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1. SOLUTIONS AND ORBITS

Consider a smooth system

X3

X = f(X), X eR"™
/

Orbits, phase portraits, and topological
equivalence are defined as in the case n =2

e Equilibria: f(Xp) =0
Definition 1 An equilibrium is called hyperbolic if ®(\) %= 0 for all
eigenvalues of its Jacobian matrix A = fx(Xgp).

Theorem 1 (Grobman-Hartman) If equilibrium Xqg = 0 is hyper-
bolic, X = f(X) is locally topologically equivalent near the origin to
Y = AY.



Stable and unstable invariant manifolds of equilibria:

If a hyperbolic equilibrium Xy has ngs eigenvalues with R(\) < 0 and ny
eigenvalues with ®(A) > 0, it has the ns-dimensional smooth invariant
manifold W* composed of all orbits approaching Xp as t — oo, and the
ny-dimensional smooth invariant manifold W% composed of all orbits
approaching Xg as t — —o0

A3 Ao A1
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e Periodic orbits (cycles)

The Poincaré map ¢ — & = P(§)
is defined on a smooth (n — 1)-dimensional ’
crossection:

P:> —>.

If Cg coresponds to & = 0 then
P(0) =0 and P(&) = M+ O(2)

PR - - fp—1 = €XP (/OTO(div f)(XO(t))dt> >0

Definition 2 A cycle is called hyperbolic if |u| %= 1 for all eigenvalues
(multipliers) of the matrix M = P¢(0).

Theorem 2 (Grobman-Hartman for maps) The Poincaré map £ —

P(&) of a hyperbolic cycle is locally topologically equivalent near the
origin to & — ME.



Stable and unstable invariant manifolds of cycles:

If a hyperbolic cycle Cg has ms multipliers with |u| < 1 and m, multipliers
with |u| > 1, it has the (ms+ 1)-dimensional smooth invariant manifold
WS composed of all orbits approaching Cyg as t — oo, and the (my +
1)-dimensional smooth invariant manifold W% composed of all orbits
approaching Cg as t — —oo

{




e Connecting orbits

Homoclinic orbits are intersections of W% and W* of an equilibrium/cycle.
Heteroclinic orbits are intersections of W% and W#® of two different
equilibria/cycles.

Wu

WS




Generically, the closure of the 2D invariant manifold near a homoclinic
orbit gy to an equilibriun with real eigenvalues (saddle) in R3 is either
simple (orientable) or twisted (non-orientable):




e Compact invariant manifolds

1. tori

Example: 2D-torus T2 with periodic or quasi-periodic orbits

2. spheres

3. Klein bottles



e Strange (chaotic) invariant sets

have fractal structure (not a manifold);

contain infinite number of hyperbolic cycles;

demonstrate sensitive dependence of solutions on initial condi-
tions;

can be attracting (strange attractors);

orbits can be coded by sequences of symbols (symbolic dynamics).



2. BIFURCATIONS OF N-DIMENSIONAL ODES X = f(X,a)

e Local (equilibrium) bifurcations

Center manifold reduction: Let Xg = 0 be non-hyperbolic with
stable, usntable, and critical eigenvalues:

Im A\

Re A

Theorem 3 For all sufficiently small ||«||, there exists a local invari-
ant center manifold W¢(«) of dimension n. that is locally attracting
if ny, = 0, repelling if ng = 0, and of saddle type if nsn, > 0. More-
over W¢(0) is tangent to the critical eigenspace of A = fx(0,0).
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Remark: W<¢0) is not unique; however, all W¢0) have the same
Taylor expansion.

(%) )\3
Ao |\

Theorem 4 Ifé = f(¢,a) is the restriction of X = f(X,a) to W¢(a),
then this system is locally topologically equivalent to

¢ = f(§a), £€R™ acR™,
r = —x, x¢€&R"s,
y = y, yeR"™



Codim 1 equilibrium bifurcations: a € R

£(X,0) = AX + B(X X) + C(X X, X) 4+ 0(4)

e Fold (saddle-node): X1 =0 (nc.=1)
Let a = (¢, B(q,q)) where Ag= ATp =0 with (p,q) = (g,q) = 1.

If a #= 0 then the restriction of X = f(X,a) to its W¢(a) is locally
topologically equivalent to ¢ = 3(a) + a&2.

a>0,<0
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e Andronov-Hopf: X\ o= Fiw,w >0 (n.=2)

lh = 5% (p,C(4,9,7) — 2(p, B(a, A""B(q,)))
+ (p, BT, (iwEn — A) " B(q,9)))] .

where Ag = iwq, A'p = —iwp, (p,q) = (¢,q) = 1.

If I{ # 0 then the restriction of X = f(X,a) to its W a) is locally

— 2
topologically equivalent to 5 - "1)(5(0‘) + 11p%),
l1 <0, \3<0
—
-




Codim 2 equilibrium bifurcations: o ¢ R?

1. Cusp: A1 =0,a=0 (ne=1)

If ¢ = 0, then the restriction of X = f(X,a) to W) is locally
topologically equivalent to € = B1(a) + Bx(a)f + s€3, where s =
sign(c) = +1.

2. Bogdanov-Takens: A\{ = X> =0 (nc = 2)

If ab #= 0, then the restriction of X = f(X,a) to W¢a) is locally
topologically equivalent to © = vy, ¥ = 81(a) + Bo(a)z + 22 + szy,
where s = sign(ab) = +1.

