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Chapter 1

Classification and well-posedness

of PDEs

A PDE gives a relation between the partial derivatives of a function u of the n indepen-
dent variables x1, ..., xn. The order of the PDE is that of the highest order derivative
occurring in it, hence

F (x1, ..., xn, u, ux1
, ..., uxn) = 0 with uxi

=
∂u

∂xi

is a PDE of first order. The PDE is called quasi-linear if F is linear in its highest
order derivatives. The PDE is linear if F is linear in all its arguments, except for the
x′is.

Usually a PDE is considered only on a part of R
n. Then, for the uniqueness of the

solution we need initial and boundary conditions. These conditions cannot be taken
arbitrary. Moreover they should be such that the solution is stable with respect to
perturbations in these conditions, which leads to the following definition.

Definition 1.1 A problem, i.e. PDE plus initial and boundary conditions, is said to
be well-posed in the sense of Hadamard if it has a unique solution and is stable with
respect to perturbations in the data (i.e. coefficients, forcing).

While performing the classification below we will also indicate which initial and bound-
ary conditions make a problem well posed.

1.1 First order PDEs

1.1.1 First order scalar PDEs

Consider the initial value problem of the first order consisting of an hyperbolic partial
differential equation, i.e. a is real,

∂u

∂t
+ a

∂u

∂x
= 0, a > 0, t > 0, −∞ < x <∞ (1.1)

3



4 CHAPTER 1. CLASSIFICATION AND WELL-POSEDNESS OF PDES

and initial value u(x, 0) = φ(x). This equation is called the transport equation, or first-
order wave equation It is easy to see that u(x, t) = f(x− at) is the general solution of
this equation, which means that the solution is constant for lines

x− at = constant

These lines are called characteristics. If we equate the general solution to the initial
value we find that the solution of the initial value problem is u = φ(x−at). One could
say that the initial value propagates along the characteristics with speed a.
If a is not constant the characteristics will not be straight anymore, but still u will be
constant along a characteristic (at least for homogeneous equations, i.e. there is no
forcing). If φ contains a jump then this jump is also propagated along the corresponding
characteristic.
We could also consider (1.1) for x > 0. In that case we need a boundary condition at
x = 0 to make it well posed, so u(0, t) = r(t). Note however that if a would have been
negative then this boundary condition will in general conflict with the initial condition.
In computations we usually are working on an interval. Only at one of the end points
of the interval a condition is needed, which end point is determined by a.
If a is not constant we have to look at its value at the boundary in order to determine
whether a boundary conditions is needed there.

1.1.2 Systems of first order equations

Consider the system
∂u

∂t
+A

∂u

∂x
= 0 (1.2)

where A is a constant real n × n matrix. We assume that A is diagonizable, hence
there exists a nonsingular Q such that

Q−1AQ = Λ =




λ1

λ2

. . .

λn




The system is called hyperbolic if all eigenvalues λi of A are real. In that case we
can, using w = Q−1u, transform the system (1.2) into n decoupled scalar (transport)
equations

∂wi

∂t
+ λi

∂wi

∂x
= 0 , i = 1, 2, . . . , n

In this case every λi defines a characteristic direction along which wi’s is constant.
As in the scalar case the sign of λi determines where a boundary condition must be
prescribed. However, in general we cannot prescribe the quantity we need at the
boundary directly, but the imposed boundary together with the quantity that is prop-
agated along the characteristic towards that boundary from within the domain must
specify the desired quantity.
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Exercise 1.1 Bring the linearized shallow water equations to diagonal form and de-
termine where and which boundary conditions have to be applied. The equations have
the form

ut = −ūux − gζx (1.3)

ζt = −ūζx −Hux (1.4)

where H is the depth, g is the gravity constant, u the velocity and ζ the wave height
and ū the average flow speed.

1.1.3 Higher space dimensions

In two dimensional space we have ut = −aux − buy. This equation needs an initial
condition. On a boundary we need to consider the generalization of 1D, if ([a, b], n) < 0
we need to prescribe u, where n is the outward pointing normal at the boundary, or
otherwise stated, if vector [a, b] points into the domain we need to prescribe u.

Exercise 1.2 Show that this indeed comprises the 1D case.

1.2 Scalar second order PDEs

Consider the following second order partial differential equations.

F (x1, · · · , xn, u,
∂u

∂x1
· · · ∂u

∂xn
) +

n∑

i,j=1

aij
∂2u

∂xi∂xj
= 0

The highest order derivatives determine the type of the equation. Therefore we have
to study the matrix A defined by coefficients occurring in the second order terms of
the PDE:

A =



a11 · · · a1n
...

. . .
...

an1 · · · ann




For sufficient smooth u this matrix can always be chosen symmetric because then we
can permute freely the order of the partial derivatives.
We say that the system is

elliptic if all eigenvalues of A have the same sign,

hyperbolic if all eigenvalues of A have the same sign, except one which has an oppo-
site sign,

parabolic if all eigenvalues of A have the same sign, except one which is zero.

If A depends on x then the type of the PDE can depend on x as well. For example
uxx = xuyy is an equation which is elliptic in the region x < 0, hyperbolic in the region
x > 0, and parabolic on the line x = 0.
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1.2.1 Normal form

Note that the value of the eigenvalues is not important in the type of the PDE, there-
fore second-order PDEs are equivalent to a so-called normal form of each type of
equation. The consequence of this is that when we now when the normal form is well
posed then we know it too for all the equivalent forms. The highest order part of the
aforementioned types of PDEs have a normal form

∂2u

∂ξ21
+ · · · + ∂2u

∂ξ2n
(elliptic)

∂2u

∂ξ2n
− (

∂2u

∂ξ2i
+ · · · + ∂2u

∂ξ2n−1

) (hyperbolic)

∂u

∂ξn
− (

∂2u

∂ξ2i
+ · · · + ∂2u

∂ξ2n−1

) (parabolic)

These normal forms can be obtained through a coordinate transformation. Given a
problem (

∂

∂x1
· · · ∂

∂xn

)
A

(
∂

∂x1
· · · ∂

∂xn

)T

u = f

apply a coordinate transformation

(
∂

∂x1
· · · ∂

∂xn

)T

= S

(
∂

∂y1
· · · ∂

∂yn

)T

such that STAS is diagonal and all diagonal elements have magnitude one or zero.
This is a so-called congruence transformation, it is known that such a transformation
does not change the signs of the eigenvalues (also called inertia). It is not hard to find
such an S. Since A is real and symmetric, we know that there exists an orthogonal
matrix Q that will diagonalize A, hence QTAQ = D, next we pre and post multiply
by the same non-singular diagonal matrix D̂ such that we get the desired diagonal
matrix. Thus, S = QD̂.
Examples in 2D of PDEs in normal form are

Poisson equation :
∂2u

∂x2
+
∂2u

∂y2
= f

heat equation :
∂u

∂t
− ∂2u

∂x2
= 0

wave equation :
∂2u

∂t2
− ∂2u

∂x2
= 0

If in the Poisson equation the right-hand side is zero, then it is called Laplace equation.
For the Poisson and Laplace equation to be well posed we need to prescribe u, un or
a combination u + αun, with α > 0, which are called Dirichlet, Neumann, and Robin
condition, respectively. For the heat equation we need next to the boundary conditions
in space, which are the same as those for the elliptic case, an initial condition. The
wave equation even needs two initial conditions.
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A problem which is not well posed is for instance the backward heat equation ut = −uxx

which is integrated from t = 0 to some time T > 0 using an initial condition and
boundary conditions. This is unstable irrespective of the initial or boundary conditions.
In this case we should integrate backwards in time in order to have a stable solution.

Exercise 1.3 Show that the PDE

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = f(x, y, u, ux, uy)

is elliptic if b2 − ac < 0, parabolic if b2 − ac = 0 and hyperbolic if b2 − ac > 0.

1.2.2 Self-adjoint operators and problems

Suppose we have defined a PDE on a domain Ω. Then the adjoint operator of an
operator L is the operator L∗ for which

∫
Ω vLw − wL∗v dΩ only depends on u, v and

their derivatives on the boundary of Ω for all sufficiently differentiable (C 2) u, v. A
self-adjoint operator is an operator for which L = L∗. In fact the operators occurring
in the Poisson and wave equation shown above are self-adjoint, where for the wave
equation, one must take a domain ω in the x, t-space.
For linear second order elliptic PDE’s, any self-adjoint operator can be written as

Lu = −
n∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ qu = −div(Agrad u) + qu (1.5)

For a self-adjoint problem, the boundary condition should satisfy
∫
Γ(vA gradw −

wA grad v ,n)dΓ = 0 for any v, w which satisfy the same homogeneous boundary
conditions. Homogeneous boundary conditions have a zero in the right-hand side, so
u = 0, un = 0, etc. This formula can be derived from

∫
Ω vLw−wLv dΩ = 0 using the

above definition for L and Gauss’ theorem. Neumann, Dirichlet and Robin boundary
conditions all satisfy this condition.

1.2.3 Variational form for elliptic problems

For elliptic self-adjoint problems one can rewrite the problem into a variational form.
For that we define a functional, which is a “function” where you enter a function and
which gives back a number. Here we have a functional

J [v] =

∫

Ω

[
1

2
( grad v,A grad v) + 1

2
qv2 − fv

]
dΩ +

∫

Γ1

( 1

2
βv2 − γv) dΓ

Here Γ1 is part of Γ (it may be the whole Γ or just be empty) and q and f are
functions from C(Ω) with q ≥ 0. Likewise β and γ are functions from C(Γ1) with
β ≥ 0. Furthermore, the matrix A is symmetric and positive definite. We will now
show that the minimization of this functional over a set of specified v will lead to quite
a general class of elliptic problems. The set of v’s we are considering is the set of
functions for which the function self and its derivative is square integrable on Ω and
that satisfy on Γ2 = Γ − Γ1 the so-called essential boundary condition v = r, with r
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a function prescribed on Γ2. Let w be an arbitrary function which is zero on Γ2, and
has the same integrability properties as a v. Now, for a minimum (or stationary point)
of the functional one should first think of the case where v is a vector. Then for the
minimum it holds that the directional derivative of the functional should be zero for
any direction. This carries over to the case where v is a function. J [v] has a stationary
point for v = u if for v = u+ εw, with ε small it holds that

d

dε
J [u+ εw]

∣∣∣∣
ε=0

= 0

This leads to
∫

Ω
[( gradw,A grad u) + wqu−wf ] dΩ +

∫

Γ1

w(βu − γ) dΓ = 0 (1.6)

Exercise 1.4 : Show that J [u + εw] = J [u] + εa(u,w) + ε2b(w) where a(u,w) will
be zero for the stationary point and b(w) > 0 for w 6= 0, where q and β should be
nonnegative.

Now we need the identity
∫

Ω
( gradw,A grad u) dΩ = −

∫

Ω
w div (A grad u) dΩ +

∫

Γ
(wA grad u,n) dΓ

to get rid of the derivatives in front of w. This expression is nothing more than a
partial integration (verify this for the 1D case). We also need the fact that on Γ2

w = 0, and hence for the stationary point it holds that

−
∫

Ω
w [ div (A grad u) − qu+ f ] dΩ +

∫

Γ1

(w [(A grad u,n) + βu− γ] dΓ = 0

Hence with the notation of (1.5) we have

Lu = f in Ω (1.7a)

(A grad u,n) + βu = γ on Γ1 (1.7b)

u = r on Γ2 (1.7c)

Note that when we started off only a boundary condition on Γ2 was supplied, but that
the minimization gives us a boundary condition (1.7b) along Γ1. We call this boundary
condition the natural boundary condition. The general name for a PDE that is derived
from a minimization, here (1.7a), is called the Euler-Lagrange differential equation.
Note that the functional where we started from has only first derivatives in it but
that the resulting equation (1.7a) has second order derivatives. Hence, the equation
requires more smoothness than the functional. Now, the smoothness of u is determined
by f, γ and r. If these admit a solution of the equation then the same solution will be
found from the minimization process. However, if they do not admit a solution of the
equation but still do for the functional then we say that we have found a weak solution
of the equations. We call (1.6) the weak form of the equation. Note that we can find
this weak form from the equation by working in opposite direction. This is interesting
because, we could go in this way for quite arbitrary equations.
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1.2.4 A very general theorem

Let us again consider (1.6). One could write this in the form

a(w, u) =< w, g >

Exercise 1.5 What is a(w, u) and < w, g > here?

Now w is in a linear space, but u is not (show this). We want to rewrite the problem
such that both arguments of a(∗, ∗) are in a linear space and actually in the same
space. This is not very difficult. Say ur is some function that satisfies the essential
boundary condition and is of sufficient smoothness. Then we write u = ur + û, where
û is in the same space as w. Now we plug this into the above equation to obtain

a(w, û) =< w, g > −a(w, ur) =<< w, ĝ >> (1.8)

For this equation we want to find the û such that it holds for all w, where both functions
satisfy, the essential boundary condition and have sufficient smoothness. Now the Lax-
Milgram theorem gives the conditions for which this problem is well posed [22]. At this
place we will not go into the details of that theorem, but just pose the most important
condition, which is that for all w

a(w,w) ≥ c||w||2 (1.9)

for some positive c where we will not specify further the norm, but just comment that
this is a kind of positive definiteness condition.

Exercise 1.6 Show that for a symmetric positive definite matrix A it holds that (x,Ax) ≥
c(x, x) where c is the smallest eigenvalue of A.

So if we can bring a non self-adjoint problem in a weak form with a(∗, ∗) being positive
definite in the above sense then in general (the other conditions of the Lax-Milgram
do in general not cause problems to prove) the weak form is well posed. Hence, in that
case a weak solution of our nonself-adjoint problem exists. Note that in this way we
can also determine which boundary conditions make the problem well posed.

Exercise 1.7 Show that with the introduced terminology the functional of the previous
section can be written as

J [û] =
1

2
a(û, û)− << û, ĝ >>

1.2.5 The wave equation

Consider the following pure initial value problem

∂2u

∂t2
= a2∂

2u

∂x2
, t > 0, −∞ < x <∞ (1.10)

with initial conditions u(x, 0) = φ(x) and ut(x, 0) = ψ(x). The general solution is in
this case

u(x, t) = f(x− at) + g(x+ at)
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Hence, the characteristics are given by the lines

x± at = constant

The solution satisfying the initial conditions is

u(x, t) = 1

2
[φ(x− at) + φ(x+ at)] +

1

2a

∫ x+at

x−at
ψ(ξ) dξ

From this we observe that the initial conditions on say [0,1] determine the solution
within the triangle bounded by the line t = 0 and the characteristics through the
end points of the interval. This triangle is called the domain of dependency of the
point P = ( 1

2
, 1

2
a−1), see Fig. 1.1. The domain where the point P is codefining the

solution is called the domain of influence of P . The domain of dependence is important

-

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�
�
�
�
�
�
�
�
�
��@

@
@
@
@
@
@
@
@
@@

. .
. .

. .
. .

. .
. .

. .

..
..

..
..

..
..

