Codim 1 and 2 bifurcations of planar ODEs

Yuri A. Kuznetsov

USS Applied Bifurcation Theory
July 15, 2019
Contents

1. Solutions, orbits, and phase portraits

2. Equilibria, periodic and homoclinic orbits

3. Bifurcations and their classification

4. Local codim 1 bifurcations
 - fold (saddle-node)
 - (Andronov-)Hopf

5. Codim 1 cyclic fold bifurcation

6. Codim 1 bifurcations of connecting orbits

7. Local codim 2 bifurcations
 - cusp
 - Bogdanov-Takens
 - Bautin
Literature

1. SOLUTIONS, ORBITS, AND PHASE PORTRAITS

General planar system:

\[
\begin{cases}
\dot{x} = P(x, y), & \text{or } \dot{X} = f(X), \quad X \in \mathbb{R}^2, \\
\dot{y} = Q(x, y)
\end{cases}
\]

where

\[
X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad f(X) = \begin{pmatrix} P(x, y) \\ Q(x, y) \end{pmatrix}.
\]

Theorem 1 If \(f \) is smooth then for any initial point \(\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \) there exists a unique locally defined solution \(t \mapsto \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \) such that \(x(0) = x_0 \) and \(y(0) = y_0 \).
Definition 1 Let I be the maximal definition interval of a solution $t \mapsto X(t)$, $t \in I$. The oriented by the advance of time image $X(I) \subset \mathbb{R}^2$ is called the orbit.

Vector field: $X \mapsto f(X)$

$f(X) \neq 0$ is tangent to the orbit through X \implies orbits do not cross.

Definition 2 Phase portrait of a planar system is the collection of all its orbits in \mathbb{R}^2.

We draw only key orbits, which determine the topology of the phase portrait.
Types of orbits:

1. **Equilibria**: \(X(t) = X_0 \) so that \(f(X_0) = 0 \).

2. **Periodic orbits (cycles)**: \(X(t) \not\equiv X_0 \), \(X(t + T) = X(t), t \in \mathbb{R} \)
 The minimal \(T > 0 \) is called the **period** of the cycle.

3. **Connecting orbits**: \(\lim_{t \to \pm\infty} X(t) = X_\pm \) with \(f(X_\pm) = 0 \).
 If \(X_- = X_+ \) the connecting orbit is called **homoclinic**
 If \(X_- \not= X_+ \) the connecting orbit is called **heteroclinic**.

4. **All other orbits**
2. **EQUILIBRIA**
\[f(X) = 0 \Leftrightarrow \begin{cases} P(x, y) = 0, \\ Q(x, y) = 0. \end{cases} \]

Jacobian matrix of the equilibrium \(X_0 = (x_0, y_0) \):
\[
A = f_X(X_0) = \begin{pmatrix} P_x & P_y \\ Q_x & Q_y \end{pmatrix} \bigg|_{x=x_0, y=y_0}
\]

Eigenvalues of the equilibrium \(X_0 \) are the eigenvalues of \(A \), i.e. the solutions of
\[
\lambda^2 - \sigma \lambda + \Delta = 0,
\]
where
\[
\sigma = \lambda_1 + \lambda_2 = \text{Tr} A = P_x(x_0, y_0) + Q_y(x_0, y_0), \\
\Delta = \lambda_1 \lambda_2 = \det A = P_x(x_0, y_0)Q_y(x_0, y_0) - P_y(x_0, y_0)Q_x(x_0, y_0).
\]
\[
\lambda_{1,2} = -\frac{\sigma}{2} \pm \sqrt{\frac{\sigma^2}{4} - \Delta}
\]

Definition 3 An equilibrium \(X_0 \) is **hyperbolic** if \(\Re(\lambda) \neq 0 \).
Phase portraits of generic planar systems $\dot{Y} = AY$

<table>
<thead>
<tr>
<th>(n_u, n_s)</th>
<th>Eigenvalues</th>
<th>Phase portrait</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 2)</td>
<td></td>
<td></td>
<td>node</td>
</tr>
<tr>
<td>(1, 1)</td>
<td></td>
<td></td>
<td>focus</td>
</tr>
<tr>
<td>(2, 0)</td>
<td></td>
<td></td>
<td>focus</td>
</tr>
</tbody>
</table>
Definition 4 Two systems are called topologically equivalent if their phase portraits are homeomorphic, i.e. there is a continuous invertible transformation that maps orbits of one system onto orbits of the other, preserving their orientation.

