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1. Point-to-point connections

• Consider a family of ODEs

ẋ = f(x, α), x ∈ R
n, α ∈ R,

having equilibria x− and x+, f(x±, α) = 0.

Def. 1 An orbit Γ = {x = x(t) : t ∈ R}, where x(t) is a solution to

the ODE system at some α, is called heteroclinic between x− and

x+ if

lim
t→±∞

x(t) = x±.

If x± = x0, it is called homoclinic to x0.



• Introduce unstable and stable invariant sets

Wu(x−) = {x(0) ∈ R
n : lim

t→−∞
x(t) = x−},

W s(x+) = {x(0) ∈ R
n : lim

t→+∞
x(t) = x+}.
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• Then Γ ⊂ Wu(x−) ∩ W s(x+).



• The intersection of Wu(x0) and W s(x0) cannot be transversal along

a homoclinic orbit Γ, since ẋ(t) ∈ Tx(t)W
u(x0) ∩ Tx(t)W

s(x0).
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• Homoclinic orbts exist in generic ODE families only at isolated pa-

rameter values.



Def. 2 A homoclinic orbit Γ is called regular if

• fx(x0) has no eigenvalues with ℜ(λ) = 0;

• dim(Tx(t)W
u(x0) ∩ Tx(t)W

s(x0)) = 1;

• The intersection of the traces of Wu(x0) and W s(x0) along Γ is

transversal in the (x, α)-space.
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2. Continuation of homoclinic orbits of ODEs

• Homoclinic problem

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f(x0, α) = 0,

ẋ(t) − f(x(t), α) = 0,

lim
t→±∞

x(t) − x0 = 0, t ∈ R,
∫ ∞

−∞
〈ẏ(t), x(t) − y(t)〉dt = 0,

where y is a reference homoclinic solution.

• Truncate with the projection boundary conditions:

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

f(x0, α) = 0,

ẋ(t) − f(x(t), α) = 0, t ∈ [−T, T ]

LT
s (x0, α)(x(−T) − x0) = 0,

LT
u (x0, α)(x(+T) − x0) = 0,
∫ T

−T
〈ẏ(t), x(t) − y(t)〉dt = 0,

where the columns of Ls and Lu span the orthogonal complements

to Tu = Tx0Wu(x0) and T s = Tx0W s(x0), resp.
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• Assume the eigenvalues of A = fx(x0, α) are arranged as follows:

ℜ(µns)≤· · ·≤ ℜ(µ1)<0<ℜ(λ1)≤· · ·≤ℜ(λnu)

If V ∗ =
{

v∗1, . . . , v∗ns

}

and W ∗ =
{

w∗
1, . . . , w∗

nu

}

span the stable and

unstable eigenspaces of AT, then Ls = [V ∗] and Lu = [W ∗].



• Let (µ, λ) satisfy ℜ(µ1) < µ < 0 < λ < ℜ(λ1) and

ω = min(|µ|, λ).

Th. 1 (Beyn) There is a locally unique solution to the truncated

problem for a regular homoclinic orbit with the (x(·), α)-error that

is O(e−2ωT ).



Remarks:

1. If Wu is one-dimensional, one can use the explicit boundary con-

ditions

x(−T) − (x0 + εw1) = 0,

〈w∗
1, x(T) − x0〉 = 0,

where Aw1 = λ1w1 and ATw∗
1 = λ1w∗

1, without the integral phase

condition.

2. Implemented in MATCONT with possibilities to start

(i) from a large period cycle;

(ii) by homotopy.

(iii) from codim 2 BT-bifurcations of equilibria.



3. Continuation of invariant subspaces

Th. 2 (Smooth Schur Block Factorization) Any paramter-dependent

matrix A(s) ∈ Rn×n with nontrivial stable and unstable eigenspaces can

be written as

A(s) = Q(s)

[

R11(s) R12(s)
0 R22(s)

]

QT(s),

where Q(s) = [Q1(s) Q2(s)] such that

• Q(s) is orthogonal, i.e. QT(s)Q(s) = In;

• the eigenvalues of R11(s) ∈ Rm×m are the unstable eigenvalues of

A(s), while the eigenvalues of R22(s) ∈ R
(n−m)×(n−m) are the re-

maning (n − m) eigenvalues of A(s);

• the columns of Q1(s) ∈ R
n×m span the eigenspace E(s) of A(s)

corresponding to its m unstable eigenvalues;

• the columns of Q2(s) ∈ Rn×(n−m) span the orthogonal complement

E⊥(s).

• Qi(s) and Rij(s) have the same smoothness as A(s).

Then holds the invariant subspace relation:

QT
2 (s)A(s)Q1(s) = 0.



CIS-algorithm [Dieci & Friedman]

• Define
[

T11(s) T12(s)
T21(s) T22(s)

]

= QT(0)A(s)Q(0)

for small |s|, where T11(s) ∈ Rm×m.

• Compute Y ∈ R(n−m)×m satisfying the Riccati matrix equation

Y T11(s) − T22(s)Y + Y T12(s)Y = T21(s).