.. domain of influence

domain of dependency

x10

t

P

x+ at = 1

x− at = 0

Figure 1.1: Domains of dependency and influence

for numerical methods. It will be clear that a numerical method will not converge
for all possible initial conditions if the domain of dependency is not included in the
numerical domain of dependency. This lead to the so-called Courant-Friedrichs-Lewy
(CFL) condition (1928) which states that a numerical method cannot be stable if
the numerical domain of dependency does not include the domain of dependency of
the continuous equation. Note that this is a necessary condition, so not enough for
convergence.
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1.2.6 A second-order PDE expressed as a system of first-order PDEs

In general a second-order PDE can transformed to a systemd of first-order PDEs. For
instance, by introducing the unknowns

u1 =
∂u

∂x
, u2 =

∂u

∂y

the Laplace-equation ∆u = 0 can be written as

∂u1

∂x
+
∂u2

∂y
= 0,

∂u1

∂y
− ∂u2

∂x
= 0

These are the so-called Cauchy-Riemann equations. This is of the form (1.2) with
matrix

A =

[
0 −1
1 0

]

The eigenvalues of A are ±i and hence this is not an hyperbolic system of PDEs. In
fact it is elliptic just as its corresponding second-order representation.

Exercise 1.8 Give a second-order scalar variant of the linearized shallow-water equa-
tions (1.3) with ū = 0 and observe that that is also hyperbolic according to the definition
for second-order scalar PDEs.

== External Links ==

* http://en.wikipedia.org/wiki/Elliptic_partial_differential_equation

* http://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation

* http://en.wikipedia.org/wiki/Parabolic_partial_differential_equation

* http://en.wikipedia.org/wiki/Well-posed



12 CHAPTER 1. CLASSIFICATION AND WELL-POSEDNESS OF PDES



Chapter 2

Discretization of PDEs

2.1 An overview of discretization strategies for PDEs

Discretization is the process of approximating an infinite dimensional problem by a
finite dimensional problem suitable for a computer.

Suppose we have a linear partial differential equation Lu = f on a domain Ω with
boundary conditions. We can follow the following strategies to solve the problem:

Finite Difference A straight-forward approach is to cover the domain by a grid, and
approximate the PDE by a finite difference equation defined in the grid points
using unknowns that are also only defined at the grid points. The basic tool here
is the Taylor expansion.

Rayleigh-Ritz If we have a self-adjoint problem, there is a functional J(u) associated
to the PDE. The minimum of the functional over the appropriate function space
yields the solution of the PDE. (For convenience the original problem is often
transformed to a problem with homogeneous boundary conditions.) A discretiza-
tion is obtained by approximating u by a finite sum of basis functions (called û)
which are all in the appropriate function space,

û(x) =
n∑

i=1

ciφi(x) (2.1)

and do sufficiently accurate numerical integrations for the integrals occurring in
the functional. This will result in a minimization of the functional over the only
free parameters left: the coefficients ci. This minimization will result in a linear
problem for these coefficients.

If the support, i.e. where the function is nonzero except for a few points, of every
φi(x) extends over the whole domain then the matrix of the linear problem will
in general be full (unless we take eigenfunctions of the operator and boundary
conditions as basis functions). An example of this approach is the pseudo-spectral
method. In this method orthogonal polynomials (discussed in Section 8.2 of [2]
or Section 10.1 in [22]) are used as basis functions.

13
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If every φi(x) is only locally nonzero (compact support), then the matrix will
become sparse. An important example here is the finite element approach (see
Sections 11.5 and 12.4 of Burden and Faires).

Weighted Residuals If û is again the expansion (2.1) then in general it is not possible
to choose the coefficients such that Lû − f is zero for all points in the domain,
since we have only n coefficients and there are an infinite number of points
in the domain. Therefore one requires that (vj , Lû − f) = 0 for j = 1, ..., n,
where the innerproduct here is just an integral over the domain. Here, vj is
called test function and the space spanned by these functions is called the test
space. The basis functions are said to be in the search space, i.e. the space
which is spanned by the basis functions and contains the approximate solution.
The particular choice for vj depends on properties of the problem (operator and
boundary conditions). We just list common choices.

Galerkin vj = φj , so the search and test space are equal. If we have a self-
adjoint problem, the same linear system for the coefficients will occur as in
the Rayleigh-Ritz approach.

Petrov-Galerkin The test space is different from the search space. Some com-
mon choices are:

Least squares vj = Lφj , which is equivalent to the minimization over the
search space of ||Lû − f ||22. This is an approach which always works
but the matrix of the resulting linear system may have a rather high
condition number, which may give problems with reaching the required
accuracy or the convergence of the iterative method. An advantage is
that it leads to a Symmetric Positive Definite (SPD) matrix (in fact
it can also be viewed as the Rayleigh-Ritz method applied to L∗Lu =
L∗f).

Collocation vj = δ(x− xj), which results in the requirement that Lû− f
should be zero in n points in the domain.

Finite Volume Here L assumes a special form Lu = div(Mu), which comes about in
conservation laws. Cover the domain with n so-called disjunct control volumes
also called finite volume. On control volume j we have that test function vj

is 1 and zero elsewhere. Say M̂u is some approximation of Mu and apply the
weighted residual approach which leads to

∫

Ω
vj(div(M̂u) − f)dΩ = 0

∫

Ωj

div(M̂u) − fdΩ = 0

∫

Γj

(M̂u, n)dΓ −
∫

Ωj

fdΩ = 0

where Ωj is the j − th control volume, Γj its boundary, and n the unit outward
pointing normal on the boundary. So far nothing has been said on the approxi-
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mation M̂u. We may use basis functions for u or discretize Mu on a grid. In any
case the discretization should be such that on the interface of the j-th control
volume with one of its neighbors the approximating flux (M̂u, n) should be equal
up to the sign, which should be different (in the continuous case this is true since
the outward pointing normal vectors on the interface are equal except for the
sign).

Now in the continuous case we have that
∫
Ω(div(Mu)−f)dΩ = 0 or

∫
Γ(Mu,n)dΓ =∫

Ω fdΩ, yielding a condition on the flux on the boundary of the domain. A similar
condition is found in the discrete case, since

∫

Ω
(div(M̂u)dΩ =

n∑

j=1

∫

Ωj

(div(M̂u)dΩ =

n∑

j=1

∫

Γj

(M̂u, n)dΓ

=
∑

k∈K

∫

Γk

(M̂u, n)dΓ

where Γk is a part of the outer boundary of the domain. Hence here we have

∑

k∈K

∫

Γk

(M̂u, n)dΓ =

∫

Ω
fdΩ

This condition also shows that no artificial numerical fluxes remain in the inte-
rior. This is an important property in applications. If the equation describes
conservation of mass, energy, or momentum, then this means that there is no
artificial loss or growth in the interior due to numerical errors.

== External Links ==

* http://en.wikipedia.org/wiki/Rayleigh-Ritz_method

* http://en.wikipedia.org/wiki/Ritz_method

* http://eom.springer.de/R/r082500.htm SpringerLink - Ritz method

* http://en.wikipedia.org/wiki/Collocation_method

2.2 Finite-difference methods for elliptic equations

2.2.1 Finite-difference approximations in 1 dimension

Suppose we want to solve a PDE numerically on an interval Ω = [0, 1]. We define the
grid points xi of an equidistant grid as:

xi = ih, i = 0, 1, ..., N ; h = 1/N

Furthermore, define:

ui = u(xi), i = 0, 1, ..., N
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Now assume that u ∈ C4[0, 1]. Using the Taylor series of u, we can now derive a finite
difference for the derivatives of u in the grid points xi using

ui+1 = u(xi + h) = ui + h
du

dx

∣∣∣∣
xi

+
h2

2!

d2u

dx2

∣∣∣∣
xi

+
h3

3!

d3u

dx3

∣∣∣∣
xi

+
h4

4!

d4u

dx4

∣∣∣∣
xi+ξ1h

(2.2)

and

ui−1 = u(xi − h) = ui − h
du

dx

∣∣∣∣
xi

+
h2

2!

d2u

dx2

∣∣∣∣
xi

− h3

3!

d3u

dx3

∣∣∣∣
xi

+
h4

4!

d4u

dx4

∣∣∣∣
xi−ξ2h

(2.3)

where ξ1, ξ2 ∈ [0, 1]. Add both equations, rearrange and use the continuity of the
fourth derivative to obtain

d2u

dx2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

h2
− h2

12

d4u

dx4

∣∣∣∣
xi+ξh

, ξ ∈ [−1, 1] (2.4)

In the same way we can substract the equations to obtain

du

dx

∣∣∣∣
xi

=
ui+1 − ui

2h
− h2

3!

d3u

dx3

∣∣∣∣
xi+τh

, τ ∈ [−1, 1]

Omitting the terms of O(h2), we call the right-hand side of both equations the second-
order central difference for the derivative of the left-hand side of the equation. Second
order means we omitted terms of O(h2) and we thus have a local truncation error of
O(h2). Here ”central” refers to the symmetry around xi.

In the same way can derive central differences for the third and fourth order derivatives:

d3u

dx3

∣∣∣∣
xi

=
ui+2 − 2ui+1 + 2ui−1 − ui−2

2h3
+O(h2)

d4u

dx4

∣∣∣∣
xi

=
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

h4
+O(h2)

Non-central discretizations can also easily be obtained. For example the forward ap-
proximation of the first derivative of u can be obtained directly from the expansion
(2.2) yielding

du

dx

∣∣∣∣
xi

=
ui+1 − ui

h
+O(h)

Similarly a backward difference can be obtained from (2.3)

du

dx

∣∣∣∣
xi

=
ui − ui−1

h
+O(h)

ook wel achterwaartse differentiebenadering genoemd.
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Higher order discretizations Suppose we want to increase the accuracy to O(h4)
instead of O(h2). We can do this by using the Taylor series for ui+2 = u(xi + 2h)
and ui−2 = u(xi − 2h) too. If we just add all these (four) Taylor series like before,
we will get terms containing the fourth derivative of u. So instead of just adding
them all together, we need to make a linear combination, such that we only get second
derivatives and other derivates are all cancelled out. In this case this is possible as
follows:

−16ui+1 − 16ui−1 + ui+2 + ui−2

Next, after some rewriting, we obtain this central differences formula for the second
derivative of u:

d2u

dx2

∣∣∣∣
xi

=
−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12h2
+O(h4)

Solving a 1D elliptic equation The numerical solution of the equation of the
boundary value problem uxx = f(x), u(0) = u(1) = 0, proceeds as follows. We
require that in every point xi the differential equation is satisfied where we replace the
derivatives in those points by the difference approximations. This yields a system of
difference equations for the values in the grid points. The solution of the difference
equation will be denoted by Ui which approximates u(xi). It is called grid function,
since it is only defined at the grid points. Likewise, we restrict f to the grid points
fi = f(xi). This yields the linear system (show this)

h−2




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2







U1

U2

.
UN−2

UN−1




=




f1

f2

.
fN−2

fN−1




After this system is solved, we have found the desired approximations of u(xi) at the
grid points xi, i = 1, 2, . . . , N − 1. This approximation can be made more accurate by
increasing the number of grid points, thereby increasing the size of the linear system,
resulting in a higher computation time. This shows that in the numerical solution
of PDEs we always have to find a trade-off between the accuracy and the amount
of computer time we want to spent. The game is of course to get the accuracy as
high as possible by using accurate difference schemes for the lowest possible amount
of computer time and/or memory usage.
This example also shows that we run into problems if fourth-order accurate discretiza-
tions need to be used at the boundary. Usually we have to be satisfied with lower-order
accuracy near the boundaries.

non-uniform grids Finally we consider difference approximations for the first and
second derivative on non-uniform grids. Consider, three subsequent grid points

xi−1, xi, xi+1, met xi − xi−1 = h1 en xi+1 − xi = h2
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• • •
xi−1 xi xi+1

h1 h2

Figure 2.1: Non-uniform grid

as indicated in Fig. 2.1. Analogously to (2.2) and (2.3) we find now the Taylor-
expansions

u(xi + h2) = ui + h2
du

dx

∣∣∣∣
xi

+
h2

2

2!

d2u

dx2

∣∣∣∣
xi

+
h3

2

3!

d3u

dx3

∣∣∣∣
xi

+
h4

2

4!

d4u

dx4

∣∣∣∣
xi+θ1h2

(2.5)

u(xi − h1) = ui − h1
du

dx

∣∣∣∣
xi

+
h2

1

2!

d2u

dx2

∣∣∣∣
xi

− h3
1

3!

d3u

dx3

∣∣∣∣
xi

+
h4

1

4!

d4u

dx4

∣∣∣∣
xi−θ2h1

After multiplication by respectively h1 and h2 we find after additions and some alge-
braic manipulations

d2u

dx2

∣∣∣∣
xi

=
2ui+1

h2(h1 + h2)
− 2ui

h1h2
+

2ui−1

h1(h1 + h2)
+
h1 − h2

3

d3u

dx3

∣∣∣∣
xi

+ · · · (2.6)

and in a similar way

du

dx

∣∣∣∣
xi

=
h1ui+1

h2(h1 + h2)
+

(h2 − h1)ui

h1h2
− h2ui−1

h1(h1 + h2)
− h1h2

6

d3u

dx3

∣∣∣∣
xi

+ · · · (2.7)

When the maximum mesh size is indicated by h, hence, hi ≤ h, then we see that (2.7)
yields an O(h2) approximation to the first derivative, but that (2.6) only gives a O(h)
approximation to the second derivative.
However, often the non-uniform grid will occur as a transformation of a uniform grid.
So xi = g(ti), where ti+1−ti = h. If that is the case and g ∈ C2, then the approximation
(2.6) will be second-order accurate.

Exercise 2.1 Show the claim of the last paragraph.

2.2.2 Finite-difference approximations in 2 dimensions

Now we know how to apply the finite differences method in one dimension, we can easily
do the same in two dimensions. Assuming Ω =

{
(x, y) ∈ R2; a < x < b, c < y < d

}
,

we again define our grid points to be:

(xi, yi) = (a+ ih, c+ jk) , i = 0, 1, ...,m; j = 0, 1, ..., n; h =
b− a

m
, k =

d− c

n

Now we can just use the results of the one-dimensional part to obtain:

∂2u

∂x2

∣∣∣∣
i,j

=
ui+1,j − 2ui,j + ui−1,j

h2
+O(h2) (2.8)
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and
∂2u

∂y2

∣∣∣∣
i,j

=
ui,j+1 − 2ui,j + ui,j−1

k2
+O(k2) (2.9)

where ui,j = u(xi, yj). The only difficulty is in case we have mixed derivatives, e.g.
uxy. But now we have:

∂2u

∂x∂y

∣∣∣∣
i,j

=
∂

∂x

[
∂u

∂y

]

i,j

which is, using the central difference for a first derivative, equal to:

∂2u

∂x∂y

∣∣∣∣
i,j

=
1

2h

[
∂u

∂y

∣∣∣∣
i+1,j

− ∂u

∂y

∣∣∣∣
i−1,j

]
+O(h2)

Using discretizations for the left derivatives gives the desired result:

∂2u

∂x∂y

∣∣∣∣
i,j

=
1

4hk
[ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1] +O(h2) +O(k2)

If we replace in a PDE Lu = f the partial derivatives by difference approximations
then we obtain also a difference approximation for L denoted by Lh. Very often Lh is
schematically written as a difference molecule or stencil. Here, the occurring weights
are shown according to the geometry of the grid. For example for the Laplace operator
∆ on a uniform grid with h = k, we find with (2.8) and (2.9) a difference approximation
∆h with error O(h2), hence ∆ = ∆h + O(h2). The difference molecule is then shown
as

(2.10)∆h = h−2 -4

1

1

11

We call this the 5-point approximation to the Laplace-operator.