Theorem 2 (Grobman-Hartman) Consider a smooth nonlinear system

\[\dot{X} = AX + F(X), \quad F = O(\|X\|^2) \equiv O(2), \]

and its linearization

\[\dot{Y} = AY. \]

If \(\Re(\lambda) \neq 0 \) for all eigenvalues of \(A \), then these systems are locally topologically equivalent near the origin.

Warning: A stable/unstable node is locally topologically equivalent to a stable/unstable focus.
Trivial topological equivalences

1. Orbital equivalence:

\[\dot{X} = f(X) \sim \dot{Y} = g(Y)f(Y) \]

where \(g : \mathbb{R}^2 \to \mathbb{R} \) is a smooth positive function; \(Y = h(X) = X \) preserves orbits.

2. Smooth equivalence:

\[\dot{X} = f(X) \sim \dot{Y} = [h_Y(Y)]^{-1}f(h(Y)), \]

where \(h : \mathbb{R}^2 \to \mathbb{R}^2 \) is a smooth diffeomorphism; the substitution \(X = h(Y) \) transforms solutions onto solutions:

\[\dot{X} = h_Y(Y)\dot{Y} = f(h(Y)) = f(X). \]

PERIODIC ORBITS AND LIMIT CYCLES

Poincaré map:

\[\xi \mapsto P(\xi) = \mu \xi + O(2), \]

where the multiplier

\[\mu = \exp \left(\int_0^T (\text{div } f) (X^0(t)) \, dt \right) > 0 \]

Definition 5 A cycle of the planar system is **hyperbolic** if \(\mu \neq 1 \).

The cycle is stable if \(\mu < 1 \) and is unstable if \(\mu > 1 \).
HOMOCLINIC ORBITS

Homoclinic orbits to saddles:

\[
\begin{align*}
\sigma &< 0 & \text{small} & \Gamma_0 \\
\sigma &> 0 & \text{big} & \Gamma_0
\end{align*}
\]

Definition 6 *The real number \(\sigma = \lambda_1 + \lambda_2 = (\text{div } f)(X_0) \) is called the saddle quantity of \(X_0 \).*
Near the saddle, any planar system is C^1-equivalent to its linearization.

Singular map:

\[
\begin{align*}
\dot{x} &= \lambda_1 x \\
\dot{y} &= \lambda_2 y \\
\end{align*}
\]

\[
\xi = \Delta(\eta) = \eta^{-\frac{\lambda_1}{\lambda_2}}
\]

Regular map:

\[
\tilde{\eta} = Q(\xi) = A \xi + O(2), \quad A > 0.
\]

Poincaré map:

\[
\eta \mapsto \tilde{\eta} = Q(\Delta(\eta)) = A \eta^{-\frac{\lambda_1}{\lambda_2}} + \ldots
\]

The homoclinic orbit is stable if $\sigma < 0$ and is unstable if $\sigma > 0$.
If \(\sigma = \lambda_1 + \lambda_2 = 0 \), then

\[
\text{if } \int_{-\infty}^{\infty} (\text{div } f)(X^0(t)) \, dt < 0 \text{ the homoclinic orbit is stable;}
\]

\[
\text{if } \int_{-\infty}^{\infty} (\text{div } f)(X^0(t)) \, dt > 0 \text{ the homoclinic orbit is unstable.}
\]

Homoclinic orbits to saddle-nodes:
3. BIFURCATIONS AND THEIR CLASSIFICATION

Consider a smooth 2D system depending on one parameter

\[\dot{X} = f(X, \alpha), \quad X \in \mathbb{R}^2, \quad \alpha \in \mathbb{R}. \]

Definition 7 A point \(\alpha_0 \) is called a **bifurcation point** if in any neighborhood of \(\alpha_0 \) there is a point \(\alpha \) for which

\[\dot{X} = f(X, \alpha) \not\sim \dot{X} = f(X, \alpha_0). \]

The appearance of a topologically non-equivalent system is called a **bifurcation**.

