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1. Point-to-point connections

e Consider a family of ODEs
= f(z,a), zxz€R" acR,

having equilibria z— and zt1, f(zT,a) = 0.

Def. 1 An orbit I = {x = x(t) : t € R}, where x(t) is a solution to
the ODE system at some «, is called heteroclinic between x— and
xt if

-

lim t) = .
t—>:|:oox() *

If 2= = 20, it is called homoclinic to 0.



e Introduce unstable and stable invariant sets

W z") = {x(0) e R": tﬂToox(t) =z},

W3(zT) = {z(0) e R": t Ii_rlt] z(t) =z}
[
Wt(z™) #(0)
-
| WS (at)

e Then I C W4%(z™) N W3(a™).



e The intersection of W%(z%) and W5(2®) cannot be transversal along
a homoclinic orbit I, since z(t) € T,(nW*“(z®) N T,y W* ().

e Homodclinic orbts exist in generic ODE families only at isolated pa-
rameter values.



Def. 2 A homoclinic orbit I is called regular if
o 7:(z9) has no eigenvalues with R(\) = 0;

° dim(Tx(t)W“(:cO) M Tx(t)WS(ZBO)) = 1;

e The intersection of the traces of W%(z9) and W45(z°) along I is
transversal in the (x,«)-space.




2. Continuation of homoclinic orbits of ODEs

e Homoclinic problem

' f@2a) = 0,
#(1) — f(x(t),0) = 0

< N t_ll)jl’g)@:v(t)—a: = 0, t€eR,

[ 0.a@) —y@)ae = o,

where y is a reference homoclinic solution.

e Truncate with the projection boundary conditions:

| f(0,a)
2(t) - f(2(8), )

LT (20, a)(a(~T) — 2©)
Ly (20, 0)(a(+T) —2°)
.20 —y@)d

) S [_T7 T]

N\

|
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where the columns of Lg and L, span the orthogonal complements
to T4 =T oW"(z0) and 7% =T oW*(a), resp.



e Assume the eigenvalues of A = f,(z9, a) are arranged as follows:

R(ung) <--- < RN(p1) <O<R(A) <---<R(Any)

If V* = {vf,...,fuj;s} and W* = {w’{,...,w;‘bu} span the stable and
unstable eigenspaces of A", then Ly = [V*] and L, = [W*].



o Let (u,\) satisfy R(u1) < pu <0< A< R(N\) and
w = min(|ul,A).
Th. 1 (Beyn) There is a locally unique solution to the truncated

problem for a regular homoclinic orbit with the (xz(-),«)-error that
is O(e—2w1),



Remarks:

1. If WU is one-dimensional, one can use the explicit boundary con-
ditions
x(=T) — (xo + cwq) 0,
(wi,z(T) —2%) = 0,

where Awq = A\jwi and Awa = A\jw3i, without the integral phase
condition.
2. Implemented in MATCONT with possibilities to start
(i) from a large period cycle;
(ii) by homotopy.

(iii) from codim 2 BT-bifurcations of equilibria.



3. Continuation of invariant subspaces

Th. 2 (Smooth Schur Block Factorization) Any paramter-dependent
matrix A(s) € R"*"™ with nontrivial stable and unstable eigenspaces can
be written as

AGs) = Q(s) | M) 28 1 QT ()

where Q(s) = [Q1(s) Q2(s)] such that

e Q(s) is orthogonal, i.e. QT (s)Q(s) = In;

e the eigenvalues of R11(s) € R™X™ gre the unstable eigenvalues of
A(s), while the eigenvalues of Ros(s) € R(n—m)x(n=m) gre the re-
maning (n —m) eigenvalues of A(s);

e the columns of Q1(s) € R"*™ span the eigenspace E(s) of A(s)
corresponding to its m unstable eigenvalues;

e the columns of Qo(s) € R"<(n=m) span the orthogonal complement
EL(s).

e Qi(s) and R;;(s) have the same smoothness as A(s).

Then holds the invariant subspace relation:

Q3 (s)A(s)Q1(s) = 0.



CIS-algorithm [Dieci & Friedman]

e Define

T11(s) Ti2(s) | _ AT
Toi(s) Too(s) | — @ (0)4()Q(0)

for small |s|, where T71(s) € R™m*x™,

e Compute Y € R(n—m)xXm gatisfying the Riccati matrix equation

YT11(s) —To2(s)Y +YT12(s)Y = T1(s).



e Then Q(s) = Q(0)U(s) where

U(s) = [U1(s) Uaz(s)]

with
U]_(S) — ( Y )(L%—m"‘y Y) 27
T
UQ(S) — ( I_Y > (In—m + YYT)_%a

so that columns of Q1(s) = Q(0)U1(s) and Q->(s) = Q(0)U>(s) form
orthogonal bases in £(s) and £+(s).

e In MATCONT, two Riccati equations are included in the defining
BVCP to compute Ls = [V*] and L, = [W*].