Discretization on a non-uniform grid We will look at a lineair elliptic PDE
(Lu=f), hence

Lu = −auxx − cuyy + dux + euy + qu

With a and c positive and q ≥ 0. In the remaining part we will consider a, c, d, e to be
constant, though this is not essential. We use the discretization mentioned in the 1D
non-uniform grid part. If we take a five point approach (see Fig. 2.2) we find

CP Ui,j − CWUi−1,j − CSUi,j−1 − CEUi+1,j − CNUi,j+1 = fP
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This leads to the following equations for the coefficients:

CW =
2a+ h2d

h1(h1 + h2)
, CS =

2c+ k2e

k1(k1 + k2)
, CE =

2a− h1d

h2(h1 + h2)
,

(2.11)

CN =
2c− k1e

k2(k1 + k2)
, CP =

2a+ (h2 − h1)d

h1h2
+

2c+ (k2 − k1)e

k1k2
+ q

Thus CP = CW + CS + CE + CN + q and with restriction q ≥ 0 we have CP ≥
CW + CS + CE + CN If we take h and k small enough all coefficients will be positive
The restrictions for h and k to achieve that are maxi hi ≤ 2a

|d| and maxi ki ≤ 2c
|e| If we

write this as a system Ax = b (with x consisting of u(i, j)) A will be weakly diagonal
dominant, a matrix property favorable for iterative methods. If the coefficient in front

• • •

•

•

W P E

S

N

h1 h2

k2

k1

Figure 2.2: non-uniform grid in 2D

of the first derivative in L is big, then the condition on h can be quite restrictive. In
that case, one could use an upwind discretization for the first derivative. Here upwind
means that we pick all the information in the direction where the wind is coming
from. In this case this has to do with the coefficients in front of the first and second
derivative. In any case it should be chosen such that the diagonal entry increases in
order to get again a weakly diagonally dominant matrix. Here we take for the term
dux

d
Ui,j − Ui−1,j

h1
if d > 0

and

d
Ui+1,j − Ui,j

h2
if d < 0

similarly euy. The price of this approach is that we only have a first-order accurate
discretization and on top of that we have introduced artificial diffusion. This can be
seen by making a Taylor expansion

Ui,j − Ui−1,j

h1
= ux|i,j + h1uxx|i,j +O(h2

1)
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So the term dux introduces dissipation of magnitude dh1 which may be rather big with
respect to the real diffusion.

2.2.3 Discretization near the boundary

First we will consider a square area Ω with boundary Γ and a uniform grid. If we look
at the five point formula

CP Ui,j − CWUi−1,j − CSUi,j−1 − CEUi+1,j − CNUi,j+1 = fP

We see that when i = 1,m− 1 or j = 1, n− 1 at least one of the terms is a boundary
point. If we have a Dirichlet condition u(a, y) = r(y) on the y-axis we can replace the
term CWU0,j by CW r(yj). We then move this known term to the right and we get

CP U1,j − CSU1,j−1 − CEU2,j − CNU1,j+1 = fP + CW r(yi)

If we have Neumann boundary conditions we have to use fictive grid points (x−1, yj),
j = 1, ..., n − 1. With the help of these point we also use the five point formula. We
than eliminate the fictive grid points in the formula using the fact that

U1,j−U
−1,j

2h = 0
For a point P we then find that

CP U0,j −CSU0,j−1 − (CE + CW )U1,j −CNU0,j+1 = fP

If we have Robin boundary conditions we can do the same thing. Note that in both
cases the diagonal dominance of the matrix remains intact. We will see later that this
property ensures a unique solution, at least if at least at one point a Dirichlet condition
is applied.
For a non-square boundary we also have to use fictive points and inter- and extrapo-
lation.
Finally, we remark that at the boundary we may usually take the order of accuracy
one lower than in the internal domain. It can be shown that the order of convergence
is still that of the discretization in the internal domain.

2.2.4 Nonlinearity

In finite differencies nonlinearity is not very difficult to handle. Let us consider the
example equation

uux + uxx = f(x)

on [0,1] and with Dirichlet boundary conditions. On a uniform mesh, using central
discretizations, we obtain

ui(ui+1 − ui−1)/(2h) + (ui+1 − 2ui + ui−1)/h
2 = fi

for i = 1, ..., N , h = 1/N . This is only one possibility. For instance, one could also
write the example equation write in a divergence form

∂

∂x
(
1

2
u2 + ux) = f(x).

Then we could employ the finite volume approach shown in the next section.
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2.2.5 An example of a finite volume discretization

In this section we illustrate the finite-volume approach by discretizing the self-adjoint
operator defined by

Lu = −div (A gradu)

Now it is trivial that on any part of the domain Ω1 ⊂ Ω we have

∫

Ω1

Lu dΩ1 =

∫

Ω1

f dΩ1

Using Gauss’ theorem on the left-hand side we obtain

−
∫

Γ1

(A gradu,n) dΓ1 =

∫

Ω1

f dΩ1 (2.12)

where Γ1 is the boundary of Ω1. Here (A grad u,n) is often called the flux, because
it usually represent an amount of some entity (mass, heat, etc.) crossing through the
boundary per time unit.

We will now consider the specific case where A = diag([a, c]), so we have the PDE

− ∂

∂x

[
a
∂u

∂x

]
− ∂

∂y

[
c
∂u

∂y

]
= f (2.13)

Assume that Ω is covered by a uniform grid with in both x- and y-direction a mesh
size h. In Fig. 2.3 a part of the grid around the point P = (xi, yj) is drawn.

Here Ω1 is the dashed square from which the sides halve the lines connecting P and
its neighbors N1, E1, S1 and W1. For the integrals occurring in (2.12) we apply the
midpoint rule. Moreover observe that the normals are [0,1], [1,0], [0,-1] and [-1,0] if
we start at N1 and walk in clockwise direction, which shows that apart from the sign
we need only one component of the gradient at these points. Together this yields the
following half discretization

[
−a∂u

∂x

∣∣∣∣
O1

+ a
∂u

∂x

∣∣∣∣
W1

]
h+

[
−c∂u

∂y

∣∣∣∣
N1

+ c
∂u

∂y

∣∣∣∣
Z1

]
h = fPh

2

Note that no matter how we are going to discretize the remaining derivatives, if we
do it in exactly the same way in neighboring cells, e.g. aux|O1

is equal to aux|W1
of

the cell at the right, then if we just sum up all the equations all the internal fluxes
cancel and only the flux over the boundary of the domain remains.

To continue the discretization we use the central discretization

∂u

∂x

∣∣∣∣
O1

= (Ui+1,j − Ui,j)/h (2.14)

which yields the discretization

CPUi,j − CWUi−1,j − CSUi,j−1 − CEUi+1,j − CNUi,j+1 = fPh
2
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h

h

Figure 2.4

Figure 2.3: A control volume

with

CW = a(xi − 1

2
h, yj), CS = c(xi, yj − 1

2
h)

CE = a(xi + 1

2
h, yj) CN = c(xi, yj + 1

2
h)

CP = CW + CS + CE + CN

From the fact that CN is equal to the CS of the volume on top of this one and similar
for the horizontal direction, it follows that the matrix will be symmetric. This can be
exploited in the solution process.

Exercise 2.2 What changes if in y direction we have a mesh size k. Show that the
resulting matrix is still symmetric.

Exercise 2.3 Give the finite volume discretization of the convection-diffusion equation
as written in the last paragraph of the previous section.

Staggered grid For a number of systems of PDEs it appears to be handy and
advantageous to not define the various unknowns occurring in it in the same grid points.
So if for instance in the above example a and b would depend on another variable, say
v, then it would be nice if that variable would be defined at the midpoints of the
control volume faces, so at N1, E1, S1 and W1. Of course, there is another equation
for v that needs to be discretized. Staggered grids are often applied in Computational
Fluid Dynamics [21].
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2.2.6 The global discretization error

In the previous we have seen how a PDE Lu = f defined on a domain Ω, with boundary
conditions at its boundary can be approximated by a system of difference equations
LhU = fh. In general the exact solution u will not satisfy this equation and the residual

τh = Lhu− fh = Lh(u− U) (2.15)

which is called discretization error. This error could be estimated using Taylor expan-
sions expressed in the mesh size h and the partial derivatives of u. When for h → 0
also τh → 0, the difference scheme is consistent and if it holds that τh = O(hp), then
the difference scheme is consistent of order p.
As a consequence of the local discretization error also the grid function U will differ
from the exact solution u restricted to the grid points. The difference

vh = u− U (2.16)

is called the global discretization error. We have convergence if the global discretization
error tends to zero if the mesh size is decreased.
The main point is that Lh should be a stable operator. So in general if we consider
LhU = fh and the same problem with a slight perturbation in the right-hand side
LhŨ = fh + δh, then the difference eh = Ũ −U which is a solution of Lheh = δh should
be bounded in δh. It is from 2.15 that the restriction of u to the grid is a solution of
the perturbed problem Lhu = fh + τh, hence from stability we find convergence. It
appears quite general to be the case that convergence can be proven from stability and
consistency. It is called after Lax and Richtmyer or also the equivalence theorem, see
the famous book of Richtmyer and Morton [23].
In this case stability follows if

(y, Lhy) ≥ c||y||2 (2.17)

for arbitrary grid functions y that satisfy the Dirichlet boundary conditions. (It is
related to (1.9.) In fact c is the minimum eigenvalue of the matrix associated to Lh.
Taking y = eh = L−1

h δh, the following inequalities hold: ||L−1
h δh||||δh|| ≥ (L−1

h δh, δh) ≥
c||L−1

h δh||2 where the first one follows using Cauchy-Schwartz. So ||eh|| = ||L−1
h δh|| ≤

1
c ||δh||.
It is beyond the scope to really prove stability of discretizations in general, but one
can quite easily observe that some discretization maybe prune to instability. As we are
usually looking to smooth solutions the discrete operator will due to consistency very
much be acting the same on smooth functions as the original continuous operator will
do. The difference is expected for fast-oscillating wave-like functions. If the difference
operator is nearly zero for such wave-like functions and much smaller than when applied
to a smooth function of the same magnitude while the continuous form is not, then this
indicates an instable discretization (this is equivalent of getting a very small c in (2.17).
This occurs for example for discretizations where the stencil of the discretization does
not connect the odd points to the even points of the grid, e.g. the central discretization
for ux, or similar for red and black points in checker board form on the grid. It depends
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on the application whether the instability is disastrous for the computation but one
should be aware of that. Moreover, there exist ways to stabilize discretizations.

== External Links ==

* http://en.wikipedia.org/wiki/Finite_difference_method

* http://en.wikipedia.org/wiki/Five-point_stencil

* http://en.wikipedia.org/wiki/Maximum_principle

2.3 Finite element discretization for elliptic equations

The starting point for the finite element method is a weak form such as shown in (1.8).
Let us state it here as follows. We are looking for a solution u in a linear space V such
that for all v ∈ V it holds that

a(v, u) = (v, f) (2.18)

The space is such that all elements of it satisfy the essential boundary condition (in
homogeneous form). Now we like to find solutions of the form û =

∑N
j=1 cjφj(x),

where all φi(x), i = 1, ..., N are also in V . In fact they span a subspace of V . This
subspace is the search space and written as Vh. We now want (2.18) to hold on Vh.
This means that the test space is equal to the search space, and hence this is the
Galerkin approach. This gives the linear system

Ac = b

where Aij = a(φi, φj) and bi = (φi, f).

Exercise 2.4 Show this by substituting φi for v and û for u in (2.18).

Exercise 2.5 Show that if a(∗, ∗) satisfies (1.9) for all v in V then A is positive
definite, and if a(u, v) = a(v, u) for arbitrary u and v in V that A is symmetric.

Now we only need to define the basis functions. The most common choice is to use
interpolation polynomials as basis functions. We could use polynomials that perform
an interpolation over the whole domain or use piecewise polynomial interpolation. (For
the construction of piecewise polynomials we partition the domain in smaller parts
(the pieces) and define a low order interpolation on each part, next we require at the
edges of the parts some form of continuity.) The former needs high degree polynomials
when we have many interpolation points and may suffer from the Runge-phenomenon
(resulting in oscilatory behavior) if sharp gradients are present in the real solution.
Another problem is to find interpolating polynomials on irregularly shaped domains.
But, if no sharp gradients are present and the domain is “nice”, then this may do a good
job and it is favorable to use orthogonal polynomials as a basis. However, if we expect
strong gradients and the domain is quite irregular, piecewise interpolating polynomials
are much more flexible. Now assume we have defined the piecewise interpolating
polynomials we want to use, e.g. a linear approximation on each part of the domain,
then this spans a space Vh. Then the next step is to find a nice basis for these
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Figure 2.4: (a) Partitioning and piecewise linear polynomial, (b) basis function, (c)
element basis functions

polynomials which also spans the space Vh. The nice thing is that there exists a basis
in which the basis functions have a very local support and are the building blocks of
the finite element approach.

Let us consider the 1D case. Say we partition the domain [0,1] in N parts (not nec-
essarily equal), which are called elements. Now we require the piecewise interpolating
function to be linear on each element and that it is continous from one element to
a neighboring element (Fig. 2.4.a). As basis function we take a function that is 1 at
some interface of 2 neighboring elements and zero at all other interfaces (Fig. 2.4.b).
Finally, we take from these basis functions the restriction to one element which yields
the element basis functions (Fig. 2.4.c). Generally speaking a finite element is
defined by a part of the domain and the interpolation used on the element. Where for
the latter we should think of the element basis functions.

Exercise 2.6 Show that if the cj, j = 1, ..., N are known that then we can compute
the function values of the interpolating polynomial easily by using the element basis
functions.

Now the question arises for what kind of equations can the solution be represented by a
piecewise linear function f(x). Note that the derivatives of this function are in general
not differentiable at an interface. However if we consider the integral

∫
(f ′)2dx then

there is a sequence of 1 times differentiable {fn} that converges to f and moreover
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∫
(f ′n)2dx converges and is precisely the integral of

∫
(f ′)2dx where we have excluded

all the interfaces. As in second-order PDEs we arive at an a(∗, ∗) with first-order
derivatives which is of the type of integral considered, we can handle second-order
PDEs with piecewise linear basis functions.
All piecewise Lagrangian interpolation, which means interpolation on function values,
have a discontinuity in the first derivative. Hence can only be applied to first and
second-order PDEs.
Piecewise Hermite interpolation opens the way to construct polynomials which are
continuous in both the function and derivatives. In this case next to function values,
also values of derivatives are used to define the interpolating polynomial. For instance
if on an interface both function value and derivative are interpolated then we have a
continuous differentiable function. In that case we can also handle fourth-order PDEs.

Order of accuracy The order of accuracy that can be obtained by piecewise inter-
polating functions depends on

1. the order of the differential equation q,

2. the degree of interpolating polynomial p and the smoothness of it m, and

3. the order of the derivative of the unknown function k you are looking to, i.e. u
(k = 0) or ux (k = 1) or uxx (k = 2), etc.

If 2m ≥ q (as seen in the smoothness discussion above) and p + 1 − q ≥ 0 then the

order of accuracy in the approximation of ∂ku
∂xk is p+ 1 − k. So for second-order PDEs

(q = 2) using piecewise linear interpolation (m = 1, p = 1), we have that the function
value (k = 0) is approximated to second order. So if the mesh size is halved in all
directions then the error decreases by about a factor four.

2.3.1 Some finite elements

Exercise 2.7 For a 1D domain, draw the element basis functions for quadratic inter-
polation on each element. In this case next to the end points also the midpoint is used
in the interpolation.