Since the number of equilibria, the number of periodic orbits, and their stability, as well as the presence of connecting orbits, are topological invariants, a bifurcation of the 2D-system means a change of (some of) these properties.
Definition 8 A **codimension** of a bifurcation is the number of conditions on which the bifurcating phase object has to satisfy.

Classification of codimension-one bifurcations:

1. **Local (near equilibria)**
 - *saddle-node (fold)*
 - *(Andronov–) Hopf*

2. **Local of cycles (near periodic orbits)**
 - *(cyclic) fold*

3. **Global**
 - **Bifurcations of homo- and heteroclinic orbits**
 - *saddle homoclinic*
 - *saddle–node homoclinic*
 - *heteroclinic*

Only codim 1 bifurcations occur in generic one-parameter systems.
4. LOCAL CODIM 1 BIFURCATIONS

- If X_0 is a hyperbolic equilibrium of $\dot{X} = f(X, \alpha_0)$, then it remains hyperbolic for all α sufficiently close to α_0 (but can slightly shift).

- A local bifurcation can happen only to a non-hyperbolic equilibrium with $\Re(\lambda) = 0$.

- Codimension-1 critical cases:
 1. Fold (saddle-node): $\lambda_1 = 0$
 2. Andronov-Hopf (weak focus): $\lambda_{1,2} = \pm i\omega$
Fold bifurcation: $\lambda_1 = 0$, $\lambda_2 \neq 0$

By a linear diffeomorphism, $\dot{X} = f(X,0)$ can be transformed into
$$
\begin{align*}
\dot{x} &= ax^2 + bxy + cy^2 + O(3), \\
\dot{y} &= \lambda_2 y + O(2).
\end{align*}
$$

If $a \neq 0$ then $\dot{X} = f(X)$ is locally topologically equivalent near the origin to
$$
\begin{align*}
\dot{x} &= ax^2, \\
\dot{y} &= \lambda_2 y.
\end{align*}
$$

Saddle-node ($a > 0$):

\[
\begin{array}{l}
\lambda_2 < 0 \\
\lambda_2 > 0
\end{array}
\]
Theorem 3 (Fold normal form) If \(a \neq 0 \) and \(\lambda_2 \neq 0 \), then \(\dot{X} = f(X, \alpha) \) is locally topologically equivalent near the saddle-node to

\[
\begin{align*}
\dot{x} &= \beta(\alpha) + ax^2, \\
\dot{y} &= \lambda_2 y,
\end{align*}
\]

where \(\beta(0) = 0 \).

Two equilibria \(O_{1,2} = \left(\mp \sqrt{-\frac{\beta}{a}}, 0 \right) \) collide and disappear in the 1D center manifold \(W_c = \{ y = 0 \} \), provided \(\beta'(0) \neq 0 \).
Andronov-Hopf bifurcation: $\lambda_{1,2} = \pm i\omega, \ \omega > 0$

By a linear diffeomorphism, $\dot{X} = f(X,0)$ can be transformed into

$$\begin{cases}
\dot{x} = -\omega y + R(x,y), & R = O(2), \\
\dot{y} = \omega x + S(x,y), & S = O(2).
\end{cases}$$

Introduce $z = x + iy \in \mathbb{C}$. Then this system becomes

$$\dot{z} = i\omega z + g(z,\bar{z}),$$

where

$$g(z,\bar{z}) = R\left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i}\right) + iS\left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i}\right).$$

Write its Taylor expansion in z, \bar{z}:

$$g(z,\bar{z}) = \frac{1}{2}g_{20}z^2 + g_{11}z\bar{z} + \frac{1}{2}g_{02}\bar{z}^2 + \frac{1}{2}g_{21}z^2\bar{z} + \ldots$$

Definition 9 *The first Lyapunov coefficient* is

$$l_1 = \frac{1}{2\omega^2} \Re(ig_{20}g_{11} + \omega g_{21}).$$
If $l_1 \neq 0$ then $\dot{X} = f(X)$ is locally topologically equivalent near the origin to

$$\begin{cases}
\dot{\rho} = l_1 \rho^3, \\
\dot{\varphi} = 1,
\end{cases}$$

where (ρ, φ) are polar coordinates: $z = \rho e^{i\varphi}$.