4. Detection of higher-order homoclinic singularities

e fold or Hopf bifurcations of z0:

e special eigenvalue configurations (e.g. o = ®(u1) + R(A1) = 0 or
p1 — p2 = 0);

e change of global topology of W* and W™ (orbit and inclination flips);

e higher nontransversality.



5. Cycle-to-cycle connections in 3D ODEs

z= f(z,a), =€ R" acRP

e Let O~ be a limit cycle with only one (trivial) multiplier satisfying
lu| = 1 and having dimW" =m,, .

e Let OT be a limit cycle with only one (trivial) multiplier satisfying

lu| =1 and having dim W3 = ma .

e Let z%(¢) be periodic solutions (with minimal periods T*) corre-
sponding to O and M= the corresponding monodromy matrices,
i.e. M(T*) where

M = f.(zT(#), )M, M(0) = I,.



Isolated families of connecting orbits
e Beyn’s equality: p=n — mj —m, + 2.

e Heteroclinic cycle-to-cycle connections in R3

heteroclinic orbit



e Homoclinic cycle-to-cycle connections in R3

e homoclinic orbit to a hyperbolic cycle = infinite number of cycles
(Poincaré homoclinic structure).



Truncated BVCP
e The connecting solution u(t) is truncated to an interval [r_,74].

e The points u(74) and u(7—) are required to belong to the linear sub-
spaces that are tangent to the stable and unstable invariant mani-
folds of OT and O—, respectively:

{ LT (u(ry) — 2(0))
LT (u(r-) — 27 (0))

0,
0.

e Generically, the truncated BVP composed of the ODE, the above
projection BC's, and a phase condition on u, has a unique solu-
tion family (u, @), provided that the ODE has a connecting solution
family satisfying the pahase condition and Beyn's equality.



Th. 3 (Pampel—-Dieci—Rebaza) If u is a generic connecting solution
to the ODE at parameter value «, then the following estimate holds:

||(u|[7_,7+]704) . (a’ &)” S Ce_2 min(,u—\T—\,M—l—|T—|—|),

where
e ||-|| is an appropriate norm in the space C*([r—,74],R™) x RP,
o u|[7_’7+] Is the restriction of w to the truncation interval,

e 1+ are determined by the eigenvalues of the monodromy matrices
M=,

Adjoint variational eqiation: v = —f] (z%(¢),0)w, w e R™

Let N(t) be the solution to
Then N(T*) = [M~Y(TH]T.



The defining BVCP in 3D: Geometry
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Cycle-related equations:

e Periodic solutions:

@)

it — f(z%,0) =
zE(0) — zE(T%)

¢ Adjoint eigenfunctions: pt =21 ;=1
Moy Hs

o OO

Wt 4+ f] (T, a)w®
wE(TF) — pFw*(0)
(w*(0), wt(0)) — 1

or equivalently

wE + £,1 (2%, a)wT 4+ A\Fw™E
wE(TT) — sTw*(0)
(w*=(0), w*(0)) — 1

where A\t = In |p¥E|, sT = sign(p¥).

e Projection BC: (w*(0), u(r+) — z*(0)) = 0.

|
o



Connection-related equations:

e [ he equation for the connection:

w— f(u,a) =0.

e We need the base points z*(0) to move freely and independently
upon each other along the corresponding cycles O=.

e \We require the end-point of the connection to belong to a plane
orthogonal to the vector f(z1(0),a), and the starting point of the
connection to belong to a plane orthogonal to the vector f(z~(0), «):

(f(x%(0), @), u(r+) — zT(0)) = 0.



The defining BVCP in 3D

( it — TE (2%, a)
z+=(0) — 2*(1)

wT Tif,;r(xi, a)wT + A\Tw*
wE (1) — sTwT(0)

(w*(0), w*(0)) — 1

4 w—Tf(u,a)
(f(z7(0), ), u(1l) — 27(0))
<f($_(0), Oé), U’(O) T x_(0)>
(wt(0),u(1) —27(0))
(w™(0),u(0) —x~(0))

\ lu(0) — 2~ (0)]|? — &2

There is an efficient homotopy method to find a starting solution.
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