Exercise 2.8 A cubic interpolation polynomial can be fixed by giving at the end points
of an interval both the function value and its derivative. Give the equations that define
the four element basis functions.

Exercise 2.9 Consider a triangulation of a 2D domain, i.e. the domain is partitioned
in triangles. Assume that we want to do a linear approximation on each triangle, which
is in fact a plane determined by the function value in its three corners. Make a sketch
of the basis function associated to this.

Exercise 2.10 Try to find the discription of the quadratic and cubic 2D triangular
elements in a book or on the internet and sketch the location of interpolation points.
In which way is this a generalization of the corresponding 1D elements?
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2.3.2 Handling constraints

The handling of constraints can be nicely done by using Lagrange multipliers as thought
in calculus courses. Here it is introduced in the finite dimensional case.
Say we want to minimize J(x) = 1

2 (x,Ax) − (b, x) with A SPD under the constraint
Bx = c. We can bring this constraint within the minimization using Lagrange multi-
pliers. We now have to minimize

Ĵ(x, µ) =
1

2
(x,Ax) − (b, x) + (µ,Bx− c)

The minimization over x and µ leads to the following linear equations to be solved

Ax− b+BTµ = 0,

Bx = c

If A is not symmetric but positive definite, then we still can use the last equation to
incorporate a constraint.

Exercise 2.11 Say we want to minimize the following expression over u, v which both
satisfy homogeneous boundary conditions at all boundaries

1

2
(u,−∆u) − (f1, u) +

1

2
(v,−∆v) − (f2, v)

subject to the constraint ux + vy = 0. What equations are to be solved after mini-
mization? If you did it right you found the Stokes equations for incompressible fluid
flow.

2.3.3 Setup of FE code

The assembly process, connectivity array, element matrices, stiffness matrix, static
condensation.
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2.4 Properties

2.4.1 Some matrix properties

There exist a few useful tools to detect important properties of matrices occurring in
discretizations. For instance to determine whether a matrix is non-singular.
We start off with a few definitions.

Definition 2.1 (Spectrum) The spectrum is the set of all eigenvalues of a matrix A
and denoted by σ(A).

It is obvious that all eigenvalues are in a disc with the origin as center and the radius
the biggest eigenvalue. This leads to the definition

Definition 2.2 (Spectral radius) The spectral radius ρ(A) is max
λ∈σ(A)

|λ|.

Definition 2.3 (Similarity) Two matrices A and B are called similar if there exists
a non-singular matrix Q such that B = Q−1AQ.

The operation with Q on A is called a similarity transformation.

Theorem 2.4 (Similar matrices) Two similar matrices have the same spectrum
and spectral properties.

Definition 2.5 (Permutation matrix) A matrix P is an identity matrix in which
the rows are permuted.

An example of a permutation matrix is

P =




0 0 1
1 0 0
0 1 0




Premultiplication of A with P enforces a permutation of the rows of A. In the case
of the example all rows shift down one and the last row becomes the first. Similarly,
postmultiplication enforces a permutation of the columns.

The transformation PAP T results in a mutual permutation where the rows and columns
are permuted in the same way. This ensures that a diagonal of the original is also a
diagonal element of the permuted matrix. It also holds that P −1 = P T , hence the
special transformation is a similarity transformation.

Definition 2.6 (Irreducibility) A matrix A is called irreducible if there is no per-
mutation matrix P such that

PAP T =

[
F G
O H

]
(2.19)

where F and H are square matrices and O a zero matrix.
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A is reducible if it is not irreducible. In that case the system Ax = b can be split into
two or more systems that can be solved one after another.

Theorem 2.7 (Gerschgorin) Let A be an arbitrary (complex) matrix of order N
and let every row define a radius by

Λi =

N∑

j=1

j 6=i

|aij |, i = 1, 2, . . . , N

then the eigenvalues λ of A are in the union of the Gerschgorin-discs

|z − aii| ≤ Λi, i = 1, 2, . . . , N

Proof. Let λ be an eigenvalue of A with corresponding eigenvector x. We normalize x
such that for the biggest element is holds that |xr| = 1. From the row corresponding
to this element in Ax = λx it follows that

arrxr +

N∑

j=1

j 6=r

arjxj = λxr

rearranging and taking norms we have

|λ− arr| = |
N∑

j=1

j 6=r

arjxj | ≤
N∑

j=1

j 6=r

|arj||xj | ≤
N∑

j=1

j 6=r

|arj | = Λr (2.20)

Hence λ is in the disc corresponding to the row where the eigenvector is biggest. From
this it follows that any λ is in a Gerschgorin-disc.

A corollary from this theorem is that for an arbitrary matrix A of order N it holds
that

ρ(A) ≤ max
i

N∑

j=1

|aij | = ‖A‖∞ (2.21)

and because AT has the same eigenvalues as A it also holds that

ρ(A) ≤ max
j

N∑

i=1

|aij | = ‖A‖1 (2.22)

Theorem 2.8 (Taussky) For an irreducible matrix A of order N it holds that a point
λ on the boundary of the uninion of all Gerschgorin-discs can only be an eigenvalue
of A if it is on the boundary of each disc (and the corresponding eigenvector has
components of equal magnitude)
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Proof. Suppose that the eigenvalue λ of A is on the boundary of the union of
Gerschgorin-discs. This means that for each disc λ is on its boundary or outside
of it. Hence, using the notation of the previous theorem

|λ− aii| ≥ Λi, i = 1, 2, . . . , N

Combining with (2.20) we see that this is only possible if we have equality, hence

N∑

j=1

j 6=r

|arj ||xj | =

N∑

j=1

j 6=r

|arj |

Which is only possible if |xs| = 1 for all s for which ars 6= 0. So the eigenvalue must
be on the boundary of the disc where the eigenvector is biggest and moreover the
eigenvector must have values of equal magnitude for all its components that are used
on this row. The last means that we could also have taken the row s in stead of the
row r in (2.20), and that also here we will find equality as above and that the elements
of the eigenvector used in this row should be of equal magnitude 1. Due to the fact
that the matrix is irreducible we can reach every row in the matrix, herewith proving
that the eigenvalue should be on the boundary of all the discs and that the magnitude
of all the components of the corresponding eigenvector should be equal.

Usually we use this theorem to show that a matrix is nonsingular. However, if we
have to deal with a symmetric real matrix, then we know that all eigenvalues and
eigenvectors are real. So if the circles go through one point on the boundary of the
union, then this point is an eigenvalue if the components of the eigenvector can be
chosen plus or minus one. If not one vector of such type is an eigenvector, the point is
still not an eigenvalue.

Exercise 2.12 Show that the discretization of the Laplace operator on some domain
with Neumann boundary conditions using the standard five-point stencil has an eigen-
value 0, and that it has not as soon as at one point we have a Dirichlet condition.

We can use this to show that the class of weakly diagonally dominant matrices are
non-singular. This is defined as follows

Definition 2.9 (Weak diagonal dominance) A matrix A of order N is called weakly
diagonally dominant when

|aii| ≥
N∑

j=1

j 6=i

|aij | for i = 1, 2, . . . , N

and the >-sign should hold for at least one of the equations.

Theorem 2.10 If A is an irreducible, weakly diagonally dominant matrix of order N ,
then A is non-singular.
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Proof. There is at least one disc for which 0 is outside. Hence according to Taussky’s
theorem 0 cannot be an eigenvalue. Hence the matrix is non-singular.

Definition 2.11 (Positive Definiteness) A matrix is A is called positive definite if
(x,Ax) > 0 for all nonzero x

Theorem 2.12 If A is real symmetric, then positive definiteness equivalent to having
positve eigenvalues.

Theorem 2.13 If A has positive diagonal elements and moreover is symmetric, irre-
ducible, and weakly diagonally dominant, then it is positive definite.

Proof. Proof The eigenvalues of a symmetric matrix are real and from the location of
the Gershgorin discs we know that all eigenvalues are on the positive real axis.

In simulation also non-negativeness of solutions is an issue. For instance, we would
like to keep a concentration positive during the computations. It is clear that when
we multiply a vector with positive elements by a matrix with positive elements then
the the outcome is also positive. But what if we want to solve a system where the
right-hand side is positive, for which matrices is the solution positive? Let us first
define the class of non-negative matrices.

Definition 2.14 (Non-negativeness) A matrix A is non-negative if (A ≥ 0) if each
element is non negative, and A is positive (A > 0) if each element is positive.

Definition 2.15 (Monotony) A matrix A is monotone if its inverse exists and is
non-negative

Theorem 2.16 A matrix A is monotone if and only if from
Ax ≥ 0 it follows that x ≥0.

Proof. Let A be monotone and y = Ax ≥ 0. Then it follows straight-forwardly
that x = A−1y ≥ 0. Now the other way around. First we show nonsingularity. Let
Ax ≥ 0 ⇒ x ≥ 0 and suppose z is a nonzero singular vector so Az = 0. Then from
our outset, z must have non-negative elements. However −z is also a singular vector
and hence also the elements of this vector should be non-negative. From this it follows
that z = 0, so the matrix is non-singular. Furhermore the inverse of A is the solution
of the system AX = I, which just means that the columns of the inverse follow from
the solution of Ax = ei for i = 1, ..., N where ei is a unit vector. Since the unit vector
is non-negative the columns of the inverse of A are non-negative and hence A−1 ≥ 0.

Definition 2.17 (M-matrix) A matrix A is an M -matrix if A is monotone and
aij ≤ 0 (∀i 6= j).

Theorem 2.18 An M -matrix has positive diagonal elements.
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Proof. Let A−1 = (bij) then all bij ≥ 0. From AA−1 = I it follows that

aiibii +
N∑

j=1

j 6=i

aijbji = 1, i = 1, 2, . . . , N

In the sum all aij ≤ 0 and all bji ≥ 0, hence

aiibii = 1 +

N∑

j=1

j 6=i

|aijbji| ≥ 1, i = 1, 2, . . . , N

Since bii ≥ 0 it follows from this that aii > 0, i = 1, 2, . . . , N .

Theorem 2.19 An irreducible, weakly diagonally dominant matrix A with positive
diagonal elements and aij ≤ 0 (∀i 6= j) is an M -matrix.

Proof. From Theorem 2.10 we know that A is non-singular, hence it only remains to
show that A−1 ≥ 0. We write A = D−B met D een diagonaalmatrix en de diagonaal
van B gelijk aan nul. From application of Tausky’s theorem to D−1B it follows that
ρ(D−1B) < 1. Hence the sum

S =

∞∑

k=0

(D−1B)k

converges and

S = (I −D−1B)−1

From D−1 ≥ 0 and B ≥ 0 it follows that D−1B ≥ 0, hence, also S ≥ 0. From

A−1 = (I −D−1B)−1D−1 = SD−1

it finally follows that also A−1 ≥ 0.

== External Links ==

* http://en.wikipedia.org/wiki/Similar_matrix

* http://mathworld.wolfram.com/ReducibleMatrix.html

* http://en.wikipedia.org/wiki/Gershgorin_circle_theorem

* http://planetmath.org/encyclopedia/MMatrix.html

2.4.2 Maximum principles and monotony

Consider the Laplace equation ∆u = 0. Then from Gauss’ theorem we have

∫

Γ
undΓ = 0
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where n is the outward normal. This says that if un 6= 0 on the whole boundary that
it must be on parts positive and on other parts negative. This holds for the boundary
of any volume in the definition domain of the Laplace equation. Hence if we take this
volume very small around a point. Then we see that this point cannot be an extremum.
Since in some directions u is increasing and in others it is decreasing. Since this can be
any point in the intenal of the domain this means that we cannot have an extremum
inside the domain hence it must be on the boundary.
Consider now the Poisson equation −∆u = f with f ≤ 0. Then from Gauss’ theorem
we have ∫

Γ
undΓ ≥ 0

If we now contract the volume to a point we see that this point can be a minimum
since u may be increasing in all directions away from it. However we cannot have a
maximum in this case because then un must be negative in any direction. So in this
case we cannot have a maximum in the internal domain. Similar if f ≥ 0 we cannot
have a minimum in the internal domain.
Next consider the case −∆u+ qu = f where q ≥ 0 and f ≤ 0 then we have that

∫

Γ
undΓ ≥

∫

Ω
qudΩ

Now we again we contract the volume and see using the previous that if u is positive
that no maximum is possible. Similar for positive f no minimum is possible.
Now we consider a generaal discrete case:

CP Ui,j − CWUi−1,j − CSUi,j−1 −CEUi+1,j −CNUi,j+1 = fP

where CP ≥ CW + CS + CE + CN and all the coefficients are non-negative. At a
Neumann boundary some of them may be zero. This can be rewritten to

(CP − CW − CS − CE − CN )Ui,j

+ CW (Ui,j − Ui−1,j) + CS(Ui,j − Ui,j−1) + CE(Ui,j − Ui+1,j) + CN (Ui,j − Ui,j+1)

= fP

which is a discrete analogue of the Gauss’ theorem. Now consider again three cases.
If fP = 0 for all internal points of the computational domain and CP is equal to the
sum of the other coefficients, then the first coefficient in the equation cancels and we
have that Ui,j cannot be an extremum for any internal point. Since if one of differences
is positive then another must be negative.
If fP ≤ 0 for all internal points of the computational domain and CP is equal to the
sum of the other coefficients, then again the first coefficient in the equation cancels.
Reasoning the same as in the continuous case we cannot have a maximum in the
internal domain. Similar we cannot have a minimum if fP ≥ 0
If fP ≤ 0 for all internal points of the computational domain and CP is bigger than
the sum of the other coefficients, then we have a positive coefficient in front of Ui,j.
And reasoning the same as in the continuous case now leads to the observation that
no positive maximum is possible; similarly no negative minimum if fP ≥ 0.



2.5. TIME DEPENDENT EQUATIONS 35

The consequence of this is that if on a Diriclet boundary we prescribe a positive value
and furthermore if the right-hand side is positive, then the solution must be positive.
Since if it would become negative it must have a negative minimum in the internal or
at the Neumann boundary, which conflicts with the above assertion.

Note that we have already seen the same conclusion for monotone matrices. So these
properties are related.

2.5 Time dependent equations

2.5.1 Method of lines

In the following sections we will treat a number of methods to solve systems of ordinary
differential equations (ODEs). In this section, we will show how we transform a PDE
into a system of ODEs, by looking to the one dimensional heat equation

∂u

∂t
= a

∂2u

∂x2
+ f, a > 0, t > 0, 0 < x < 1 (2.23)

The initial condition is u(x, 0) = φ(x) and for convenience we will assume homogeneous
boundary conditions u(0, t) = u(1, t) = 0.

In the method of lines we first discretize in space. We will treat the finite difference
and finite element method subsequently.

Finite difference method We partition the x-interval in m equal parts, hence
h = 1/m and xi = ih, i = 0, 1, . . . m. According to (2.4) it holds for sufficient smooth
u

uxx(x, t) =
u(x+ h, t) − 2u(x, t) + u(x− h, t)

h2
− 1

12
h2uxxxx(x, t) +O(h4)

Now, if we use the notation uj(t) = u(xj , t), then we get after substitution in (2.23) for
x = xj, j = 1, 2, . . . ,m− 1

d

dt
uj(t) = a

uj+1(t) − 2uj(t) + uj−1(t)

h2
− 1

12
ah2uxxxx(xj , t) +O(h4) + fj(t)

After discarding the local discretization errors we arrive at the system of ODEs

d

dt
Uj = a

Uj−1 − 2Uj + Uj+1

h2
+ fj(t), j = 1, 2, . . . ,m− 1

In which the functions Uj(t) approximate uj(t), hence they approximate the solution
u(x, t) along the lines x = xj, j = 1, 2, . . . ,m − 1. This is why this approach got the
name method of lines, sectie 6.9).