Weak focus:

![Diagram showing stable and unstable foci with $l_1 < 0$ and $l_1 > 0$]
Theorem 4 (Andronov-Hopf normal form) If $l_1 \neq 0$ and $\omega > 0$, then $\dot{X} = f(X,\alpha)$ is locally topologically equivalent near the weak focus to

$$\begin{align*}
\dot{\rho} &= \rho(\beta(\alpha) + l_1 \rho^2), \\
\dot{\phi} &= 1.
\end{align*}$$

where $\beta(0) = 0$.

A limit cycle $\rho_0 = \sqrt{-\beta / l_1} > 0$ appears while the focus changes stability.

The direction of the cycle bifurcation is determined by the first Lyapunov coefficient l_1 of the weak focus:

- **supercritical** (soft, non-catastrophic) Andronov-Hopf bifurcation ($l_1 < 0$);
- **subcritical** (hard, catastrophic) Andronov-Hopf bifurcation ($l_1 > 0$).
Supercritical Andronov-Hopf bifurcation: $l_1 < 0$

The stable equilibrium is replaced by small-amplitude oscillations within an attracting domain.
Subcritical Andronov-Hopf bifurcation: $l_1 > 0$

The domain of attraction of the stable focus shrinks, while it becomes unstable.
Example: \[
\begin{align*}
\dot{x} &= y, \\
\dot{y} &= -x + \alpha y + x^2 + xy + y^2.
\end{align*}
\]

At \(\alpha = 0\) the equilibrium \(x = y = 0\) of the reversed system
\[
\begin{align*}
\dot{x} &= -y, \\
\dot{y} &= x - x^2 - xy - y^2,
\end{align*}
\]
has eigenvalues \(\lambda_{1,2} = \pm i\) \((\omega = 1)\).

Introduce \(z = x + iy\), then \(x^2 + y^2 = |z|^2 = z\bar{z}\) and
\[
\dot{z} = \dot{x} + iy = -y + ix - ix^2 - ixy - iy^2 = iz - iz\bar{z} - \frac{1}{4}(z^2 - \bar{z}^2) = iz - \frac{1}{4}z^2 - iz\bar{z} + \frac{1}{4}\bar{z}^2
\]
so that \(\omega = 1\), \(g_{20} = -\frac{1}{2}\), \(g_{11} = -i\), \(g_{02} = \frac{1}{2}\), \(g_{21} = 0\).

\[
\bar{l}_1 = \frac{1}{2\omega^2} \Re(ig_{20}g_{11} + \omega g_{21}) = \frac{1}{2} \left(i \frac{1}{2} i + 1 \cdot 0 \right) = -\frac{1}{4}.
\]

For the original system, \(l_1 = \frac{1}{4} > 0 \Rightarrow \) subcritical Hopf bifurcation (an unstable cycle exists for small \(\alpha < 0\) but disappears for \(\alpha > 0\))
Practical computation of a and l_1 in \mathbb{R}^2 ($n = 2$)

Suppose $X_0 = 0$, $\alpha_0 = 0$ and write the Taylor expansion in the original coordinates:

$$f(X, 0) = AX + \frac{1}{2}B(X, X) + \frac{1}{6}C(X, X, X) + O(4)$$

where

$$(AX)_i = \sum_{j=1}^{n} \frac{\partial f_i(U, 0)}{\partial U_j} \bigg|_{U=0} X_j,$$

$$B_i(X, Y) = \sum_{j,k=1}^{n} \frac{\partial^2 f_i(U, 0)}{\partial U_j \partial U_k} \bigg|_{U=0} X_j Y_k,$$

$$C_i(X, Y, Z) = \sum_{j,k,l=1}^{n} \frac{\partial^3 f_i(U, 0)}{\partial U_j \partial U_k \partial U_l} \bigg|_{U=0} X_j Y_k Z_l,$$

for $i = 1, \ldots, n.$
Theorem 5 The fold normal form coefficient can be computed as

\[a = \frac{1}{2} \langle p, B(q, q) \rangle \]

where \(p, q \in \mathbb{R}^2 \) satisfy

\[Aq = A^T p = 0 \]

and \(p^T q \equiv \langle p, q \rangle = 1 \).

