Neuron - Nernst Potential

The Nernst Potential is the electric potential force over the cell
membrane that balances diffusion. Ion pumps are responsible
for differences in concentration of ions across the membrane.

Eion =
RT

zF
ln

[Ion]out

[Ion]In

Na+ 90 mV
K+ -90 mV
Cl− -89 mV
Ca2+ 136 mV

R: universal gas constant
T : temperature in degrees Kelvin
F : Faraday’s constant
z: valence of the ion



Neuron: Single Compartment

Kirchof’s law states that the total current I is the sum of all
ion-currents plus the membrane’s capacitive current:

I = CV̇ + INa + ICa + IK + ICl

If the system is in equilibrium (dV
dt = 0) and the net current

vanishes it follows that

V =
gNaENa + gCaECa + gKEK + gClECl

gNa + gCa + gK + gCl



Neuron: Hodgkin-Huxley equations

• Conservation of charge across the membrane of a cell:

C
dV

dt
= −

∑
Iion + Iapplied

• Iion = ḡmjhk(V − VR)

• Conductance ḡmjhk

activation opens as the voltage increases
inactivation closes as the voltage increases

• m and h are functions of time. For each gate there is an
auxiliary equation for the kinetics which describes how fast
the (in)activation approaches its voltage dependent
asymptotic value:

dχ

dt
= (χ∞(V )− χ)/τχ(V )



Neuron: Voltage dependent conductance

m and h are functions of time. For each gate there is an
auxiliary equation for the kinetics which describes how fast the
(in)activation approaches its voltage dependent asymptotic
value:

dχ

dt
= (χ∞(V )− χ)/τχ(V )



Neuron: Giant Squid

The full Hodgkin-Huxley equations are:

CV̇ = I − ḡKn4(V − EK)− ḡNam
3h(V − ENa)− ḡL(V − EL)

ṅ = (n∞(V )− n)/τn(V )

ṁ = (m∞(V )− n)/τm(V )

ḣ = (h∞(V )− n)/τh(V )



Synaps taken from Kandel



Synaptic Process



Classic Binding Scheme (Magleby and Stevens (1972))

A + R
k1
�

k−11
AR

β
�
α

ARopen

• A is the neurotransmitter or Agonist
• R is receptors
• k1 and k−1 are the binding and unbinding rates of

transmitter to the receptor in unitis of M−1s−1 and s−1

• AR is the transmittor-receptor complex
• β and α are the channel opening and closing rates (1/s)



Binding Scheme Simplified

• Neurotransmitter crosses the cleft and binds instantly to a
certain number of receptors

• unbound neurotransmitter disappears (so no rebinding)

A + R ↽
k−1

AR
β
�
α

ARopen

• Differential equations for transmitter-receptor complex
dAR

dt
= −k−1AR− βAR + αARopen

dARopen

dt
= βAR− αARopen



Synaps dynamics

ARopen(t) =
AR(0)β

r1 − r2
(exp(r1t)− exp(r2t))

with

r1 = −a +
√

a2 − b r2 = −a−
√

a2 − b

a =
k−1 + α + β

2
b = k1α



Synaptic Current

The resulting synaptic current is of the form

Isyn(t) =
gmax

τ1 − τ2
(exp−t/τ1 − exp−t/τ2)(Vm − Esyn)



Original 4D HH-model

CV̇ = I − gKn4(V − VK)︸ ︷︷ ︸
IK

− gNam
3h(V − VNa)︸ ︷︷ ︸

INa

− gL(V − VL)︸ ︷︷ ︸
IL

ṅ =
n∞(V )− n

τn(V )

ḣ =
h∞(V )− h

τh(V )

ṁ =
m∞(V )−m

τm(V )

Multi time-scales due to the channel properties!



The INa-IK-model

• m and h hebben dezelfde tijdschaal als V . Remove h and
replace m by m∞(V )

• High-threshold K+: Saddle-node on invariant circle
bifurcation

• Low-threshold K+: Andronov Hopf bifurcation

CV̇ = I −
IL︷ ︸︸ ︷

gL(V − EL)−

INa︷ ︸︸ ︷
gNam

3
∞(V )(V − ENa)−

IK︷ ︸︸ ︷
gKn(V − EK)

ṅ =
n∞(V )− n

τn(V )



High threshold K+, Izhikevich

- V-nullcline has
shifted up

- Saddle and node
coalesce

- transition from
saddle-node to
homoclinic to limit
cycle



Low threshold K+, Izhikevich

A small stable limit cycle after Hopf bifurcation
Size limit cycle increases with increasing I



Towards continuum models

• A continuum model for 1D neural mass will be derived
with a lot of handwaving

• Traveling waves: numerics & analysis



From spike to rate 1/2

Activity at the synapse:

Qg = ḡ
∑
m

δ(t− Tm)

Q: second order (time) differential operator for the synapse.

Short-term spatial averaging, assuming that the synaptic
response is slowly varying: 〈Qg〉t is approximately constant,
where

〈x〉t =
1

∆

∫ t

t−∆
x(s) ds

then
Qg = f

Where f is the instantaneous firing rate.