We can also put the difference equations in matrix vector form. For that we introduce
the vector

U(t) = [U1(t),U2(t), . . . ,Um−1(t)]T
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and similarly a vector F and the (m− 1) × (m− 1) matrix

A =
a

h2




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2




Now we can write the system of ODEs as

d

dt
U = AU + F (2.24)

Finite element method The only difference with the approach we followed for the
elliptic equations is that now the coefficients in the sum of the basis functions will
depend on t. So we write uN (x, t) =

∑N
j=1 cj(t)φj(x). In the Galerkin approach we

plug this into the equation and test with the φi. This yields here

N∑

j=1

[
d

dt
cj(t)(φi, φj) + acj(φ

′
i, φ

′
j) − (φi, f)] = 0

which in system form can be written as

M
d

dt
c = Ac + F (2.25)

where here Mij = (φi, φj), Aij = (φ′i, φ
′
j) and Fi = (φi, f). The matrix M is called the

mass matrix, while A is as before the stiffness matrix.
It is interesting to see that in both cases we have a similar system

M
d

dt
c = Ac + F, c(0) = c0 (2.26)

where in the finite difference case M is just the identity.

2.5.2 Stability investigation

In order to make a judicious choice for a method we must consider the stability problem
for (2.26). In this case it is enough to consider what happens if we perturb the initial
value a bit. So let us denote the solution following from the perturbation by ĉ(t) which
has initial condition ĉ(0) = c0 + ε. Since ĉ also satisfies the ODEs exactly, we can
simply subtract the two systems to obtain a system for the difference e(t) = ĉ(t)−c(t),
which assumes the form

M
d

dt
e = Ae, e(0) = ε (2.27)

We can now use standard theory from ODEs to solve this system. We first try to break
it into independent scalar equations by setting e = exp(λt)v where v does not depend
on time anymore. This leads to the generalized eigenvalue problem

λMv = Av
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In our case M is non-singular and therefore the eigenvalues are just the standard
eigenvalues of M−1A. Once, we have found the eigenpairs (λi, vi) we build the matrix
V = [v1, ..., vN ] and use it to bring the original equation to diagonal form, yielding the
scalar equations

d

dt
êi = λiêi

with ê = V −1e. The initial condition transforms into the condition ê(0) = V −1ε. From
this scalar equation we can study the stability of our ODE. Many physical systems are
dissipative. If it is given some initial condition the system turns into rest after a while.
This means that the eigenvalues in such a system have negative real parts. We like
numerical methods to have the same property. In a numerical method we are just
doing some approximation to the time derivative and therefore the reduction to scalar
equations can be done precisely in the same way using the same V . So we find the
equations

DDTÊi = λiÊi, with Êi(0) = êi(0)

where DDT is a short we use here to denote the discretization of the time derivative
which is not specified further. This means that for stability of the numerical method
we just can look to the equation

d

dt
u = λu

which is called the test equation, and where λ will run through the eigenvalues of the
eigenvalue problem given above.

Localization of eigenvalues

For the choice of the method we would like to know where the spectrum of the problem
is. For this we can use two paths: the matrix method and the difference method.

Matrix method In this case we start from the matrix. We inspect the following

Symmetry If the matrix is symmetric we know that the eigenvalues are real, if it is
skew-symmetric and real AT = −A the eigenvalues are purely imaginary.

Positive definiteness If the matrix is following from a finite element discretization
of a positive definite PDE problem then the discretization inherits this property.
If it follows from a finite difference equation then we can use Gershgorin’s and
Taussky’s theorem to study the positive definiteness. This usually only works
for M matrices. In the more general case, for instance if discretizations of higher
accuracy are used it becomes more sophisticated.

Note that for a real matrix positive definiteness has only to be considered for the
symmetric part of the matrix, because (x,Ax) = (x, 1

2(A + AT )x) + (x, 1
2 (A −

AT )x), where the second term is purely imaginary.

Spectral radius The spectral radius can be found using Gershgorin’s theorem or by
the infinity norm of the matrix.
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If we apply this to the matrix above we have that both M and A are symmetric.
For the finite difference case we can show by Taussky’s theorem that −A is positive
definite. For the finite element case it follows from the outset that both M and −A are
positive definite. The finite difference case we find with both mentioned approaches
that the spectral radius of −A is bounded by 4a/h2. For the finite element case in
order to bound the spectral radius of M−1A is more sophisticated. Since M is positive
definite we can bound this by the ratio of the spectral radius of A and the minimum
eigenvalue of M . The latter is found by the Gershgorin theorem.

Difference method In the difference method we take the difference operator ac-
cording to A as starting point. If these difference equations are the same for all the
grid points we can try to solve the corresponding eigenvalue problem. Now if we as-
sume that there are no boundary conditions, then the Fourier component exp(ijθ) is
an eigen(grid)function of the difference operator. Let’s do this for the above finite
difference example. So we want to solve the eigenvalue problem

a
uj+1(t) − 2uj(t) + uj−1(t)

h2
= λuj

Now we plug in uj = exp(ijθ) and find

a
eiθ − 2 + e−iθ

h2
exp(ijθ) = λ exp(ijθ)

After some algebraic manipulations on the left-hand enumerator we find

λ = −4a
sin2(θ/2)

h2

And also here we find that the eigenvalue is real and in the interval [−4a/h2, 0].
This approach is less rigorous then the matrix method, since we have neglected the
boundary conditions. Nevertheless in many cases it gives a good indication of the
location of the eigenvalues in the complex plane.

2.5.3 Some time integrators

In this section we show a number of time integrators that can solve a system of ODEs
of the form du/dt = f(t, u) with an initial condition given. In all cases we will define
a grid in time direction with stepsize ∆t.

Forward Euler method The forward Euler method is defined by

wn+1 = wn + ∆tf(tn, wn)

where w0 is given. Using Taylor series one can show that this method is first-order
accurate. As indicated above, for stability we can apply it to the test equation, which
gives

wn+1 = wn + ∆tλwn = (1 + ∆tλ)wn
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Note that this is a recurrence and hence

wn = (1 + ∆tλ)nw0

Since for stability we want that an initial perturbation damps out again, we want that
wn tends to zero if n tends to infinity. This is the case only if

|1 + ∆tλ| < 1 (2.28)

For the finite difference example above we know that the eigenvalues are in the interval
[−4a/h2, 0]. Then this condition is satisfied if

∆t <
h2

2a

Hence we get a time step restriction which can become quite severe for small h.
In general one defines z = ∆tλ and studies for which z

|1 + z| < 1

For equality we find in the complex plane a circle with center -1 and radius 1. The
inequality holds for all z in this circle. This part is called the region of absolute stability
of the Euler method.

Exercise 2.13 Show that this method is not suited for problems with purely imaginary
eigenvalues.

The forward Euler method is an explicit method since we can just fill in a known wn in
f , do an addition and we have wn+1. This contrasts with an implicit method where we
will have the unknown wn+1 in f , which in general leads to the solution of a nonlinear
system of equations. The big difference between explicit and implicit methods is that
the time step for explicit methods is always bounded in a form similar to that for the
Euler method, while for implicit methods this need not be the case. This may make
it worthwhile to use an implicit method.

Backward Euler The backward Euler method is an implicit method which has the
form

wn+1 = wn + ∆tf(tn+1, wn+1)

and is like the Forward Euler method first-order accurate.

Exercise 2.14 Show that here the stability analysis leads to |1 − z| > 1 and draw the
region of absolute stability in this case.

From the region of absolute stability we observe that this method has no restriction
on the time step for our model problem. In fact it will not have a restriction for any
problem with eigenvalues from which the real part is negative. Methods with such a
property are called A-stable.
This method is the simplest example of the Backward Differentiation Formulas (BDFs)
where the f is always and only evaluated at tn+1 and for the discretization of the time
derivative values in the past are used, which explains the name. In general BDF(k)
uses k values of w in the past and has order of accuracy k.
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Exercise 2.15 Search for plots of the region of stability of the BDF(k) methods in
books or on the internet. For which values of k are they A-stable and for which values
can they solve our model parabolic problem without a restriction on the time step?

Trapezoidal method This method has the symmetric form

wn+1 = wn +
∆t

2
[f(tn, wn) + f(tn+1, wn+1)]

which causes that this method is second-order accurate in time.

Exercise 2.16 Show that the stability analysis leads to |2 − z| > |2 + z| and that also
this method is A-stable.

The trapezoidal method is in PDE context often called Crank-Nicholson method.

Theta methods The theta method is a generalization of the trapezoidal method
and has the form

wn+1 = wn + ∆t[(1 − θ)f(tn, wn) + θf(tn+1, wn+1)]

Observe that for θ = 0, 1/2, 1 we get the forward Euler, trapezoidal method, and the
backward Euler, respectively. It is A-stable for θ ≥ 1/2.

Exercise 2.17 Show that the factor occurring in the recurrence relation for the trape-
zoidal method is tending to one for z tending to infinity.

It is useful in adding some damping to the trapezoidal method, which it lacks for
example in our model problem when the time step is chosen big.
There exists also a variant of the theta method called the implicit theta method

wn+1 = wn + ∆t[f(tn+θ, (1 − θ)wn + θwn+1)]

This method only differs from the first one for nonlinear problems. Hence the stability
analysis is equal. However, it is known to be slightly better for non-linear problems.

Von Neumann analysis Instead of analysing the space direction (by trying to
localize the spectrum) and afterwards considering the stability of the time integrator.
One could of course also discretize both at the same time. If one applies the Fourier
analysis to the space discretization one defines the amplification factor ρ which is
in the case of our example problem and using the Euler method nothing more then

ρ(θ) = 1 −∆t4a sin2(θ/2)
h2 and we require in line with the analysis above (2.28) that the

magnitude of the amplification factor should be less than one. This approach is called
the Von Neumann analysis.

Algebraic Differential Equations If in a system of PDEs one or more of the
equations do not contain a time derivatives, then these equations form a constraint
to the solution. After space discretization they become an algebraic constraint and
then we arrive at so-called algebraic differential equations. For such equations special
methods exist. In the above mentioned methods it is best to apply the constraint
immediately to the new time level.



Chapter 3

Solution of sparse systems

PDEs discretized by finite elements or finite differences often lead to very sparse sys-
tems of equations. Since the solution of systems is the bottleneck in many simulations,
it is worthwhile to try to exploit the sparsity. Here, the ultimate goal is that the
amount of work will be proportional to the number of unknowns. First we treat the
solution of linear systems and next we consider the nonlinear case.

3.1 Direct methods for sparse linear systems

In general there are two approaches direct methods in which the solution is solved to
machine accuracy in one step and iterative methods in which the solution is approxi-
mated in a number of steps, in each of which the accuracy is improved, until a user set
tolerance on the accuracy is met. In this chapter we will look to the direct approach.

Consider the basic problem

Ax = b (3.1)

where A is a matrix of order N . The usual way to solve this is with Gaussian elim-
ination with pivoting (GEP). Here we construct a permutation matrix P , a lower
triangular matrix L and an upper triangular matrix U such that PA = LU . The
permutation matrix P shows which rows of A are permuted due to the pivoting. The
amount of work to construct this factorization is for large N about 2

3
N3 flops. If A is

symmetric this can be exploited. In that case we can find a factorization of the form
LDLT where L has ones on its diagonals and D is a diagonal matrix with 1 × 1 and
2 × 2 blocks on the diagonal. This halves the amount of work. If A is also positive
definite we can make a Cholesky factorization LLT . It is known that for weakly diago-
nally dominant matrices, hence for M-matrices, there is no need for pivoting. Neither
this is needed for symmetric positive definite matrices.

The amount of work and complexity, i.e. how the amount of work behaves as a function
of the number of unknowns, depends on the ordering of the matrix. In order to keep
the work low we should try to keep the fill low. The fill are the elements occurring in
the L and U which where not there in the original matrix. Hence one is looking for
fill-reducing orderings.

41
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Figure 3.1: (a) Row wise ordering, (b) column wise ordering

Let us first consider the structure of the matrix due to the discretization of the Laplace
equation on a rectangular domain Ω using Dirichlet boundary conditions. The sides
of the domain are parallel to the x- and y-axis. The domain Ω is covered by a uniform
grid with in both directions an equal mesh width h and in x- and y-direction Nx and Ny

internal grid points, respectively. We number the internal grid points in lexicographical
ordering as depicted for the case Nx = 10 andNy = 4 in Fig. 3.1. If we use the standard
5-point difference molecule (2.10) then in the ith row of AU = b we have a connection
to Ui−Nx and Ui+Nx , but not to any Uj with j < i−Nx or j > i+Nx. This means that
the bandwidth of the matrix is 2Nx + 1. It is easy to show that without pivoting there
will be no fill outside the band. This bandwidth can be a lot less than that of a full
matrix. The amount of work is now approximately 2N 2

xN flops. If Nx � Ny then is
advantageous to take the ordering as in Fig. 3.1.a, because in that case the bandwidth
is 2Ny +1. The original matrix has also a lot of zeros within the band, but during the
elimination process this is lost.

Exercise 3.1 Make a picture of the matrix for both orderings.

A symmetric reordering, which we are considering here, of a matrix can be described
in terms of a permutation matrix: PAP T . A few symmetric orderings by which we
can reduce the fill are the following

Reversed Cuthill-McKee The idea behind standard Cuthill-McKee is to minimize
the bandwidth. We saw already that this is advantageous if one uses lexico-
graphical orderings. It appeared that a reversion of the ordering created slightly
better results in some cases. However, for our problem this would not make any
difference.

(Approximate) Minimum degree This is based on the fact that a row with a
low number of elements cannot produced much new fill. Since, the number of
elements per row varies during the elimination, one tries to pick the row with
the lowest number of elements as pivot row. More details can be found in ([26],
1967) and [8].
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Table 3.1: Amount of work and number of nonzeros in L for various orderings

Numbering flops/1000 nnz(L)/1000

N = 100 400 1600 6400 100 400 1600 6400
Random 35 968 78944 4477865 1.5 14 216 3110
Lex. graphical 11 165 2603 41302 1.0 8 64 512
Rev. Cuthill-McKee 7 96 1410 21510 0.8 6 45 351
Checkerboard 6 85 1299 20559 0.7 5 36 270
Nested dissection 7 78 804 7637 0.8 5 28 153
Minimum degree 5 53 590 7337 0.7 4 22 126

Table 3.2: Order of operations of Nested Dissection on Poisson problem on a
hypercube (N = nd unknowns

1D 2D 3D dD

factorization n N n3 N
√
N n6 N2 n3(d−1) N3(d−1)/d

storage n N n2 log2(n) N log2(N) n4 N4/3 n2(d−1) N2(d−1)/d

Nested dissection This is a divide and conquer strategy ([10], 1973). Let us describe
it shortly because it is also related to domain decomposition approaches. In this
technique one simply starts off by splitting the domain in about 2 equal parts,
which are separated by a number of unknowns that have a connection to both
domains. An unknown in one of the domains does not have a direct connection
to any unknown in the other domain; it is only connected via an unknown on
the separator. The unknowns on the separator are put last in the vector of
unknowns. This process is repeated on each of the two domains recursively.