Theorem 6 The first Lyapunov coefficient can be computed in 2D as

\[l_1 = \frac{1}{2\omega^2} \Re \left[i \langle p, B(q, q) \rangle \langle p, B(q, \bar{q}) \rangle + \omega \langle p, C(q, q, \bar{q}) \rangle \right] \]

where \(p, q \in \mathbb{C}^2 \) satisfy

\[Aq = i\omega q, \quad A^T p = -i\omega p \]

and \(\bar{p}^T q \equiv \langle p, q \rangle = 1 \).
Example: Hopf bifurcation in a prey-predator system

Consider the following system

\[
\begin{cases}
\dot{x}_1 = rx_1(1 - x_1) - \frac{cx_1x_2}{\alpha + x_1} \\
\dot{x}_2 = -dx_2 + \frac{cx_1x_2}{\alpha + x_1}
\end{cases}
\sim
\begin{cases}
\dot{x}_1 = rx_1(\alpha + x_1)(1 - x_1) - cx_1x_2 \\
\dot{x}_2 = -\alpha dx_2 + (c - d)x_1x_2
\end{cases}
\]

At \(\alpha_0 = \frac{c-d}{c+d} \) the last system has the equilibrium \((x_1^{(0)}, x_2^{(0)}) = \left(\frac{d}{c+d}, \frac{rc}{(c+d)^2} \right) \) with eigenvalues \(\lambda_{1,2} = \pm i\omega \), where \(\omega^2 = \frac{rc^2d(c-d)}{(c+d)^3} > 0 \).

Translate the origin of the coordinates to this equilibrium by

\[
\begin{cases}
x_1 = x_1^{(0)} + X_1, \\
x_2 = x_2^{(0)} + X_2.
\end{cases}
\]
This transforms the system into
\[
\begin{align*}
\dot{X}_1 &= -\frac{cd}{c+d}X_2 - \frac{rd}{c+d}X_1^2 - cX_1X_2 - rX_1^3, \\
\dot{X}_2 &= \frac{rc(c-d)}{(c+d)^2}X_1 + (c-d)X_1X_2,
\end{align*}
\]
that can be represented as
\[
\dot{\mathbf{x}} = A\mathbf{x} + \frac{1}{2}B(\mathbf{x},\mathbf{x}) + \frac{1}{6}C(\mathbf{x},\mathbf{x},\mathbf{x}),
\]
where
\[
A = \begin{pmatrix}
0 & -\frac{cd}{c+d} \\
\frac{\omega^2(c+d)}{cd} & 0
\end{pmatrix},
B(\mathbf{x},\mathbf{y}) = \begin{pmatrix}
-\frac{2rd}{c+d}X_1Y_1 - c(X_1Y_2 + X_2Y_1) \\
(c-d)(X_1Y_2 + X_2Y_1)
\end{pmatrix}
\]
and
\[
C(\mathbf{x},\mathbf{y},\mathbf{z}) = \begin{pmatrix}
-6rX_1Y_1Z_1 \\
0
\end{pmatrix}.
\]
The complex vectors
\[q = \begin{pmatrix} cd \\ -i\omega(c + d) \end{pmatrix}, \quad p = \frac{1}{2\omega cd(c + d)} \begin{pmatrix} \omega(c + d) \\ -icd \end{pmatrix}. \]
satisfy \(Aq = i\omega q, \ A^T p = -i\omega p \) and \(\langle p, q \rangle = 1. \)

Then
\[g_{20} = \langle p, B(q, q) \rangle = \frac{cd(c^2 - d^2 - rd) + i\omega c(c + d)^2}{(c + d)}, \]
\[g_{11} = \langle p, B(q, \bar{q}) \rangle = -\frac{r cd^2}{(c + d)}, \quad g_{21} = \langle p, C(q, q, \bar{q}) \rangle = -3rc^2d^2, \]
and the first Lyapunov coefficient
\[l_1(\alpha_0) = \frac{1}{2\omega^2} \text{Re}(ig_{20}g_{11} + \omega g_{21}) = -\frac{rc^2d^2}{\omega} < 0. \]
Therefore, a **stable cycle** bifurcates from the equilibrium via the super-critical Hopf bifurcation for $\alpha < \alpha_0$.

