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This session illustrates how to input a system of autonomous ordinary differential equations
(ODEs)

ẋ = f(x, α), x ∈ R
n, α ∈ R

m,

into matcont and numerically integrate it with simultaneously visualizing orbits in graphic win-
dows.

We will study Rössler chaotic system:







ẋ = −y − z

ẏ = x + Ay

ż = Bx − Cz + xz,

where (x, y, z) are the phase variables, and (A, B, C) are the parameters.

1 Getting started

We assume that matcont is placed into directory matcont of your system. Start MATLAB and
change the current directory to matcont. Start matcont by typing

matcont

in MATLAB command line window and press Enter1.

1If you receive complains about a compiler, enter mex -setup and choose the lcc, the MATLAB C-compiler.

Then start matcont again.

Figure 1: A typical matcont startup screen
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You will get several windows related to the default ODE system “adapt2”, like in Figure 1.
The main window is called matcont and has several menus. For instance, to end your mat-

cont session, choose Exit item in Select menu. Hereafter this operation will be indicated with
Select|Exit. This time, press No button.

2 Input new system

The command Select|System|New opens the System window, which contains several fields and
buttons. To identify the system, type for example

Rossler

in the Name system field (it must be one word).
Input names of the Coordinates: X,Y,Z, the Parameters: AA,BB,CC, and the name for

Time: t (default).
If shown, select symbolic generation of the 1st order derivatives by pressing the corresponding

radio-button 2.

Figure 2: Specifying a new model

Finally, in the large input field, type the RHS of Rössler’s system as

2If the MATLAB Symbolic Toolbox is present, there will be buttons indicated ’symbolically’. The first-order

derivatives are used in some of the integration algorithms, the first- and second-order derivatives are used in the

continuation, while the third-order derivatives are employed in the normal form computations.

3



X’=-Y-Z

Y’=X+AA*Y

Z’=BB*X-CC*Z+X*Z

Avoid typical mistakes:

• Some names (e.g. C) are reserved in MATLAB and cannot be used.

• Do not put spaces between coordinate and parameter names.

• Make sure the multiplication is written explicitly with ∗.

• Specify differential equations in the same order as the coordinates.

Now the System window should look like in Figure 2, and you can press OK button.
If you made no typing mistakes, the System window disappears, and you will see that Rossler

becomes the current System of matcont. If selected, the information field Derivatives shows
the string SNNNN meaning that the symbolic 1st order derivatives of the RHS will be used.

If you want to change or correct an existing system, click Select|Systems, select this system,
and press the edit button in the appearing System files window. The inputed system can be
completely erased by selecting system|delete there.

3 Selection of solution type

To tell matcont that we want to integrate the system, i.e. to numerically solve the initial value
problem for it, we have to specify the type of the initial point and the type of the curve to
compute. To select the initial point type, input Type|Initial point|Point, which means that the
initial point has no special properties. To select the curve type, input Type|Curve|Orbit3. The
information fields in the matcont main window will reflect the selections, and two more windows
appear. These are the corresponding Starter and integrator windows. Move them, if necessary,
to make both visible.

4 Setting initial data for integration

The Starter window is curve-dependent and is used here to specify initial data for the integration.
Let us input the following initial coordinate and parameter values:

X -5.0

Y 5.0

Z 10.0

AA 0.0

BB 0.4

CC 4.5

(see Figure 3).
We will use the default numerical parameters of the integrator, except of the Interval. Input

in the integrator window:

Interval 100

to get Figure 4. Check that the default method of integration is ode45. You can inspect available
methods by clicking the Method menu button.

3Actually, it is default.
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Figure 3: Starter window for integration.

Figure 4: Integrator window.
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5 3D visualization

To visualize the orbits, we have to open at least one more window and setup plotting attributes.

5.1 3D graphic window

In the main matcont window, select Window|Plot|3D-plot . The first 3Dplot window
appears.

3Dplot windows are used to represent solution curves by their projections to 3-dimensional
spaces endowed with right-handed rectangular Cartesian coordinate systems. 3D space is specified
by three variables whose values are plotted along axes. Visible part of the space is given by
minimum and maximum values for each axis. By default, the visibility limits are from 0 to 1 for
all axes.

5.2 Variables on axes

First, we need to choose the variables along the axes. This can be done by selecting the coordinates
X, Y, and Z in the draw3 attributes window using the pull-down menus (see Figure 5). Click

Figure 5: Selecting variables along the axes

OK to confirm the variable selection. The new names of the axes will become visible.
This window is also accessible via the menu Attributes|Variables on axes in the 3Dplot

window.

5.3 Plotting region

To define the visibility limits along the axes, open the 3D Plotting region window by selecting
Attributes|Plotting region in the same 3Dplot window. Let us consider the region

−8 ≤ x ≤ 8, −8 ≤ y ≤ 8, −1 ≤ z ≤ 10.

Thus type the visibility limits as in Figure 6 and close the window.
The graphics window 3Dplot is updated automatically with the input.

6 Integrating orbits

Now we are ready to start numerical integration.
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Figure 6: Setting visibility limits

6.1 Start computation

Input the Compute|Forward menu command in the main window to start integration. The com-
putation can be paused/resumed/stopped by clicking the corresponding button in the appearing
small control window shown in Figure 7. Also, you can interrupt the computation at any time by
pressing Esc key on the keyboard.

Figure 7: Control window.

The integration will start and shortly after produces Figure 8. The orbit tends to a stable
equilibrium.

6.2 Other parameter values

Clear the 3Dplot window by selecting Plot|Clear menu option there. Change the parameter AA
value to 0.2 – while keeping all other parameters unchanged – and start the new integration by
Compute | Forward. The computed orbit now tends to a stable periodic orbit (limit cycle), see
Figure 9. This stability loss by the equilibrium with the generation of a limit cycle is called the
(supercritical) Andronov-Hopf bifurcation.