To illustrate the influence of ordering on the amount of work and the number of
nonzeros in the factorization we consider in Table 3.1 a Cholesky factorization for the
described Laplace problem for a number of grid resolutions Nx = Ny = 10, 20, 40 and
80. These results show that it pays off to use a fill-reducing ordering. The problems
shown are still quite small For bigger problems Nested Dissection will eventually do a
better job than minimum degree. In Table 3.1 we show how the complexity behaves
for nested dissection on a Poisson problem. To improve accuracy one usually employs
iterative refinement. Here the residual r = b−Ax̂ is computed, where x̂ is the solution
found from the exact solve. Next we compute a correction ∆x from LU∆x = r and
update x̂ by adding ∆x. This can be repeated a few times till r is small enough. One
uses higher precision to compute the residual in order to avoid loss of significant digits.
Some concluding remarks.

• Direct methods are robust. So any problem can be solved by it.

• An LU -factorization is expensive in time. The storage of the factorization is still
moderate in the 2 and 3D case.
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• Solution time of LUx = b is proportional to the storage and therefore com-
paratively cheap with respect to factorization. Hence, if the matrix is constant
and the right-hand side changes then reusing the factorization makes it a very
attractive alternative to iterative methods.

• In 2D direct methods are usually faster than iterative methods for systems up to
10.000-100.000 unknowns. In 3D the break even occurs for much smaller systems.

• Direct methods are quite well developed nowadays and usually available in math-
ematical kernels coming with compilers. Sometimes the user can choose the
ordering, but usually it is set to nested dissection or (approximate) minimum
degree. Some implementations however maybe simply faster or better adapted
to the hardware (cache, distributed memory). Therefore, if possible one could
try a few and just pick the fasted one.

== External Links ==

* http://en.wikipedia.org/wiki/Degree_%28graph_theory%29 degree

* http://en.wikipedia.org/wiki/Sparse_matrix

* http://en.wikipedia.org/wiki/Cuthill-McKee_algorithm

* http://en.wikipedia.org/wiki/Minimum_degree_algorithm

3.2 Handling nonlinear equations

To solve nonlinear equations Newton’s method and its variants is by far the most
popular approach. In general a Newton method to solve the equation f(x) = 0 has
the following form given an x0 perform the iteration,

1. evaluate f(xk),

2. build an (approximate) Jacobian matrix J(xk) of f ,

3. solve the linear system J(xk)∆xk = f(xk),

4. update xk: xk+1 = xk + αk∆xk.

We discuss each step shortly. In the first step one should be aware of the fact that the
attainable accuracy of a Newton method is determined by the accuracy by which one
can evaluate f . Try to formulate the problem such that loss of significant digits is as
small as possible. Building a Jacobian matrix in the second step may be expensive,
therefore often the Jacobian is kept fixed for a number of Newton steps until the con-
vergence deteriorates. Another way is to evaluate the Jacobian only on a subspace. In
the third step we have to solve usually a big system, for which the building of a factor-
ization for the Jacobian matrix is quite expensive. One could decide here to reuse the
factorization of the Jacobian as long as the convergence does not deteriorate. As long
as we are using a direct method to solve the linear system this is equivalent to keeping
the Jacobian fixed for a number of steps, but in an iterative procedure, with incomplete
factorizations one could choose to update the Jacobian but not its factorization. The
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fourth step shows a damping parameter αk. By choosing this parameter judiciously
one can assure that f(xk) is becoming smaller in each step, which is not necessarily
the case for αk = 1 in the standard Newton method. Hence, by introducing an αk one
can make a locally convergent method globally convergent.
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Chapter 4

Continuation of steady states

The starting point is a given set of partial differential equations which can be written
in operator form as

M∂u

∂t
+ Lu + N (u) = F (4.1)

where L, M are linear operators, N is a nonlinear operator, u is the vector of dependent
quantities and F contains the forcing of the system. To get a well-posed problem,
appropriate boundary conditions have to be added to this set of equations. A typical
problem will be given in Section 4.5 and it also serves as a testcase for illustrating the
methods.
The computational approach can be divided into three separate parts. First a discrete
representation of the model equations has to be obtained through some kind of dis-
cretization procedure (Fig. 4.1). This leads to a set of ordinary differential equations

Discretisation
Techniques of
numerical bifurcation
theory

Continuous equations Basic linear algebra

Bifurcation diagram

Figure 4.1: Sketch of the scheme of the computational work involved to compute bifurcation
diagrams.
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with or without algebraic constraints

MN
dx

dt
+ LNx + NN (x) = FN (4.2)

where the subscript N denotes the space discretized variant and the vector x denotes
the values of u on a grid in finite differences or the coefficients in the expansion in
basisfunctions in Finite Elements. The second part of the computational work is to
apply specific techniques of numerical bifurcation theory (Fig. 4.1). These are the
same techniques which are used in the packages for the smaller dimensional systems,
such as AUTO, MATCONT and CONTENT.

Usually, the scheme below is followed

(i) Determine the fixed points ū of the system of equations when parameters are
changed, i.e., solve the problem

LN x̄ + NN (x̄) = FN (4.3)

This will be done using continuation methods which are presented in Section 4.1.
Their description follows closely texts in [25] and [19].

(ii) When one is able to compute a branch of steady solutions in a control parameter,
one wants to know whether a bifurcation point has been crossed, whether other
branches exist and if yes, how they can be reached. Practical techniques to do
so are provided in Section 4.2.

(iii) If a steady state is computed, one wants to assess its linear stability. With
x = x̄ + x̃, linearizing (4.1) around x̄ and separating x̃(t) = x̂ eσt gives an
eigenvalue problem of the form

(LN + NNx(x))x̂ = −σMN x̂ (4.4)

where NNx is the derivative of the operator NN with respect to x. The solution
of these eigenvalue problems is discussed in Section 4.3

(iv) Finally, one wants to compute trajectories of the model under investigation,
either in the regime where bifurcation behavior (and fixed points) are known,
or to compute periodic orbits. As a spin-off of the methodology above, implicit
time-dependent methods will be discussed in Section 4.4

As will turn out, an important part of the computational work is the solution of large
linear systems of equations. The success of the latter methods mainly determines
the dimension of the dynamical system which can be handled. Whereas for small
dimensional dynamical systems robust direct techniques (section 3.1) can be used, for
giant dimensional systems one must turn to sophisticated (and less robust) iterative
techniques.



4.1. PSEUDO-ARCLENGTH CONTINUATION 49

4.1 Pseudo-arclength continuation

To determine steady solutions of (4.2), we need to solve the set of nonlinear algebraic
equations

Φ(x, λ) = LNx + NN(x) −FN = 0 (4.5)

where λ indicates a control parameter which appears in the operators LN and/or NN

and/or FN .
For reasons which will be made clear below, it is advantageous to parametrize branches
of solutions with an arclength parameter s as sketched in Fig. 4.2. A branch γ of steady
solutions (x(s), λ(s)), s ∈ [sa, sb] is a smooth one-parameter family of solutions of (4.5).
Since an extra degree of freedom is introduced by the arclength s, a normalization
condition of the form

Σ(x(s), λ(s), s) = 0 (4.6)

is needed to close the system of equations. We thus end up to solve a system of
nonlinear algebraic equations of dimension N +1 for the N +1 unknowns (x(s), λ(s)).
But where to start on the branch and how to choose the normalization?

λ
s

(s )γ
0

| x |

s
0

pitchfork bifurcation

Newton-Raphson process

a b

γ

Euler guess

ss

.

Figure 4.2: Sketch of the parametrization of branches of steady solutions by an arclength
parameter s and the tangent γ̇ along the branch in a typical bifurcation diagram.

In the more specialized literature [25, ], several alternatives are described. In many ap-
plications, some trivial state can always be found, for example for zero forcing and/or
a motionless solution. With respect to the normalization issue, we consider the geome-
try of the problem. Aim is to determine the range of a curve γ : I ⊆ R → R

N+1, with
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γ(s) = (x(s), λ(s)) such that (4.5) is satisfied. Assuming that we now know, at some
point s0, a solution (x0, λ0), then the tangent space of the curve at s = s0 is spanned
by the vector γ̇(s0) = (ẋ(s0), λ̇(s0))

T (Fig. 4.2). As a normalization condition, it turns
out to be advantageous (the reason being the solution method in the next section) to
take a normalization of the length of the tangent,

ẋT
0 ẋ0 + λ̇2

0 = 1 (4.7)

In some applications, the initial tangent is analytically available. For example, in a
problem where the motionless solution exists is a solution for all λ, we find ẋ0 = 0 and
λ̇0 = 1.
A more general way of computing the tangent is the following. By differentiating
Φ(γ(s)) = 0 to s we find

[Φx Φλ]γ̇(s) =

(
∂Φ1

∂x1
. . . ∂Φ1

∂xN

∂Φ1

∂λ
∂Φ1

∂xN
. . . ∂ΦN

∂xN

∂ΦN

∂λ

)
γ̇(s) = 0 (4.8)

If (x0, λ0) is not a bifurcation point, then dim(ker([Φx Φλ])) = 1 and therefore [Φx Φλ]
has rank N . Hence, we can determine γ̇(s0) as the null space of the N(N + 1) matrix
[Φx Φλ].
First, the matrix [Φx Φλ] is triangulated into the form



∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗


 (4.9)

where this matrix (an ∗ indicates a possible nonzero element) is shown for N = 3.
The last row cannot be entirely zero, and therefore the (permuted) tangent vector
v = (ẋ0, λ̇0) can be computed by solving




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1


v =




0
0
0
1


 (4.10)

and its length is normalized as in (4.7).
Once x0, λ0, ẋ0 and λ̇0 are determined. a further point on the same branch can be
calculated by taking

Σ(x, λ, s) = ẋT
0 (x − x0) + λ̇0(λ− λ0) − (s− s0) (4.11)

and solve the total system of equations (4.5) and (4.11) given a prescribed steplength
∆s = s−s0. In this form, the continuation method is called a pseudo-arclength method
[13, ]. The name derives from the fact that (4.11) is an approximation to (4.7). The
advantage of this method is that the Jacobian of the extended system (4.5)-(4.11) is
non-singular at saddle node bifurcations, whereas the Jacobian Φx is. Hence, one can
easily follow a branch around a saddle node bifurcation [13, ].
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4.1.1 The Euler-Newton method

To solve the equations (4.5) and (4.11), an Euler predictor/Newton corrector algorithm
is applied. Let the steady state which is already known be indicated by x0, then a
good guess for the next steady state is the Euler predictor given by

x1 = x0 + ∆s ẋ0 (4.12)

λ1 = λ0 + ∆s λ̇0 (4.13)

where again the dot indicates differentiation to s. Now in the Newton-Raphson method,
for k = 1, 2, ... xk and λk are updated by

xk+1 = xk + ∆xk+1 (4.14)

λk+1 = λk + ∆λk+1 (4.15)

where (∆xk+1,∆λk+1) are solved from the correction equation
(

Φx(x
k, λk) Φλ(xk, λk)

ẋT
0 λ̇0

) (
∆xk+1

∆λk+1

)
=

=

( −Φ(xk, λk)

∆s− ẋT
0 (xk − x0) − λ̇0(λ

k − λ0)

)
(4.16)

Hence, within each iteration, a linear system of equations has to be solved. If the
Newton-Raphson process has converged up to a desired accuracy, a new steady state
has been found.
One can split the solution of (4.16) into two steps in which only linear systems with
Φx are solved. Let r = −Φ(xk, λk) and rN+1 = ∆s− ẋT

0 (xk − x0) − λ̇0(λ
k − λ0), then

if z1 and z2 are solved from

Φx(xk, λk)z1 = r (4.17)

Φx(xk, λk)z2 = Φλ(xk, λk) (4.18)

then the solution (∆xk+1,∆λk+1) is found from

∆λk+1 =
rN+1 − ẋT

0 z1

λ̇0 − ẋT
0 z2

(4.19)

∆xk+1 = z1 − ∆λk+1z2 (4.20)

One of the problems involved is the determination of the Jacobian matrix Φx and
the derivative vector Φλ. One can do this in, at least, four ways: (i) ‘by hand’,
(ii) symbolically using Mathematica or Maple, (iii) use automatic differentiation
software which provides the code for the Jacobian matrix Φx from that of the
right hand side Φ — an example of such a program is ADIFOR (http://www-
unix.mcs.anl.gov/autodiff/ADIFOR/) — or (iv) compute it numerically by finite dif-
ferences through

∂Φk

∂xl
≈ Φk(xl + ε) − Φk(xl)

ε
(4.21)

for k = 1, .., N ; l = 1, ..., N and small ε.
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Figure 4.3: Example of computations of steady states versus a parameter λ on a branch
passing through a pitchfork bifurcation P .

4.2 Detection and Switching

In the previous section, a method has been described to perform steady state con-
tinuation in a single parameter. Suppose, we have computed the points on a branch
of steady solutions as indicated in Fig. 4.3 by varying a parameter λ. In this case,
the method would just pass the pitchfork bifurcation point P (Fig. 4.3). How do we
determine that this bifurcation has occurred?
One way to do this is to solve the eigenvalue problem associated with the stability
of the steady state at each point. We know that for a pitchfork bifurcation, a single
real eigenvalue must cross the imaginary axis. Hence, by monitoring these eigenvalues,
the pitchfork bifurcation can be detected. In many applications, however, the solution
of the eigenvalue problem is computationally expensive. Hence, simpler and cheaper
indicator functions may be desired and some of these are described below.

4.2.1 Detection of bifurcations

To determine simple codimension-1 bifurcation points (transcritical, pitchfork and sad-
dle node bifurcations), the determinant of the Jacobian matrix (det Φx) can be moni-
tored. However, for many large dimensional problems this determinant is expensive to
compute and other alternatives must be considered. In [25], a family of test functions
τpq is obtained as follows: let Φpq be the Jacobian matrix Φx in which the pth row is
replaced by the qth unit vector. If we solve the linear system

Φpqv = ep (4.22)

for v, where ep is the pth unit vector, then it can be shown [25, ] that

τpq = eT
p Φxv (4.23)
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changes sign when Φx is singular. In principle, the choices of q and p are arbitrary as
long as Φpq is nonsingular. Of course, for any solution method, it is advantageous that
Φpq and Φx have the same structure. However, in specific problems, not all values of
q and p can be chosen and it is advisable to make a choice based on the knowledge of
the (symmetry properties of the) solutions of the particular problem.

Saddle node bifurcations can be easily detected by following λ̇ along a branch, where
the dot indicates differentiation to the arclength parameter s. For Hopf bifurcation
points, also more sophisticated methods exist [16, ], but usually these points are deter-
mined by solving the linear stability problem which is discussed in the next section. In
this case, a complex conjugate pair of eigenvalues σ = σr + i σi crosses the imaginary
axis and a zero of the function σr(λ) has to be calculated to obtain the location of the
Hopf bifurcation.

Once a change in sign is found in one of the scalar quantities, λ̇,det Φx, τpq or σr(λ),
between two points along a branch, say sa and sb, a secant process can be used to locate
the zero of each function exactly. In more detail, let either function be indicated by
f(s) then a zero of f(s) is determined by

sl+1 = sl − f(sl)
sl − sl−1

f(sl) − f(sl−1)
(4.24)

s0 = sa ; s1 = sb (4.25)

When sa 6= 0, the stopping criterion on the iteration can be chosen as | sl+1 − sl |
/sa < ε, where ε must be chosen to achieve the desired accuracy. In some cases,
a larger ε must be taken because the matrix Φx may become nearly singular. It is
recommended to check a postiori that the value of f(s) is substantially smaller than
the value of this function at both sa and sb.