One can prove that the cycle is **unique**.
5. CODIM 1 CYCLIC FOLD BIFURCATION

Parameter-dependent Poincaré map:

\[\xi \mapsto \tilde{\xi} = P(\xi, \alpha), \]

where \(P(\xi, 0) = \xi + O(2) \quad (\mu = 1) \)

Lemma 1 If

\[p_2(0) = \frac{1}{2} P_{\xi\xi}(0, 0) \neq 0, \]

then there exists a smooth function \(\delta = \delta(\alpha) \) such that the substitution \(x = \xi + \delta(\alpha) \) reduces the map

\[\xi \mapsto P(\xi, \alpha) = p_0(\alpha) + [1 + g(\alpha)]\xi + p_2(\alpha)\xi^2 + O(3), \]

where \(g(0) = 0, p_0(0) = P(0, 0) = 0, \) to the form

\[x \mapsto \tilde{x} = \beta(\alpha) + x + b(\alpha)x^2 + O(3) \]

with \(\beta(0) = 0 \) and \(b(0) = p_2(0) \neq 0. \)
Cyclic fold: \(x \mapsto \beta + x + bx^2, \ b > 0 \)

Two hyperbolic cycles (unstable \(C_1 \) and stable \(C_2 \)) collide forming a non-hyperbolic cycle \(C_0 \), and disappear.
6. CODIM 1 BIFURCATIONS OF CONNECTING ORBITS

- Saddle homoclinic bifurcation

Singular map: \(\eta \mapsto \xi = \eta^{-\frac{\lambda_1}{\lambda_2}}. \)

Regular map:
\[
\xi \mapsto \tilde{\eta} = \beta(\alpha) + A(\alpha)\xi + O(2), \quad A(0) > 0.
\]

Poincaré map:
\[
\eta \mapsto \tilde{\eta} = \beta(\alpha) + A(\alpha)\eta^{-\frac{\lambda_1}{\lambda_2}} + \ldots
\]
Saddle homoclinic bifurcation: $\sigma < 0$

A stable cycle C_β bifurcates from Γ_0 while the separatrices exchange.
Saddle homoclinic bifurcation: $\sigma > 0$

An unstable cycle C_{β} bifurcates from Γ_0 while the separatrices exchange.
• Homoclinic saddle-node bifurcation:

\[\Gamma_0 \]

\[\beta < 0 \]
\[\beta = 0 \]
\[\beta > 0 \]

• Heteroclinic saddle bifurcation:

\[C_\beta \]

\[\beta < 0 \]
\[\beta = 0 \]
\[\beta < 0 \]
Example: Allee effect in a prey-predator system

\[
\begin{align*}
\dot{x} &= x(x - l)(1 - x) - xy, \\
\dot{y} &= -\gamma y(m - x).
\end{align*}
\]
7. LOCAL CODIM 2 BIFURCATIONS

Consider a smooth 2D system depending on two parameters

\[\dot{X} = f(X, \alpha), \quad X \in \mathbb{R}^2, \quad \alpha \in \mathbb{R}^2. \]

Curves of codim 1 bifurcations:

- **Fold**:
 \[\begin{align*}
 & f(X, \alpha) = 0, \\
 & \det f_X(X, \alpha) = 0.
 \end{align*} \]

- **Hopf**:
 \[\begin{align*}
 & f(X, \alpha) = 0, \\
 & \text{Tr} \ f_X(X, \alpha) = 0.
 \end{align*} \]

In both cases, we have 3=2+1 equations in \(\mathbb{R}^4 \).

When we cross \(B = \pi \Gamma \) in the \(\alpha \)-plane, the corresponding codim 1 bifurcation occurs.

One has to check that \(\lambda_{1,2} = \pm i\omega \) along the Hopf curve.
Local codim 2 cases in the plane:

Fold: $\lambda_1 = 0$
\[
\begin{align*}
\dot{x} &= ax^2 + O(3) \\
\dot{y} &= \lambda_2 y + O(2)
\end{align*}
\]

Hopf: $\lambda_{1,2} = \pm i\omega$
\[
\begin{align*}
\dot{\rho} &= \omega l_1 \rho^3 + O(4) \\
\dot{\phi} &= \omega + O(1)
\end{align*}
\]

To meet each case, we need to “tune” two parameters while following Γ (or B) \Rightarrow codim 2.