From spike to rate 2/2

• For a single neuron driven with a constant drive, the firing
rate is a function of the drive alone.

• Assuming the neuron spends most of the time close to rest,
where V = 0, the drive is proportional to Vs − V ≈ Vs

• Absorb the factor Vs in the conductance V

For a single population with self-feedback:

Qg = w0f(g)

A common choice for the population firing rate function is the
sigmoid:

f(g) =
1

1 + exp(−β(g − h))



1-D tissue model
In one dimension we let g = g(t, x) and obtain the
integro-differential equation:

Qg =

∫ ∞

−∞
w(x, y)f(g(t− |x− y|/v, y)) dy

• f : from synaptic activity to spike rate
• often: w(x, y) = w(|x− y|)
• in which case the rhs is a convolution integral.



Analysis of synaptically generated traveling waves

Ermentrout, Journal of Computational Neuroscience 5, 191-208 (1998)



Ermentrout98 (2)

Discrete version:

C
dV j

dt
= −Iion(Vj , gating variables)− Isyn

j (t)

With the synapse current given by:

Isyn(t) = gsyn

∑
k

w(|j − k|)sk(t)(V − Vsyn)

and the synaptic gating variables either specified:

sj(t) = α((t− tj)
+),

where tj is the time of firing of cell j and α a suitable
α-function, or with its own dynamics:

dsj

dt
= K(Vj(t))(1− sj)− βsj .



Ermentrout98 (3)

Continuous version:

∂V (x, t)

∂t
= −Iion − Isyn(x, t),

where
Isyn(x, t) =

∫ x1

x0

w(x− y)s(y, t) dy.

Examples for the connectivity function

w(x) =
1

2σ
e−|x|/σ

w(x) =
1√
πσ

e−(x/σ)2

w(x) =

{
1
2σ for |x| < σ
0 for |x| ≥ σ



Ermentrout98 (4): traveling waves

Assume there is a constant speed traveling wave. The time of
spiking of a cell is given by t∗ = x/v and

s(x, t) = α(t− x/v) = α(ξ/v), vt + x = ξ

stot(x, t) = stot(ξ) =

∫ ∞

0
w(ξ − η)α(η/v) dη



Ermentrout98 (5): Integrate and fire!

Integrate and fire model:

∂V (x, t)

∂t
= −V (x, t) + Isyn(x, t),

where

Isyn(x, t) = gsyn∆

∫ ∞

−∞
w(x− x′)α(t− t∗(x′)) dx′.

Traveling wave Ansatz: V (x, t) = V (vt + x) = V (ξ), where

v
dV

dξ
= −V (ξ) + gsyn∆

∫ ∞

0
w(ξ − η)α(η/v) dη

subject to the conditions:
(i) V (ξ) → 0 as ξ →∞
(ii) V (0) = VT

(iii) V (ξ) → 0 as ξ → −∞



Ermentrout98 (6) wavespeed

The implicit relation between the wave velocity v and the
threshold is given by the relation:

VT =
gsyn∆

v

∫ 0

−∞
dξ eξ/v

∫ ∞

0
dη w(ξ − η)α(η/v).



Waves in Neural media, Hutt & Rougier 2010

Numerical integration of

LV (x, t) =

∫
Ω

K(x− y)S

(
V (y, t− |x− y|

c
)

)
dy + I(x, t)

revealing oscillations and traveling waves



Hopf in two-layers neural field

Faye & Faugeras, Physica D 2010.



Two neural layers continued

Faye & Faugeras, Physica D 2010.
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Suggestions for contributions
a The study of the original and very influential papers of Wilson & Cowan

(’72/’73) and Amari (’77).
b Coombes lecture notes lecture 1: section 1.4 is about the Turing instability

in a 1D neural wave equation. The application to visual hallucination is
especially interesting. Numerical simulation is encouraged.

c Coombes lecture notes lecture 2: In this lecture the amplitude equations are
derived in one and two dimensions. It is especially challenging (and
meaningful!) to extend the derivation to two 1D-layers.

d Coombes lecture notes lecture 3: This lecture is on stability analysis via an
Evans function approach in the case of a Heaviside nonlinearity.

e Coombes lecture notes lecture 4: This lecture is on interface dynamics is
random neural media.

f Binocular rivalry is a mechanism very well studied, both experimentally,
psychophysically and theoretically. In Kilpatrick & Bressloff (2010) this is
studied in a network with synaptic depression. Extended project: perform
the numerical experiments mentioned in the paper and investigate the
outcome with periodic stimuli in its dependence on on-off times. This has
been done by Suren Jayasuriya & Zachary P. Kilpatrick in ”Effects of
Time-Dependent Stimuli in a Competitive Neural Network Model of
Perceptual Rivalry”, Bulletin of Mathematical Biology (2012). The results
for long off-times are not in agreement with the experiments. What model
gives better agreement?

g Hallucinations is another subject where math modeling is crucial. Present
the original ideas of Ermentrout and Cowan and the follow up by Bressloff
Golubitsky and Cowan. This involves dynamics with the symmetry of the
planar Euclidean group.