• Then Q(s) = Q(0)U(s) where

U(s) = [U1(s) U2(s)]

with

U1(s) =

(

Im

Y

)

(In−m + Y TY )−
1
2,

U2(s) =

(

−Y T

In−m

)

(In−m + Y Y T)−
1
2,

so that columns of Q1(s) = Q(0)U1(s) and Q2(s) = Q(0)U2(s) form

orthogonal bases in E(s) and E⊥(s).

• In MATCONT, two Riccati equations are included in the defining

BVCP to compute Ls = [V ∗] and Lu = [W ∗].



4. Detection of higher-order homoclinic singularities

• fold or Hopf bifurcations of x0;

• special eigenvalue configurations (e.g. σ = ℜ(µ1) + ℜ(λ1) = 0 or

µ1 − µ2 = 0);

• change of global topology of W s and Wn (orbit and inclination flips);

• higher nontransversality.



5. Cycle-to-cycle connections in 3D ODEs

ẋ = f(x, α), x ∈ R
n, α ∈ R

p.

• Let O− be a limit cycle with only one (trivial) multiplier satisfying

|µ| = 1 and having dimWu
− = m−

u .

• Let O+ be a limit cycle with only one (trivial) multiplier satisfying

|µ| = 1 and having dimW s
+ = m+

s .

• Let x±(t) be periodic solutions (with minimal periods T±) corre-

sponding to O± and M± the corresponding monodromy matrices,

i.e. M(T±) where

Ṁ = fx(x
±(t), α)M, M(0) = In.



Isolated families of connecting orbits

• Beyn’s equality: p = n − m+
s − m−

u + 2.

• Heteroclinic cycle-to-cycle connections in R
3
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• Homoclinic cycle-to-cycle connections in R3

O
±

W s
±

W u
±

• homoclinic orbit to a hyperbolic cycle ⇒ infinite number of cycles

(Poincaré homoclinic structure).



Truncated BVCP

• The connecting solution u(t) is truncated to an interval [τ−, τ+].

• The points u(τ+) and u(τ−) are required to belong to the linear sub-

spaces that are tangent to the stable and unstable invariant mani-

folds of O+ and O−, respectively:
{

LT
+(u(τ+) − x+(0)) = 0,

LT
−(u(τ−) − x−(0)) = 0.

• Generically, the truncated BVP composed of the ODE, the above

projection BC’s, and a phase condition on u, has a unique solu-

tion family (û, α̂), provided that the ODE has a connecting solution

family satisfying the pahase condition and Beyn’s equality.



Th. 3 (Pampel–Dieci–Rebaza) If u is a generic connecting solution

to the ODE at parameter value α, then the following estimate holds:

‖(u|[τ−,τ+], α) − (û, α̂)‖ ≤ Ce−2min(µ−|τ−|,µ+|τ+|),

where

• ‖ · ‖ is an appropriate norm in the space C1([τ−, τ+], R
n) × R

p,

• u|[τ−,τ+] is the restriction of u to the truncation interval,

• µ± are determined by the eigenvalues of the monodromy matrices

M±.

Adjoint variational eqiation: ẇ = −fT
x (x±(t), α)w, w ∈ R

n.

Let N(t) be the solution to

Ṅ = −fT
x (x±(t), α)N, N(0) = In.

Then N(T±) = [M−1(T±)]T.



The defining BVCP in 3D: Geometry
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Cycle-related equations:

• Periodic solutions:
{

ẋ± − f(x±, α) = 0 ,

x±(0) − x±(T±) = 0 .

• Adjoint eigenfunctions: µ+ = 1

µ+
u

, µ− = 1
µ−

s
.











ẇ± + fT
u (x±, α)w± = 0 ,

w±(T±) − µ±w±(0) = 0 ,

〈w±(0), w±(0)〉 − 1 = 0 ,

or equivalently










ẇ± + fT
u (x±, α)w± + λ±w± = 0 ,

w±(T±) − s±w±(0) = 0 ,

〈w±(0), w±(0)〉 − 1 = 0 ,

where λ± = ln |µ±|, s± = sign(µ±).

• Projection BC: 〈w±(0), u(τ±) − x±(0)〉 = 0.



Connection-related equations:

• The equation for the connection:

u̇ − f(u, α) = 0 .

• We need the base points x±(0) to move freely and independently

upon each other along the corresponding cycles O±.

• We require the end-point of the connection to belong to a plane

orthogonal to the vector f(x+(0), α), and the starting point of the

connection to belong to a plane orthogonal to the vector f(x−(0), α):

〈f(x±(0), α), u(τ±) − x±(0)〉 = 0 .



The defining BVCP in 3D
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









ẋ± − T±f(x±, α) = 0,

x±(0) − x±(1) = 0,

ẇ± + T±fT
u (x±, α)w± + λ±w± = 0,

w±(1) − s±w±(0) = 0,

〈w±(0), w±(0)〉 − 1 = 0,

u̇ − Tf(u, α) = 0,

〈f(x+(0), α), u(1) − x+(0)〉 = 0,

〈f(x−(0), α), u(0) − x−(0)〉 = 0,

〈w+(0), u(1) − x+(0)〉 = 0,

〈w−(0), u(0) − x−(0)〉 = 0,

‖u(0) − x−(0)‖2 − ε2 = 0.

There is an efficient homotopy method to find a starting solution.