4.2.2 Branch switching

If, for example, det(Φx) changes sign but λ̇ does not, a simple bifurcation point (trans-
critical or pitchfork) is detected. Subsequently, a branch switch process can be started
to locate solutions on the nearby branch. In Fig. 4.4, this situation is sketched near a
pitchfork bifurcation. Let Φ̂x be the Jacobian matrix at the bifurcation point (x∗, λ∗)
just after the secant iteration (see the previous section) has converged. Furthermore,
let the tangent along the already known branch in s = sa be indicated by (ẋ0, λ̇0).
First, the null vector φ of Φ̂x is calculated, for example by inverse iteration [1, ]; the
latter method is described in Section ?? Next, a vector (x̂, λ̂) is constructed which is
orthogonal to (ẋ0, λ̇0) by solving

(
Φ̂x Φ̂λ

ẋT
0 λ̇0

)(
x̂

λ̂

)
=

(
0
0

)
(4.26)

The solution of this problem is easily determined to be

λ̂ =
−ẋT

0 φ

λ̇0 − ẋT
0 z

; x̂ = φ− λ̂z
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Figure 4.4: Example of branch switching near a pitchfork bifurcation.

where z is the solution of Φ̂xz = Φ̂λ. To determine a point on the new branch (Fig. 4.4),
the Newton process is started with Euler - predictor

x1 = x∗ ± ∆s x̂ ; λ1 = λ∗ + ∆s λ̂ (4.27)

The ± indicates that points can be found on either side of the known branch. When
a point on a new branch is found, the pseudo-arclength procedure is again used to
compute additional points on this branch.
If one already anticipates a pitchfork bifurcation, one can also determine the other
branch by a technique which makes use of the imperfections. Suppose, two points A
and B on a branch are computed where the stability is different (Fig. 4.5a) or where
some τpq from (4.23) changes sign. Now one knows that, associated with a pitchfork
bifurcation, there is an internal symmetry of the system. By introducing an additional
parameter ps which breaks the symmetry (for example, introducing some asymmetric
component in the forcing), the pitchfork no longer exists for small ps. One continues
a few steps into this parameter from point A up to ps = ε. Then, a point C on the
bifurcation diagram as in Fig. 4.5b is obtained. Next, the parameter λ is increased
up to the value of λ at point B; in this way point D is reached (Fig. 4.5b). As a last
step, ps is continued back to zero and point E is obtained (Fig. 4.5c). By following the
branch back in λ, the pitchfork is easily found as the point where λ̇ changes sign.

4.2.3 Finding isolated branches

In many applications, there exist branches of steady state solution that are discon-
nected from the branch containing a trivial starting solution; these branches are the
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Figure 4.5: Example of how knowledge of imperfections can be used to locate bifurcation
points. The control parameter is λ. (a) Symmetric situation with computed points A and B,
where a sign switch in one of the indicator functions has been detected. (b) The imperfect

pitchfork bifurcation is created by adding artificial asymmetry into the set of equations using a
parameter ps. Point A is followed up to point C in ps. As a next step, one continues from A
to D for a value of λ approximately up to the value at B. (c) Finally, symmetry is restored,
point D is followed up to E and the pitchfork can be found as the point where λ̇ changes sign.
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so-called isolated branches. One can already anticipate that in a dynamical system in
which there is no symmetry, it is likely that isolated branches are present.
There are at least four methods to compute these isolated branches but it is never
guaranteed that one will find all branches with either of these methods. Two of those
are more or less trial and error while in the latter two, a more systematic approach is
followed.

(i) Transient integration.
In this approach, a set of initial conditions is chosen and a transient computation
is started, for example by using an implicit method as in Section 4.4. If one is
lucky, one of the initial conditions is in the attraction basin of a steady state
on the isolated branch and once found (Fig. 4.6a), one can continue tracing this
branch using the pseudo-arclength continuation method.

(ii) Isolated Newton-Raphson search.
One can also start a Newton-Raphson process uncoupled from the pseudo-
arclength continuation from several chosen starting points. Since the convergence
of the Newton-Raphson process is only good when one is near the steady state,
this method may not work very well, but again, if one is very lucky an isolated
branch might be found (Fig. 4.6b).

(iii) Two-parameter continuation.
In many cases, a second parameter can be varied such that the isolated branch
targeted connects to an already known branch. An important example is where
there are values of the second parameter for which the dynamical system has a
particular symmetry and pitchfork bifurcations are present. Once the connec-
tion is present, the isolated branch can be computed by restoring the second
parameter to its original value (Fig. 4.6c).

(iv) Residue continuation.
This method is a special case of a two-parameter continuation where one starts
with a guess of the solution on the isolated branch, say indicated by xG, at some
value of a parameter λ. Because this is no steady solution, it follows that

f(xG, λ) = rG 6= 0

where rG is the nonzero residue. One now defines a second (so-called ‘homotopy’)
parameter α and considers the equations

f(x, λ) − (1 − α)rG = 0

For α = 0, the solution is given by xG (by construction) and hence this is
the starting point of the pseudo-arclength continuation. By tracing the steady
solution branch from α = 0 to α = 1, we may eventually find an isolated branch
(Fig. 4.6d).



4.2. DETECTION AND SWITCHING 57

| x |

λ
Initial conditions

(a)

| x |

λStarting conditions

(b)

| x |

λ

| x |

λ

µ = µ
0

µ = µ
1

(c)

| x |

λ

α = 0 α = 1

(d)

Figure 4.6: Illustrations of the computation of isolated branches using four different
methods. (a) Transient integration; the open circles indicate the initial conditions and the

arrows the direction of the trajectories. Note that only stable steady states can be reached. (b)
Isolated Newton-Raphson search; the open circles indicate the starting points. The two large
arrows indicate a possible divergence of the Newton-Raphson process. (c) Two-parameter

continuation; a pitchfork occurs for µ0 < µ < µ1. (d) Residue continuation, where α is the
‘homotopy’ parameter.
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4.3 Linear Stability Problem

Suppose a stationary solution x̄ at a certain value of λ has been determined. Then
its linear stability is investigated by considering perturbations x = x̄ + x̃. Substituted
into the general equations (4.70) and omitting quadratic terms in the perturbations
quantities, one gets

M∂x̃

∂t
+ Lx̃ + Nx(x̄)x̃ = 0 (4.28)

where the subscript N in (4.70) has been omitted for clarity and Nx is the Jacobian
matrix. These equations admit solutions of the form x̃ = x̂ eσt. The linear stability
problem of a particular steady state leads, after discretization, to a generalized matrix
eigenvalue problem of the form

Ax = σBx (4.29)

with A = L+Nx(x̄) and B = −M. The matrix B may be singular. For example in the
incompressible Navier-Stokes equations, time derivatives are absent in the continuity
equation and hence zeroes on the diagonal of B appear. The pair (A,B) is called a
matrix pensil and some properties of the spectrum of matrix pensils are given in

4.4 Implicit Time Integration

In many models, there is an explicit time marching procedure, which can be represented
by, using (4.70),

MNxn+1 = MNxn + ∆t G(xn) (4.30)

where GN = FN − (LN + NN). Explicit schemes allow relatively easy implementation
of all kinds of physical processes and details of boundary conditions, but suffer from
a substantial drawback. The time step is limited because of numerical amplification
of truncation errors (through well-known stability criteria) rather than by the changes
in the actual solution [24, ]. This limitation is even more restrictive as the spatial
resolution increases. These properties are extremely undesirable for studies of PDEs
where the spin-up takes almost all of the computing time. A long spin-up is for instance
needed if there are parts of the solution with large time scales.
A nice spin-off of continuation methods is the immediate availability of implicit time
integration schemes. Using a time step ∆t, and a time index n, this scheme becomes
for ω ∈ [0, 1],

MN
xn+1 − xn

∆t
+ (1 − ω)F(xn) + ωF(xn+1) = 0 (4.31)

For ω = 1/2 and ω = 1, these are the Crank-Nicholson method and backward Euler
method, respectively [1, ].
The equations for xn+1 are solved by the Newton-Raphson technique and lead to
the same type of numerical problems as that for the steady state computation. It is
well-known that the second-order Crank-Nicholson scheme is unconditionally stable
for linear equations. This does not mean that one can take any time step, since this
quantity is limited by two factors. One of those is accuracy: although the scheme is
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second-order accurate in time, large discretization errors occur when too large time
steps are used. A second limitation on the time step is the convergence domain of the
Newton-Raphson process, which does not necessarily converge for every chosen time
step. For many applications, however, much larger time steps can be taken than in
explicit models. For more details about time integration see Section 2.5.

4.5 A Prototype Problem

The problem below has been used as a testproblem during a workshop on ”Application
of Continuation Methods in Fluid Mechanics” in 1998 (see [12]). It is a relatively simple
problem, and hence techniques can be easily illustrated. The physics of the problem
is also very transparent, making it a nice prototype system to use here.

4.5.1 Introduction

The Rayleigh-Bénard problem is one of the ‘classics’ in fluid dynamics and one in the
area of cellular convection. It is motivated by results from a (conceptually) simple
experiment (Fig. 4.7). A rectangular container is filled with a viscous liquid such as
silicone oil. Air is situated above the upper surface of the liquid and the temperature far
from the air-liquid interface is nearly constant. When the initially motionless liquid is

Figure 4.7: Sketch of the experimental set-up; the liquid is situated on the (heated) silicon
block and separated from the (cooled) sapphire block by a small air gap [15, ].

heated from below, the liquid remains motionless below a critical value of the vertical
temperature gradient. In this case, the heat transfer through the layer is only by
heat conduction. When the temperature gradient slightly exceeds the critical value,
the liquid is set into motion and after a while the flow organizes itself into cellular
patterns (Fig. 4.8).
The motion of the liquid can also be detected by measuring the horizontally averaged
vertical heat flux. A measure for the increase of heat transport due to convection is
the Nusselt number Nu. This dimensionless scalar is the ratio of the heat transfer due
to combined conduction and convection and the heat transfer due to conduction only;
Nu = 1 in case of conduction only. In Fig. 4.9, Nu is plotted as a function of the
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Figure 4.8: Example of a flow pattern consisting of cellular rolls (also called roll cells)
arising in a liquid heated from below. [14, ].

vertical temperature difference over the layer. The onset of convection in the liquid is
shown by the increase of Nu above unity. From the experimental data, one can guess
that some bifurcation is involved where the steady motionless state becomes unstable
and new cellular type of solutions stabilize. From the symmetry properties of the flow
— one can imagine to rotate the container over 180◦ and get the same experimental
results — a pitchfork bifurcation is anticipated. One of the relevant problems with
respect to the experiment is to determine the vertical temperature gradient associated
with this bifurcation point.

Figure 4.9: Plot of the Nusselt number Nu as a function of the vertical temperature
difference ∆T ; Nu = 1 if the heat transport is by conduction only and when Nu > 1 there is

convection in the liquid; ∆Tc is the critical temperature gradient [3, ].
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4.5.2 Model

The equations governing the flow are

ρ0

[
∂v∗

∂t∗
+ v∗.∇v∗

]
= −∇p∗ + µ∇2v∗ − ρ∗ge3 (4.32)

∇ · v∗ = 0 (4.33)

ρ0Cp

[
∂T∗
∂t∗

+ v∗.∇T∗
]

= λT∇2T∗ (4.34)

In these equations, (x∗, y∗, z∗) are the Cartesian coordinates of a point in the liquid
layer, t∗ denotes time, v∗ = (u∗, v∗, w∗) is the velocity vector, p∗ denotes pressure, e3

the unit vector in z-direction and T∗ is the temperature. Finally, ρ0, g, Cp, µ and
λT are the reference density, the acceleration due to gravity, the heat capacity, the
dynamic viscosity and the thermal conductivity, respectively. The thermal diffusivity
κ and kinematic viscosity ν are given by ν = µ/ρ0, κ = λT /(ρ0Cp) and all these
quantities will be assumed constant. A linear equation of state

ρ∗ = ρ0(1 − αT (T∗ − T0)) (4.35)

is assumed, where αT is the thermal compressibility coefficient and T0 a reference tem-
perature. The lower boundary of the liquid is considered to be a very good conducting

Figure 4.10: Sketch of the model set-up and boundary conditions of the prototype problem.

boundary on which the temperature is constant TB , and no-slip conditions apply. On
the lateral walls (at x∗ = 0, Lx and y∗ = 0, Ly) no-flux and no-slip conditions are
prescribed. Let the non-deforming gas-liquid interface be located at z∗ = d, then the
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boundary conditions become (Fig. 4.10)

z∗ = d :
∂u∗
∂z∗

=
∂v∗
∂z∗

= w∗ = 0 ; λT
∂T∗
∂z∗

= h(TA − T∗) (4.36)

z∗ = 0 : T∗ = TB ; u∗ = v∗ = w∗ = 0 (4.37)

x∗ = 0, Lx : u∗ = v∗ = w∗ =
∂T∗
∂x∗

= 0 (4.38)

y∗ = 0, Ly : u∗ = v∗ = w∗ =
∂T∗
∂y∗

= 0 (4.39)

where h is an interfacial heat transfer coefficient and TA is the temperature of the gas
far from the interface.

4.5.3 Motionless solution

For v̄∗ = 0, there is a steady state given by

T̄∗(z∗) = TB − βz∗ ; β =
h(TB − TA)

λT + hd
(4.40)

The quantity β is the vertical temperature gradient over the layer. The corresponding
pressure distribution is readily determined from (4.32) and if one chooses T0 = TA,
this gives

p̄∗(z∗) = p0 + ρ0g([αT (TB − TA) − 1]z∗ −
αTβ

2
z2
∗) (4.41)

This motionless solution is characterized by only conductive heat transfer and is easily
realized in laboratory experiments. Note that such a motionless solution exists for all
values of the vertical temperature difference ∆T = βd. Hence, according to theory
presented in section 3.7, we would not expect saddle node bifurcations to occur on the
branch of motionless solutions.

4.5.4 Dimensionless equations

The equations are non-dimensionalized using scales κ/d for velocity, d2/κ for time
and d for length. Moreover a dimensionless temperature T is introduced through
T∗ = (TB − TA)T + TA and a dimensionless pressure p through p∗ = p0 + p(µκ/d2).
This leads to the non-dimensional problem

Pr−1

[
∂v

∂t
+ v.∇v

]
= −∇p+ ∇2v +Ra T e3 (4.42)

∇ · v = 0 (4.43)

∂T

∂t
+ v.∇T = ∇2T (4.44)
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with boundary conditions

z = 1 :
∂u

∂z
=
∂v

∂z
= w = 0;

∂T

∂z
= −Bi T (4.45)

z = 0 : T = 1 ; u = v = w = 0 (4.46)

x = 0, Ax : u = v = w =
∂T

∂x
= 0 (4.47)

y = 0, Ay : u = v = w =
∂T

∂y
= 0 (4.48)

In the equations (4.44)-(4.48), the dimensionless parameters Pr (Prandtl), Ra
(Rayleigh), Ax, Ay (Aspect ratios) and Bi (Biot) appear which are defined as

Ra =
αT g(TB − TA)d3

νκ
; Pr =

ν

κ
; Bi =

hd

λT

Ax = Lx/d; Ay = Ly/d (4.49)

and hence there are five parameters in this system of equations. This number reduces
to four in the two-dimensional case since one of the aspect ratios is infinite.
The dimensionless motionless solution is given by

ū = v̄ = w̄ = 0 ; T̄ (z) = 1 − z
Bi

Bi+ 1
(4.50)

p̄(z) = Ra

[
z − Bi

(1 +Bi)

z2

2

]
(4.51)

and this is a solution for all values of Ra and Bi which makes it an ideal starting point
for the computations below.