Repeat the integration at AA equal 0.25. You should get Figure 10 showing another orbit
tending to a limit cycle but slowly.

When we now repeat the integration for AA equal to 0.3, we notice that the orbit tends to
a limit cycle making two turns before closure. The appearance of a stable cycle with approx-
imately doubled period, while the primary cycle becomes unstable, is called the (supercritical)
period-doubling bifurcation. To erase transient behaviour, Plot|Clear in the 3Dplot window and
then continue the integration via the menu selection Compute | Extend in the main window.
You should obtain Figure 11 (case (a) after the initial integration and (b) without showing the
transient).
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Figure 8: An orbit in the 3Dplot window converging to a stable equilibrium
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Figure 9: An orbit in the 3Dplot window converging to a stable limit cycle at A = 0.20.
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Figure 10: An orbit in the 3Dplot window converging to a stable limit cycle at A = 0.25.
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Figure 11: An orbit in the 3Dplot window converging to a stable 2-cycle at A = 0.3.
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Increasing the parameter AA to 0.315, results in a more complicated cycle making four global
turns before closure, see and reproduce Figure 12. We can conclude that the doubled cycle
undergoes the next period-doubling bifurcation from a cascade of such bifurcations.
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Figure 12: An orbit in the 3Dplot window converging to a stable 4-cycle at A = 0.315.

Finally, change AA into 0.36, set the Interval in the integrator window to 500, clear the
graphic window, and start computation. After some time, you should see a chaotic attractor as in
Figure 13.

7 Plot manipulation

7.1 Another viewpoint

You can change the viewpoint in the 3Dplot window using the standard MATLAB facilities. If
you press the Rotate 3D button there, then the coordinate system can be rotated with the help
of the mouse. A rotated orbit is shown in Figure 14

To view the orbit in the original projection, click the right mouse button and select Reset to

Original View.

7.2 Redraw

The computed orbit (including the transient) can be redrawn without recomputation using com-
mands from the 3Dplot window, namely: Plot|Clear followed by Plot |Redraw curve.

7.3 Export a figure

You can save the produced figure in various formats using the standard MATLAB tools. For
example, to produce an Encapsulated PostScript file corresponding to Figure 14, click File|Save

As.. button in the 3Dplot window, select EPS type, the file name and location in the appearing
dialog box, and then press Save.
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Figure 13: A chaotic attractor in the 3Dplot window at A = 0.36.
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Figure 14: Another viewpoint on the chaotic attractor at A = 0.36.
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8 2D visualization

Let us plot the time series corresponding to the computed chaotic orbit for 0 ≤ t ≤ 250. For this,
open another graphic window via the Window|Plot|2D-plot in the main matcont window.

A new window 2Dplot appears that has a structure similar to the 3Dplot window. Set time
t as the X-axis and coordinate X as the Y-axis in the draw2 attributes window and click OK

button.
Using Attributes|Plotting region, input new visibility limits along the axes:

t 0 250

X -8 8

and close the 3D Plotting region window. In the 2Dplot window you should immediately get
a time series shown in Figure 15. You may need to resize the window for a better view.

Figure 15: The first solution component versus time in the 2Dplot window

9 Another method of integration

The method of integration can be changed. For example, one can select ode23s as Method in
the Integrator window. After selection, the Integrator window will be updated.

Figure 16: Two numerical solutions obtained with different integration methods
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Repeat computations with Compute|Forward. Notice in Figure 16 a change in the time
series for big values of t due to a difference in the accuracy of the methods. This shows that one
has to be careful with numerical solutions of ODEs.

10 Archive of computed solutions

By default, matcont keeps three last computed curves (e.g. orbits) under the standard names cor-
responding to their Point type and Curve type. You can manipulate the curves via Select|Curve

menu in the main matcont window.
A Select curve window will appear, where the stored curves are listed, in our case

P_O(1)

P_O(2)

P_O(3)

Using the Select button and the curve menu of the Select curve window, it is possible to select
a curve (for example to redraw it separately), delete or rename it. If a curve is renamed, it will
not be overwritten and will be stored permanently.

As an exercise, find out which curve corresponds to the transient towards a periodic orbit and
delete it. Then rename two remaning orbits into orbit1 and orbit2, respectively (see Figure 17).
Leave the curve archive window.

Figure 17: Curve archive

All currenly available curves form a diagram that can be redrawn in a graphic window via
Plot|Redraw diagram. If you do this in the 2Dplot window, you should get Figure 16 again.

11 Additional Problems

• Consider the logistic equation

ẋ = x
(

1 −
x

α

)

with positive α. Plot solutions (t, x(t)) with different initial conditions x(0).

• Van der Pol’s equation is
ẍ − α(1 − x2)ẋ + x = 0.
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Rewrite the equation as a system of two first-order ODEs and plot its orbits for α = 0 and
α = 0.5.

• Simulate the Lorenz chaotic system







ẋ = σ(y − x),
ẏ = rx − y − xz,

ż = −bz + xy,

for σ = 10, b = 8

3
, r = 28.

• Consider the following Langford system







ẋ = (λ − b)x − cy + xz + dx(1 − z2),
ẏ = cx + (λ − b)y + yz + dy(1 − z2),
ż = λz − (x2 + y2 + z2),

where b = 3, c = 1

4
and d = 1

5
.

1. Integrate this system in matcont for λ = 1.5, 1.9, 2.01. Start always from x0 = y0 =
0.1, z0 = 1.

2. Briefly describe what do you see in each case.

3. Could you support your conclusions by some other numerical or analytical arguments
?
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