3. Bautin: \ > = tiw,w > 0 (nc = 2)

If I» = 0, then the restriction of X = f(X,a) to W¢(a) is locally
topologically equivalent to p = p(B1(a) + Bo(a)p? + sp*), ¢ = 1,
where s = sign(l,) = £1.



4. Fold-Hopf:. \{ = 0, )\2’3 = tiw,w >0 (nc = 3)

Generically, the restriction of X = f(X,a) to W¢a) is smoothly
orbitally equivalent to

£ = Br(a) + €2+ sp? + P(&, p, ¢, ),
p = p(B2(a) +0(a)E+€2) + Q& p, 0, a),
¢ = wila)+01(a)+ R, p, o, ),

where s = £1, 6(0) # 0,w1(0) > 0,P,Q,R = O(||(§,p)||*).

The bifurcation diagrams depend on O(4)-terms. “Big picture” is
determined by the ‘truncated normal form’ without the O(4)-terms.

There exist invariant tori and homoclinic orbits near the fold-Hopf
bifurcation.



5. Hopf-Hopf: )\172 = F+w1q, )\374 = :I:iwg,wj >0 (ne=4)

Generically, the restriction of X = f(X,a) to W¢a) is smoothly
orbitally equivalent to

(71 = r1(B1(a) + pll(a)ri + plQ(Oé)"é + Sl(a)é) + P1(r, @, o),

} 72 = r2(B2(a) + p21(@)ri + p2a(@)rs + s2(a)ry) + 2(r, ¢, @),
Sbl — w]_(Oé) _I_ \U]_(T, 2p O{),

[ P2 = woa(a) + WVa(r, ¢, a)

where ®; = O(||7]|®), W= O(||r]]).

The bifurcation diagrams depend on b - and W -terms. “Big pic-
ture” is determined by the ‘truncated normal form’ without these
terms.

There exist invariant tori and homoclinic orbits near the Hopf-
Hopf bifurcation.



Local bifurcations of cycles
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Critical cases of codim 1:
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e cyclic fold (saddle-node): ;1 =1

e period-doubling: p1 = —1

e Neimark-Sacker (torus): pui, =™ 0<f <

Cc
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e Fold bifurcation of cycles: 1 =1 (me=1)

If b %= 0 then the restriction of the Poincaré map to its W¢(«) is locally
topologically equivalent to € — & = ¢ + B(a) + a&?.
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e Period-doubling: 1 = -1 (me¢=1)

If ¢ = 0 then the restriction of the Poincaré map to its W¢(«) is locally
topologically equivalent to € — & = —(1 + B(a))¢ + €3

Co o Cp
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e Torus: 1 =-1 (me=1)

If d(0) # 0 and e*% £ 1 for k = 1,2,3,4, then the restriction of the
Poincaré map to its W¢(«) is locally smoothly equivalent to

( p ) . (p(l—l-ﬁ(oz)+d(oz)p2) ) n ( J;Ep,so,ag )
P,y @

@ @+ 0(a)
where R = O(p?*), S = O(p?)

>0 B=0



Codim1l bifurcations of homoclinic orbits to equilibria

e Homoclinic orbit to a hyperbolic equilibrium:

nonleading nonleading
stable

unstable

Definition 3 Saddle quantity ¢ = R®(u1) + R(A1).

Theorem 5 (Homoclinic Center Manifold) Generically, there ex-
ists an invariant finitely-smooth manifold W"(«a) that is tangent to
the central eigenspace at the homoclinic bifurcation.



Saddle homoclinic orbit: ¢ = u1 + )\

Assume that g approaches Xy along the leading eigenvectors.

[

The Poincaré map near [g:

W(0) N

- _HM
Er—s =B+ A M+ ...

where generically A # 0, so that a unique hyperbolic cycle bifurcates
from g (stable in W if ¢ < 0 and unstable in W" if & > 0).



3D saddle homoclinic bifurcation with o < 0O:

Assume that uos < u1 < 0 < A1 (otherwise reverse time: t— —t).

wH wH




3D saddle homoclinic bifurcation with o > O:

Assume that ury < 1 < 0 < A1 (otherwise reverse time:

t— —t).

A>0

A<0



Saddle-focus homoclinic orbit: ¢ = ®(u1) + A1
3D saddle-focus homoclinic bifurcation with o < 0O:

Assume that R(uo) = R(u1) < 0 < A1 (otherwise reverse time: ¢t +— —t).




3D saddle-focus homoclinic bifurcation with ¢ > 0O:

10
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CHAOTIC INVARIANT SET
Focus-focus homoclinic orbit: ¢ = ®(u1) + R(A1)

CHAOTIC INVARIANT SET



e Homoclinic orbit(s) to a non-hyperbolic equilibrium

WSS WU

7/
— 1

One homoclinic orbit: = a unique hyperbolic cycle

WU

<

Several homoclinic orbits: = CHAOTIC INVARIANT SET



e Some other cases

B <0 B=0 B>0
Homoclinic tangency of a hyperbolic cycle: = CHAOS

Homoclinics to nonhyperbolic cycle: = torus/CHAOS/cycle



Example: Bifurcations in a food chain model

e The tri-trophic food chain model by Hogeweg & Hesper (1978):

(. o 1 Tq a1r1To
L= ml( K) 1+ biay
J iy = eq—21%2 TS g0
1+b6yx7 14+ boxo
i3 = ep—2 23 _ ogs,
\ 1 4 boxo

where

x1 prey biomass
x> predator biomass
x3 Ssuper—predator biomass



Local bifurcations
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Local and key global bifurcations
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