1. $\lambda_1 = 0, \ a = 0$
2. $\lambda_1 = 0, \ \lambda_2 = 0$
3. $\lambda_{1,2} = \pm i\omega, \ l_1 = 0$
Cusp bifurcation: $\lambda_1 = 0, \ a = 0$

The critical system $\dot{X} = f(X, 0)$ can be transformed by a linear diffeomorphism to

$$
\begin{cases}
\dot{x} = p_{11}xy + \frac{1}{2}p_{02}y^2 + \frac{1}{6}p_{30}x^3 + \ldots, \\
\dot{y} = \lambda_2 y + \frac{1}{2}q_{20}x^2 + q_{11}xy + \frac{1}{2}q_{02}y^2 + O(3).
\end{cases}
$$

It has an invariant 1D center manifold $W^c = \{(x, y) : y = W(x)\}$:

$$
y = W(x) = \frac{1}{2}w_2x^2 + O(3)
$$

where $w_2 = -\frac{q_{20}}{\lambda_2}$.

Thus, the restriction of $\dot{X} = f(X, 0)$ to W^c is

$$
\dot{x} = cx^3 + O(4), \text{ where } c = \frac{1}{6} \left(p_{30} - \frac{3}{\lambda_2}q_{20}p_{11} \right).
$$
Theorem 7 (Cusp normal form) \[\text{If } c \neq 0, \text{ then } \dot{X} = f(X, \alpha) \text{ is locally topologically equivalent near the cusp bifurcation to} \]
\[
\begin{cases}
\dot{x} = \beta_1(\alpha) + \beta_2(\alpha)x + sx^3, \\
\dot{y} = \lambda_2 y,
\end{cases}
\]

where \(\beta_1(0) = \beta_2(0) = 0 \) and \(s = \text{sign}(c) = \pm 1 \).

Fold curve(s) \(4\beta_2^3 + 27s\beta_1^2 = 0 \)
Cusp bifurcation diagram \((c < 0, \lambda_2 < 0)\)

Three equilibria exist inside the wedge, pairwise colliding at its borders \(T_{1,2}\) and leaving one equilibrium outside.
Bogdanov-Takens bifurcation: \(\lambda_1 = \lambda_2 = 0 \)

The critical system \(\dot{X} = f(X, 0) \) can be transformed by a linear diffeomorphism to

\[
\begin{align*}
\dot{x} &= y + \frac{1}{2}p_{20}x^2 + p_{11}xy + \frac{1}{2}p_{02}y^2 + O(3) \equiv P(x, y), \\
\dot{y} &= \frac{1}{2}q_{20}x^2 + q_{11}xy + \frac{1}{2}q_{02}y^2 + \frac{1}{6}q_{03}x^2 + O(3).
\end{align*}
\]

By a nonlinear local diffeomorphism (change of variables)

\[
\begin{align*}
\xi &= x, \\
\eta &= P(x, y),
\end{align*}
\]

this system can be reduced near the origin to

\[
\begin{align*}
\dot{\xi} &= \eta, \\
\dot{\eta} &= a\xi^2 + b\xi\eta + \ldots,
\end{align*}
\]

where

\[
a = \frac{1}{2}q_{20}, \quad b = p_{20} + q_{11}.
\]
Theorem 8 (Bogdanov-Takens normal form) \(\text{If } ab \neq 0, \text{ then} \)

\[
\dot{X} = f(X, \alpha)
\]

is locally topologically equivalent near the BT-bifurcation to

\[
\begin{align*}
\dot{x} &= y, \\
\dot{y} &= \beta_1(\alpha) + \beta_2(\alpha)x + x^2 + sxy,
\end{align*}
\]

where \(\beta_1(0) = \beta_2(0) = 0 \) and \(s = \text{sign}(ab) = \pm 1 \).