4.6 Computation of Steady Solutions

In this section, the present methods to determine steady state solutions in parameter
space. To illustrate the discretization methods in section 4.6.1, the example problem
from the previous section is used. In section 4.2.2, the pseudo-arclength continuation
method is described.

4.6.1 Discretization

For the problem at hand, many type of discretization methods have been used, i.e.
finite differences, finite elements and spectral methods. To illustrate the use of finite
differences, consider the two-dimensional case in the prototype problem above, i.e.
restricting to solutions v = (u, v, w) which are independent of y and with v = 0. A
staggered grid is used with u,w at boundaries and p, T at center points of the grid
cells (see Fig. 4.11a). The horizontal momentum equation is enforced at u−points,
the vertical momentum equation at w−points and the continuity and temperature
equation at center (p, T ) points.
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Figure 4.11: (a) Sketch of the staggered grid, with points i = 0, ..., I and j = 0, ..., J in the
x, z-direction, respectively. (b) Local stencil around the point Ti,j .

For the discretization, it is efficient to define the discrete operators on a local stencil
and subsequently assemble the operators over the whole domain. This is particularly
useful when the nonlinear interactions in a model are at most quadratic, such as in the
Navier-Stokes equations. In the latter case, the nonlinear operator N in (4.1) can be
written as N (u)u. For each variable, a local stencil is defined such as in Fig. 4.11b for
the temperature point Ti,j . As an example, consider the discretization of the horizontal
diffusion operator, which is linear, using central differences. In this case, at point (i, j)

∂2T

∂x2
≈ Ti+1,j + Ti−1,j − 2Ti,j

∆x2 (4.52)

According to the stensil (Fig. 4.11b), one now defines local operators LTT
i,j [1, · · · , 7].

The first superscript in LTT indicates which equation is handled (in the case the tem-
perature equation). The second superscript indicates by which unknown the coefficient
has to be multiplied to get the right equations; in this case, temperature. The index
[∗] refers to the stencil points and hence

LTT
i,j [1] =

1

∆x2 (4.53)

LTT
i,j [7] =

1

∆x2 (4.54)

LTT
i,j [4] = − 2

∆x2 (4.55)

with all other LTT
i,j [∗] being zero. The local operator is then built up as

7∑

l=1

LTT
i,j [l]T [l] (4.56)

where T [l] refers to the stensil around (i, j) with, for example, T [1] = Ti−1,j and
T [5] = Ti,j+1.
Next consider the nonlinear horizontal advection term for heat, which is discretized at
T− points as

∂(uT )

∂x
= ui,j

Ti+1,j + Ti,j

2∆x
− ui−1,j

Ti,j + Ti−1,j

2∆x
(4.57)
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This term is a part of the nonlinear operator in the T− equation associated with the
operator N in (4.1). One defines a local nonlinear operator N TT

i,j [1, · · · , 7] as

NTT
i,j [1] = −ui−1,j

2∆x
(4.58)

NTT
i,j [7] =

ui,j

2∆x
(4.59)

NTT
i,j [4] =

ui,j − ui−1,j

2∆x
(4.60)

with other stensil coefficients zero. The discretized equations of the local nonlinear
operator are built up according to

7∑

l=1

NTT
i,j [l]T [l] (4.61)

In this way, it is relatively easy to include boundary conditions. For example, imagine
the implementation of a no-flux condition (∂T/∂x = 0) for the temperature at x = 0.
Using central differences, this becomes

s
∂T

∂x
= 0 ⇒ T0,j = T1,j (4.62)

s If the total stensil coefficient is indicated by ATT = LTT +NTT , then the boundary
condition can be accounted for by correcting the stensil coefficient ATT

1,j [4] as

sÃTT
1,j [4] = ATT

1,j [4] +ATT
1,j [1] (4.63)

s and thereafter setting ATT
1,j [1] = 0.

The boundary condition for temperature at z = 0 is discretized as

sT = 1 ⇒ 1

2
(Ti,0 + Ti,1) = 1 ⇒ Ti,0 = 2 − Ti,1 (4.64)

s This can be accounted for by correcting the stensil coefficient ATT
i,1 [4] as

sÃTT
i,1 [4] = ATT

i,1 [4] −ATT
i,1 [3] (4.65)

s including a forcing term F T
i,1 = 2 ATT

i,1 [3] and setting ATT
i,1 [3] = 0 thereafter. Assembly

of the total operators can be accomplished by one big loop over the grid points and
the stencil points.
¿From (4.4), it can be seen that not only the discretized operator N is needed, but also
its derivative Nu around a certain solution (ū, w̄, p̄, T̄ ). For the horizontal advection
operator in (4.57), this derivative becomes

∂(ūT )

∂x
+
∂(uT̄ )

∂x
(4.66)
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When discretized with central differences, the coefficients for the first term are similar
to those in the operator NTT

i,j in (4.60) but with u substituted by ū. For the second

term, an additional operator N TU
i,j is needed, which is defined by

NTU
i,j [1] = − T̄i−1,j + T̄i,j

2∆x
(4.67)

NTU
i,j [4] =

T̄i+1,j + T̄i,j

2∆x
(4.68)

such that the term from this operator in the Jacobian matrix is built up as

7∑

l=1

[
NTT

i,j [l]T [l] +NTU
i,j [l]u[l]

]
(4.69)

where again T [l] and u[l] refer to stensil point values, i.e. u[4] = ui,j. Corrections due
to boundary conditions and assembly of the matrices can be accomplished in the same
way for the other operators in (4.70).
In this way, the discretized equations can be written as a nonlinear system of ordinary
differential equations with algebraic constraints which has the form

MN
dx

dt
+ LNx + NN (x) = FN (4.70)

where x indicates the total N -dimensional vector of unknowns, and where the operators
depend on parameters and their subscriptN indicates that they are discrete equivalents
of the continuous operators. In the two-dimensional prototype problem, x is given by

x = (u0,0, w0,0, p0,0, T0,0, u1,0, ..., TI−1,J , uI,J , wI,J , pI,J , TI,J) (4.71)

and N = 4 (I + 1) (J + 1).

4.7 Application to the Prototype Problem

In this section, a typical application of the methods above is presented for the Rayleigh-
Bénard problem as described in section 4.6. All results below were computed with a
version of the code BOOM, which has been developed in my group over the years.
The BOOM (Dutch for ’tree’ and abbreviation for Bifurcation Analysis (’Onderzoek’
in Dutch) of Ocean Models) code combines the continuation method with a choice
of eigenvalue solvers and iterative linear systems solvers. The user has to supply the
discretized operators LN , NN , MN , FN and the Jacobian matrix.
A starting point (x0, λ0) has to be prescribed and the number of eigenvalues me to
compute within the linear stability analysis has to be chosen. The sequence of com-
putations is the following:

1. Compute the tangent vector (ẋ0, λ̇0), if necessary (sometimes it can be analyti-
cally determined).
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2. Compute the Euler guess with chosen steplength ∆s

x = x0 + ∆s ẋ0

λ = λ0 + ∆s λ̇0

3. Solve the system of nonlinear algebraic equations for the steady equations us-
ing the Newton-Raphson method. Within each Newton iteration, one (or two)
systems of linear equations have to be solved with a chosen method (direct,
iterative).

4. When the previous step has converged, the generalized eigenvalue problem Ax =
σBx is solved for the first me eigenvalues closest to the imaginary axis using a
chosen eigenvalue solver (SIT, JDQZ).

5. Compute a desired number of testfunctions to monitor properties of the flow
and to monitor whether bifurcations have occurred (real part of eigenvalues,
testfunctions τpq as in (4.23), determinant of Jacobian matrix). Take action, if a
bifurcation point is detected, for example proceed with branch switching.

The two-dimensional case of the test problem (Fig. 4.12) is considered for a liquid with
Pr = 1 which is heated from below in a container of aspect ratio A = 10. For water,
with κ = 10−7m2/s and ν = 10−6m2/s, the Prandtl number is about 10. Results for

0 A = 10

0

1

no -slip / no -flux

no -slip
/ no -flux

no -slip
/ no -flux

x

z
slip/ Bi = 1

Figure 4.12: Set-up of the two-dimensional configuration of the prototype problem.

this problem have been presented extensively in section 4 of [28] for the case Bi = ∞
and no-slip conditions at all walls, using the original primitive equation formulation
with unknowns (u,w, p, T ). Here, also results can be found on the performance of the
iterative methods GMRES and BICGSTAB, either for the steady equations as well as
within the JDQZ method. These results indicate that the methods used are indeed
efficient for the prototype problem but since so many parameters are involved, they
are not presented here; interested readers should consult [28].
For the two-dimensional case, a more efficient formulation of the prototype problem
was used in [5]. A streamfunction-vorticity formulation can be used, where the stream-
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I × J (Grid) aspect ratio Bi lateral walls Rac

128 × 16 A = 10 Bi = 1 no-slip 1589.76
256 × 16 A = 10 Bi = 1 no-slip 1566.30
512 × 16 A = 10 Bi = 1 no-slip 1563.78

16 × 16 A = π/ac Bi = 1 slip 1555.58
32 × 32 A = π/ac Bi = 1 slip 1544.50
64 × 64 A = π/ac Bi = 1 slip 1541.98
∞×∞ A = π/ac Bi = 1 slip 1541.18
[20, ] A = π/ac Bi = 1 slip 1541.14

256 × 16 A = 10 Bi = 5 no-slip 1620.10
256 × 16 A = 10 Bi = 10 no-slip 2019.02

Table 4.1: Grid test of the value of the first bifurcation point. The first three rows show the
convergence of the value of Ra for the case considered here. In the next five rows, a
comparison with analytically determined values can be made for a special aspect ratio

ac = π/
√

2 and slip conditions at the lateral boundaries [20, ]. The last two rows show the
sensitivity of the location of the first bifurcation point with Bi.

function ψ and the vertical component of the vorticity vector ζ are defined as

u =
∂ψ

∂z
; w = −∂ψ

∂x
(4.72)

ζ =
∂w

∂x
− ∂u

∂z
(4.73)

This reduces the number of unknowns per point from 4 (u,w, p, T ) to 3 (ψ, ζ, T ). The
equations in this formulation are easily derived by taking the rotation of the momentum
equations (4.32) and become

Pr−1

[
∂ζ

∂t
+
∂(uζ)

∂x
+
∂(wζ)

∂z

]
= ∇2ζ +Ra

∂T

∂x
(4.74)

ζ = −∇2ψ (4.75)

with boundary conditions

x = 0, A :
∂T

∂x
= ψ = γ

∂ψ

∂x
+ (1 − γ)ζ = 0 (4.76)

z = 0 : T − 1 = ψ =
∂ψ

∂z
= 0 (4.77)

z = 1 :
∂T

∂z
+Bi T = ψ = ζ = 0. (4.78)

where γ = 0 and γ = 1 give slip and no-slip conditions, respectively. Details of the
discretization, on a non-staggered grid, can be found in [4] and [5].
First aim of the computations is to find the critical temperature gradient (or critical
value of Ra) for fixed Bi. Hence, we take Bi = 1, γ = 1, λ = Ra, start at the
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Figure 4.13: (a) Computation of the testfunction τpq along the primary branch of motionless
flow. A zero of this function may indicate a bifurcation point. The diamonds indicate the

actual points computed along the motionless state. (b) First two eigenvalues as a function of
Ra along the same branch. Indeed, a real eigenvalue passes the imaginary axis at the same
location where the zero of τpq appears. (c) Pattern of the streamfunction of the eigenvector

corresponding to σ1, just at the point where the imaginary axis is crossed. (d) Pattern of the
temperature of the same eigenvector.
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motionless solution ( 4.40) and prescribe the initial tangent as (ẋ0, λ̇0) = (0, 1). The
latter can be used because the motionless solution is a solution for all values of Ra.
The version of the code applied has an iterative solver (BICGSTAB combined with
ILU-preconditioning) and the SIT eigenvalue solver [5, ]. In the latter paper, also the
performance of the preconditioner (see Technical Box 4.4) can be found.
In Fig. 4.13, the computation along the primary branch (i.e. the motionless solution)
is displayed using a 256 × 16 grid. Note that the dimension of the dynamical system
is 3 × 257 × 17 = 13, 107. A particular testfunction τpq (4.23) for p = q = 256 ×
16 + 1 = 4, 097, is shown in Fig. 4.13a and goes through zero near Ra = 1565. In
this figure, the points actually computed are indicated by the diamonds. The first two
eigenvalues, which are both real, are shown along this motionless solution in Fig. 4.13b,
indicating that the motionless solution becomes unstable near Ra = 1565, since one
eigenvalue crosses the imaginary axis. Patterns of the streamfunction and temperature
perturbation which destabilize the motionless state (the eigenvector associated with
σ1) are plotted in Fig. 4.13c and Fig. 4.13d, respectively. The pattern consists of
seven cells and the solution for the streamfunction is symmetric with respect to the
mid-axis of the container. Note that the pattern with counter-rotating cells is also an
eigenvector associated with σ1.
For each application, it is recommended to check whether the chosen resolution is
sufficient to get accurately enough results. If the discretization is consistent then, for
an infinitely fine grid, the results of the continuous problem are approached. To check
the convergence of the numerical discretization procedure and to be able to extrapolate
to the continuous problem, the value of Ra at the first bifurcation is determined for
a number of grid sizes; the result is shown in Table 4.1. One can see that there is
convergence and that a 256 × 16 is a reasonable grid to perform the computations. In
this case, a comparison with analytical solutions is also possible for a particular aspect
ratio and value of Bi if the boundary conditions on the sidewalls (4.76) are taken to be
slip conditions (γ = 0). The sensitivity of the bifurcation point with Bi is illustrated
in the last two rows of Table 4.1. Note that the value of Ra at these bifurcation points
does not depend on Pr since the eigenvalues σ are all real.
Because of the reflection symmetry through the mid-axis (x = A/2), a pitchfork bi-
furcation is expected to occur at Ra = 1566. The bifurcation structure for Pr = 1.0
is plotted in the weakly nonlinear regime in Fig. 4.14a. On the vertical axis, the ver-
tical velocity at the gridpoint (3, 12) - near the upper left corner - is plotted. The
slightly supercritical patterns near the primary bifurcation point are shown in the
Figs. 4.14b-c for streamfunction and temperature, respectively. At the first primary
bifurcation point (Ra = 1566) the motionless solution becomes unstable to the 7-cell
pattern (Fig. 4.14b) which stabilizes in a supercritical pitchfork bifurcation. Also its
symmetry related pattern stabilizes (Fig. 4.14c) and both patterns are stable up to
end of the computational domain. For the three-dimensional case, similar results can
be calculated and an overview of the complete solution of this problem is presented in
[9].
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Figure 4.14: (a) Bifurcation diagram and (b-c) cellular solutions for the streamfunction
arising at the first pitchfork bifurcation.
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