Bifurcation curves \((ab < 0)\):

- **fold** \(T : \beta_1 = \frac{1}{4} \beta_2^2 \)

- **Andronov-Hopf** \(H : \beta_1 = 0, \beta_2 < 0 \)

- **saddle homoclinic** \(P : \beta_1 = -\frac{6}{25} \beta_2^2 + O(3), \beta_2 < 0 \) (global bifurcation)
BT bifurcation diagram \((ab < 0)\)

A unique limit cycle appears at Andronov-Hopf bifurcation curve \(H\) and disappears via the saddle homoclinic orbit at the curve \(P\).
Bautin ("generalized Hopf") bifurcation: $\lambda_{1,2} = \pm i \omega, \ l_1 = 0$

The critical system $\dot{X} = f(X,0)$ can be transformed by a linear diffeomorphism to the complex form

$$\dot{z} = i \omega z + \sum_{2 \leq j + k \leq 5} \frac{1}{j!k!} g_{jk} z^j \bar{z}^k + O(6),$$

which is locally smoothly equivalent to the Poincaré normal form

$$\dot{w} = i \omega w + c_1 w |w|^2 + c_2 w |w|^4 + O(6),$$

where the Lyapunov coefficients

$$l_j = \frac{1}{\omega} \Re(c_j)$$

satisfy

$$2l_1 = \frac{1}{\omega} \left(\Re(g_{21}) - \frac{1}{\omega} \Im(g_{20} g_{11}) \right) \Rightarrow l_1 = \frac{1}{2\omega^2} \Re(ig_{20}g_{11} + \omega g_{21})$$
If $l_1 = 0$ then

\[
12l_2(0) = \frac{1}{\omega} \Re(g_{32})
\]
\[
+ \frac{1}{\omega^2} \Im \left[g_{20}g_{31} - g_{11}(4g_{31} + 3\bar{g}_{22}) - \frac{1}{3}g_{02}(g_{40} + \bar{g}_{13}) - g_{30}g_{12} \right]
\]
\[
+ \frac{1}{\omega^3} \Re \left[g_{20}(\bar{g}_{11}(3g_{12} - \bar{g}_{30}) + g_{02}\left(\bar{g}_{12} - \frac{1}{3}g_{30}\right) + \frac{1}{3}\bar{g}_{02}g_{03})
\right.
\]
\[
+ g_{11}(\bar{g}_{02}\left(\frac{5}{3}\bar{g}_{30} + 3g_{12}\right) + \frac{1}{3}g_{02}\bar{g}_{03} - 4g_{11}g_{30})
\]
\[
\left. + 3\Im(g_{20}g_{11}) \Im(g_{21}) \right]
\]
\[
+ \frac{1}{\omega^4} \left\{ \Im \left[g_{11}\bar{g}_{02}\left(\bar{g}_{20}^2 - 3\bar{g}_{20}g_{11} - 4g_{11}^2\right) \right]
\right.
\]
\[
+ \Im(g_{20}g_{11}) \left[3\Re(g_{20}g_{11}) - 2|g_{02}|^2 \right] \}
Theorem 9 (Normal form for Bautin bifurcation) If $l_2 \neq 0$ and $\omega \neq 0$, then $\dot{X} = f(X, \alpha)$ is locally topologically equivalent near Bautin bifurcation to the normal form in the polar coordinates:

$$\begin{cases}
\dot{\rho} = \rho(\beta_1(\alpha) + \beta_2(\alpha)\rho^2 + s\rho^4), \\
\dot{\phi} = 1,
\end{cases}$$

where $\beta_1(0) = \beta_2(0) = 0$ and $s = \text{sign}(l_2) = \pm 1$.

Bifurcation curves $(l_2 < 0)$:

- **superctitical Andronov-Hopf** $H^- : \beta_1 = 0, \beta_2 < 0$

- **subctitical Andronov-Hopf** $H^+ : \beta_1 = 0, \beta_2 > 0$

- **cyclic fold** $T_c : \beta_1 = \frac{1}{4} \beta_2^2, \beta_2 > 0$ (global bifurcation)
In the wedge between H^+ and T_c there exist two limit cycles born via different Andronov-Hopf bifurcations, which merge and disappear at the cyclic fold curve T_c.
Example: Bazykin’s prey-predator model

\[
\begin{align*}
\dot{x}_1 &= x_1 - \frac{x_1 x_2}{1 + \alpha x_1} - \varepsilon x_1^2, \\
\dot{x}_2 &= -\gamma x_2 + \frac{x_1 x_2}{1 + \alpha x_1} - \delta x_2^2.
\end{align*}
\]
Generic phase portraits: