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We describe DDE-BIFTOOL, a Matlab package for numerical bifurcation analysis of systems of
delay differential equations with several fixed, discrete delays. The package implements continu-
ation of steady state solutions and periodic solutions and their stability analysis. It also computes
and continues steady state fold and Hopf bifurcations and, from the latter, it can switch to the em-
anating branch of periodic solutions. We describe the numerical methods upon which the package
is based and illustrate its usage and capabilities through analysing three examples: two models of
coupled neurons with delayed feedback and a model of two oscillators coupled with delay.
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1. INTRODUCTION

DDE-BIFTOOL is a collection of Matlab routines for numerical bifurcation
analysis of systems of delay differential equations (DDEs) with multiple fixed,
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discrete delays. It is freely available for scientific purposes [Engelborghs 2000a].
The package can be used to compute branches of steady state solutions and
steady state fold and Hopf bifurcations using continuation. Given an equilib-
rium, it approximates the rightmost, stability determining roots of the char-
acteristic equation which can further be corrected using a Newton’s iteration.
Periodic solutions and their Floquet multipliers are computed using orthogonal
collocation with adaptive mesh selection. Branches of periodic solutions can be
continued starting from a previously computed Hopf point or an initial guess
of a periodic solution.

The DDE-BIFTOOL package is the first package of this kind, and as such,
it can encourage the use of time delays in modelling. Software packages already
exist only for simulation (time integration) of delay differential equations,
such as ARCHI [Paul 1997], DKLAG6 [Corwin et al. 1997] and XPPAUT
[Ermentrout 1998]. A more complete list of available software for DDEs
(with links) is included at the webpage of the package [Engelborghs 2000a].
Only two packages deal with some form of stability analysis: XPPAUT allows
limited stability analysis of steady state solutions of DDEs using the approach
described in Luzyanina and Roose [1996] and the program BIFDD [Hassard
1987] allows normal form analysis of Hopf bifurcation points provided good
starting values are available.

In this paper we outline the numerical methods upon which DDE-BIFTOOL
is based and illustrate its usage and capabilities by a number of examples. We
comment on the choice of method parameters, the accuracy of the results and
possible problems that can occur. We assume the reader is familiar with the
basic notions of bifurcation analysis (see e.g. Seydel [1994]; Kuznetsov [1995];
Govaerts [2000] in the context of ordinary differential equations) and with the
basic theory on delay differential equations (see e.g. Hale and Verduyn Lunel
[1993]; Diekmann et al. [1995]; Kolmanovskii and Myshkis [1999]). The re-
mainder of the paper is structured as follows. Some necessary notations and
properties of delay differential equations are briefly described in Section 2.
Descriptions of the numerical methods are given in Section 3. Results of the
analysis of three systems of DDEs and accompanying remarks on using the
package are given in Section 4. We conclude with some brief remarks on limits
to the package and future plans in Section 5.

2. NOTATIONS AND NECESSARY BACKGROUND

Consider the system of delay differential equations,

d
dt

x(t) = f (x(t), x(t − τ1), . . . , x(t − τm), η), (1)

where x(t) ∈ Rn, f : Rn(m+1) × Rp → Rn is a nonlinear smooth function depen-
ding on a number of (time-independent) parameters η ∈ Rp, and delays τi > 0,
i = 1, . . . , m. Call τ the maximal delay,

τ := max
i=1,...,m

τi.
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A solution x(t) of (1) on t ∈ [0,∞) is uniquely defined by specifying as initial
condition a function segment, x(θ ) = x0(θ ), −τ ≤ θ ≤ 0.

The linearization of (1) around a solution x∗(t) is the variational equation
given by Hale [1977]

d
dt

y(t) = A0(t) y(t)+
m∑

i=1

Ai(t) y(t − τi), (2)

where, using f ≡ f (x0, x1, . . . , xm, η),

Ai(t) := ∂ f
∂xi

∣∣∣∣
(x∗(t),x∗(t−τ1),...,x∗(t−τm),η)

, i = 0, . . . , m. (3)

If x∗(t) corresponds to a steady state solution,

x∗(t) ≡ x∗ ∈ Rn, with f (x∗, x∗, . . . , x∗, η) = 0,

then the matrices Ai(t) are constant, Ai(t) ≡ Ai, and the corresponding
variational equation (2) leads to a characteristic equation. Define the n × n-
dimensional matrix 1 as

1(x∗, η, λ) := λI − A0 −
m∑

i=1

Aie−λτi . (4)

The characteristic equation, obtained by substituting the sample eigensolution
y(t) = ve−λt in (2) and seeking for nonzero solutions, then reads,

det(1(x∗, η, λ)) = 0. (5)

Equation (5) has an infinite number of roots λ ∈ C called the characteristic roots,
which determine the local stability of the steady state solution x∗. The steady
state solution is (asymptotically) stable provided all characteristic roots have
negative real part; it is unstable if there exists a root with positive real part.
It is known that the number of characteristic roots in any half plane <(λ) > γ ,
γ ∈ R, is finite [Hale 1977]. Hence, the stability is always determined by a finite
number of roots.

Bifurcations occur whenever characteristic roots move through the imagi-
nary axis as one or more parameters are changed. Generically two types of
bifurcations occur in a one parameter continuation of steady state solutions:
a fold bifurcation (or turning point) where the steady state branch turns in
parameter space, and where a real characteristic root passes through zero;
and a Hopf bifurcation where a branch of periodic solutions originates, and
where a pair of complex conjugate characteristic roots crosses the imaginary
axis.

A periodic solution x∗(t) is a solution which repeats itself after a finite time,
that is,

x∗(t + T ) = x∗(t), for all t.

Here T > 0 is the period. If the function f is arbitrarily smooth then (unlike
a general solution of (1)) a periodic solution is arbitrarily smooth due to its
periodicity and the smoothing property of the solution operator of (1).
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The stability of the periodic solution is determined by the spectrum of the
time integration operator S(T, 0) which integrates the variational equation (2)
around x∗(t) from time t = 0 to t = T . This operator is called the monodromy
operator and its (infinite number of) eigenvalues, which are independent of the
starting moment t = 0, are called the Floquet multipliers. Furthermore, if T ≥ τ
then S(T, 0) is compact [Hale 1977].

For autonomous systems, there is always a trivial Floquet multiplier at 1,
corresponding to a perturbation along the periodic solution. The periodic so-
lution is stable provided all multipliers (except the trivial one) have modulus
smaller than 1; it is unstable if there exists a multiplier with modulus larger
than 1. Bifurcations occur whenever Floquet multipliers move into or out of
the unit circle. Generically three types of bifurcations occur in a one parameter
continuation of periodic solutions: a turning point where the branch turns in pa-
rameter space and where a real multiplier crosses through 1; a period doubling
point where a period-doubled branch of periodic solutions originates and where
a real multiplier crosses through −1; and a torus bifurcation where a branch
of quasi-periodic solutions originates and where a complex pair of multipliers
crosses the unit circle.

3. NUMERICAL METHODS

In this section we describe the numerical methods that are implemented in the
package. More details on these methods can be found in the articles Luzyanina
and Roose [1996], Engelborghs and Roose [1999], Engelborghs et al. [2000a],
Engelborghs and Roose [2001], and in Engelborghs [2000b]. A comparison of
these methods to previously developed methods for numerical analysis of DDEs
can be found in Engelborghs et al. [2000b].

Below we describe the determining systems whose solution points are (or
approximate) the solutions we are interested in (comparable to corresponding
ones used in, e.g., Doedel et al. [1997]). Newton’s iteration is then used to com-
pute these solutions and we mention the number of free parameters necessary
to obtain isolated solution points under generic conditions. We describe the com-
putation of the stability of the computed point. Finally, we briefly comment on
the computation of branches of solution points in function of an extra parameter
by use of a continuation procedure.

3.1 Steady State Solutions

First, we describe the computation and stability analysis of steady state solu-
tions and their generic codimension-1 bifurcations.

3.1.1 Determining Systems. A steady state solution x∗ ∈ Rn of (1) is deter-
mined from (n × n)-dimensional determining system with no free parameters
(i.e. η is fixed),

f (x∗, x∗, . . . , x∗, η) = 0. (6)

Fold bifurcations are determined from the following (2n + 1) × (2n + 1)-
dimensional determining system using one free parameter (i.e. one component
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of η is treated as an extra unknown and allowed to vary during Newton
iterations), 

f (x∗, x∗, . . . , x∗, η) = 0
1(x∗, η, 0)v = 0

cTv− 1 = 0.
(7)

Here, 1 is the characteristic matrix (4) evaluated at λ = 0. The vector v ∈ Rn

is introduced to avoid the use of a determinant in (7). At convergence, v is a
null-vector of1. cTv−1 = 0 represents a suitable normalisation of v. The vector
c ∈ Rn is chosen as c = v(0)/(v(0)T

v(0)), where v(0) is the initial value for v.
Hopf bifurcations are determined from the following (2n + 1) × (2n + 1)-

dimensional complex determining system using one free parameter (one com-
ponent of η), 

f (x∗, x∗, . . . , x∗, η) = 0

1(x∗, η, iω)v = 0

cHv− 1 = 0.

(8)

At convergence, v ∈ Cn is an eigenvector of 1 corresponding to λ = iω,
where ω ∈ R represents the Hopf frequency. The vector c ∈ Cn is chosen as
c = v(0)/(v(0)H

v(0)). Note that the partially complex system (8) can be written as
a (3n+2)× (3n+2) real system in the unknowns x∗ ∈ Rn, <(v) ∈ Rn, =(v) ∈ Rn,
one component of η and ω ∈ R.

For each determining system we mentioned the number of free parameters
necessary to obtain generically isolated solutions. If additional conditions are
appended to these systems, a corresponding extra number of parameters should
be freed. This ensures the use of square Jacobians during Newton’s iteration,
which (for well chosen conditions and free parameters) generically have iso-
lated solutions. If, on the other hand, the number of free parameters and added
conditions are not appropriately matched then Newton’s iteration solves sys-
tems with a non-square Jacobian. In this case (for safety reasons signalled by a
warning message), Matlab uses an over- or under-determined least squares pro-
cedure. This approach can be useful in some situations (e.g. when symmetries
are present in the system, cf. Section 4.1).

3.1.2 Roots of the Characteristic Equation. Once a steady state solution
is obtained, stability is determined by computing the rightmost roots of its
characteristic equation. These roots are first approximated using a linear multi-
step method (LMS-method) applied to (2).

Consider the linear k-step LMS-formula [Hairer et al. 1993],
k∑

j=0

α j yL+ j = h
k∑

j=0

β j f L+ j , (9)

applied to the variational equation (2). Here, αk = 1, h > 0 is a (fixed) step size,
y j and f j ,

f j = A0 y j +
m∑

i=1

Ai ỹ(t j − τi), (10)

ACM Transactions on Mathematical Software, Vol. 28, No. 1, March 2002.



6 • K. Engelborghs et al.

present numerical approximations of y(t) respectively A0 y(t)+∑m
i=1 Ai y(t−τi)

at the mesh point t j := j h (assuming t0 = 0 is used as a starting point). The
approximations ỹ(t j − τl ) (where t j − τl may or may not be a mesh point) are
obtained from interpolating through several yi in the past, i < j . In particular,
the use of so-called Nordsieck interpolation leads to

ỹ(t j − τl ) = ỹ(ti + εh) =
s+∑

ν=−s−

Pν(ε) yi+ν , ε ∈ [0, 1),

with Pν(ε) :=
s+∏

k=−s−, k 6=ν

ε − k
ν − k

,
(11)

the Lagrange polynomials through the points −s−, . . . , s+ and where s− res-
pectively s+ represent the number of interpolation points taken to the left
respectively to the right of t j − τl .

To avoid using mesh points with index greater than L + k we require that
min τi ≥ s+h. The resulting method is explicit whenever βk = 0 and min τi ≥
(s+ + 1)h. That is, yL+k can then directly be computed from (9) by evaluating

yL+k = −
k−1∑
j=0

α j yL+ j + h
k−1∑
j=0

β j f L+ j ,

whose right hand side depends only (through (10), (11)) on y j , j < L + k.
The stability of the difference scheme thus obtained can easily be evaluated

by computing the eigenvalues µ of the (linear) map between [ yLmin · · · yL+k−1]
and [ yLmin+1 · · · yL+k] where Lmin = L − s− − dτ/he is the smallest index used
and where the mapping is defined by (9)–(11) for yL+k and a shift for all other
variables. If the eigenvalues µ all have modulus smaller than 1, the trajecto-
ries computed by the LMS-method converge to zero. If eigenvalues exist with
modulus greater than one, trajectories exist which grow unbounded.

The LMS-method defines an approximation of S(h, 0) (the time integration
operator over the time step h). Hence, the eigenvalues µ approximate the eigen-
values of S(h, 0) which are exponential transforms of the roots λ of the charac-
teristic equation (5),

µ = exp(λh). (12)

(In addition S(h, 0) may have some extra eigenvalues at zero [Hale 1977].)
Hence, once µ is found, λ can be extracted using,

<(λ) = ln(|µ|)
h

. (13)

The imaginary part of λ is found modulo π/h, using

=(λ) ≡
arcsin

(
=(µ)
|µ|
)

h

(
mod

π

h

)
, =(λ) ∈

[
− π

2h
,
π

2h

]
. (14)

For small h, 0 < h ¿ 1, the smallest representation in (14) is assumed to be
the most accurate one (that is, we let arcsin map into [−π/2, π/2]).
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Fig. 1. Stability region (—) of the implicit 4th order backwards differentiation (BDF) LMS-method.
Within a circle with radius ρLMS,ε , except possibly in a band of size 2ε around the imaginary axis
(· · ·), stability is captured correctly by the LMS-method. Here, ε = 0.25 was taken rather large for
a clear visualisation. This method is used by default in the package with ε = 0.01.

For reasons of stability, the parameters s− and s+ in formula (11) are chosen
such that s− ≤ s+ ≤ s− + 2, see Hong-Jiong and Jiao-Xun [1996]. Note that
we want to approximate an infinite number of characteristic roots λ with a
finite number of approximations (whose number depends on the size of h).
However, there are only a finite number of rightmost, stability-determining
characteristic roots, see Section 2. In Engelborghs and Roose [2001] it is shown
that the steplength heuristic,

h = 0.9
ρLMS,ε

‖A0‖ + |r| +
∑m

i=1 ‖Ai‖e−rτi
, (15)

can be used to approximate the (finite number of) roots with real part greater
than a given r < 0, <(λ) ≥ r (implying also that h is small enough such that in
(14) the appropriate choice of branch of the complex logarithm is taken). Here
ρLMS,ε denotes, to some accuracy ε, a ‘size of correctness’ of the stability region of
the LMS-method used, see Figure 1. For practical reasons, h is further bounded
from below and above, see Section 4.1.

Approximations for the rightmost roots λ obtained from the LMS-method
using (13), (14) can be corrected using a Newton iteration on the determining
system {

1(λ)v = 0

cHv− 1 = 0.
(16)

As starting value for v, the eigenvector of 1(λ) corresponding to the smallest
eigenvalue (in modulus) is used.

ACM Transactions on Mathematical Software, Vol. 28, No. 1, March 2002.
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Note that the collection of successfully corrected roots presents more ac-
curate yet less robust information than the set of uncorrected roots. Indeed,
attraction domains of roots of equations like (16) can be very small and hence
corrections may diverge or approximations of different roots may be corrected
to a single ‘exact’ root thereby missing part of the spectrum (as demonstrated
in Section 4.1). Hence it is most safe to compare the approximations with their
corrections.

3.2 Periodic Solutions

3.2.1 Collocation. A periodic solution is represented by the parameter val-
ues η, the period T , and the segment x∗(t/T ) on a mesh in [0, 1]. The mesh is
an ordered collection of interval points {0 = t0 < t1 < · · · < tL = 1} and repre-
sentation points ti+ j

d
, i = 0, . . . , L − 1, j = 1, . . . , d − 1, where

ti+ j
d
= ti + j

d
(ti+1 − ti).

The solution is approximated by a continuous piecewise polynomial on the
mesh. More specifically, it is approximated by a polynomial of degree d on
each subinterval [ti, ti+1], i = 0, . . . , L − 1,

u(t) =
d∑

j=0

u
(
ti+ j

d

)
Pi, j (t), t ∈ [ti, ti+1], (17)

where Pi, j (t) are the Lagrange polynomials through the points ti+ j
d
, j =

0, . . . , d . The approximation u(t) is completely determined in terms of the
coefficients

ui+ j/d := u
(
ti+ j/d

)
, i= 0, . . . , L− 1, j = 0, . . . , d − 1 and uL := u(tL). (18)

Because polynomials on adjacent intervals share the value at the common in-
terval point, this representation is automatically continuous (it is, however, not
continuously differentiable).

The collocation points are obtained as

ci, j = ti + c j (ti+1 − ti), i = 0, . . . , L − 1, j = 1, . . . , d ,

from a set of collocation parameters c j , j = 1, . . . , d . By default, the latter are
chosen as the roots of the d -th degree Gauss-Legendre polynomial transformed
to [0, 1].

A periodic solution (for a fixed value of the parameters η) is found as a solution
(u(s), s ∈ [0, 1]; T ∈ R) of the following (n(Ld + 1) + 1) × (n(Ld + 1) + 1)-
dimensional system in terms of the unknowns (18) and T ,

u̇(ci, j ) = T f (u(ci, j ), u((ci, j − τ1
T ) mod 1), . . . , u((ci, j − τm

T ) mod 1), η) = 0,
i = 0, . . . , L − 1, j = 1, . . . , d

u0 = uL

p(u) = 0.

(19)
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Fig. 2. Left: Sparse matrix structure of the linearization of (19): Zero elements (·), nonzero elements
(×) for a fictitious periodic solution with n = 2, τ1 = 8, τ2 = 3 and T = 20; using d = 2 and an
equidistant mesh on [0, 1] with L = 15 subintervals. Right: Structure of the matrix used in the
computation of the Floquet multipliers on a mesh in [−τ/T, 1] corresponding to the Jacobian in the
left figure.

Here, p represents the classical integral phase condition [Doedel et al. 1991b]
needed to remove translational invariancy,∫ 1

0
u̇(0)(s)

(
u(0)(s)− u(s)

)
ds = 0,

where u(0) is the initial solution of the Newton iteration and u the current
solution.

In other words, the collocation solution is asked to fulfill the time-scaled
differential equation exactly at the collocation points. Note that the piecewise
polynomial u has a discontinuous derivative at the interval points. If ci, j coin-
cides with ti then the right derivative is taken in (19); if it coincides with ti+1
then the left derivative is taken. In other words the derivative taken at ci, j is
that of u restricted to [ti, ti+1].

The convergence rate of the maximal continuous error, E = maxt∈[0,1]
‖u(t)−u∗(t)‖ (where u∗ is the exact solution), was proven to beO(hd ) in general
andO(hd+1) for Gauss-Legendre collocation points on uniform and nonuniform
meshes with h = maxi hi, hi = ti+1 − ti [Engelborghs and Doedel 2001]. Special
convergence at the interval points (the so-called superconvergence) known for
ordinary differential equations, is, in general, lost for DDEs [Engelborghs et al.
2000a].

Adaptive mesh selection can be used to decrease the required number of
intervals L for difficult profiles (with steep gradients). For the latter, the subin-
terval size hi is adapted to an approximation of the (d + 1)-th derivative of
the solution (obtained from the computed solution, see Ascher et al. [1988];
Engelborghs et al. [2000a]).

When an equidistant mesh is used, the linear systems arising during
Newton’s iteration on (19) have a sparsity pattern as visualised in Figure 2
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(left). The current implementation does not exploit this sparsity. Note that
when nonuniform meshes are used, the sparsity pattern becomes less regu-
lar, see Engelborghs et al. [2000a].

3.2.2 Floquet Multipliers. Floquet multipliers are computed as eigenval-
ues of the discretised time integration operator S(T, 0). The discretization is
obtained using the collocation equations (19) without the modulo operation and
without phase and periodicity conditions. From this extended system on a mesh
in [−τ/T, 1] (as in Figure 2 (right)) a discrete, linear map is obtained between
the variables representing the segment [−τ/T, 0] and those representing the
segment [1− τ/T, 1]. If these variables overlap, part of the map is constructed
as just a time shift.

Convergence of computed Floquet multipliers for DDEs is studied in
Luzyanina and Engelborghs [2001]. Some test results are given in Section 4.2.

3.3 Continuation

During continuation, a branch is computed by a combination of predictions and
corrections (see, e.g. Seydel [1994]; Doedel et al. [1991a]). A new continuation
point is predicted based on previously computed points using secant predic-
tion over an appropriate steplength. The prediction is then corrected using the
determining systems (6), (7), (8) or (19), bordered with a steplength condition
which requires orthogonality of the correction to the secant vector. Hence one
extra free parameter is necessary compared to the number of free parameters
mentioned in Sections 3.1 and 3.2.

The following continuation and steplength determination strategy is used.
If the last point was successfully computed, the steplength is multiplied with a
given, constant factor greater than 1. If corrections diverged or if the corrected
point was rejected because its accuracy was not acceptable, a new point is pre-
dicted, using linear interpolation, halfway between the last two successfully
computed branch points. If the correction of this point succeeds, it is inserted in
the branches point array at the correct position (before the previously last com-
puted point). If the correction of the interpolated point fails again, the last suc-
cessfully computed branch point is rejected (to avoid a possible branch switch)
and the interpolation procedure is repeated between the (new) last two branch
points.

This procedure ensures that after a failure (provided the interpolation pro-
cedure succeeds), the steplength is effectively divided by a factor two. Also,
through inserting a newly computed point in between the last two computed
points, the secant extrapolation direction is changed, which is not the case when
using only secant extrapolation with steplength control.

3.4 Extra Conditions

The package allows the addition of extra conditions and corresponding free
parameters to the determining systems presented earlier. We mention three
possible applications of such extra conditions, two of which will be illustrated
in Section 4.
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First of all, extra conditions permit the continuation of branches in a larger
parameter space with (possibly nonlinear) dependence between some param-
eters. A branch of steady state solutions can be continued by varying two pa-
rameters η1, η2 under the condition η2

1 + η2
2 = 1.

Second, it is possible to follow solutions satisfying some special property. A
branch of homoclinic bifurcations can be approximated by following a branch
of periodic solutions of large period. In this case, the period can be fixed at a
large value using one extra condition and one additional parameter is freed (see
Section 4.1).

Third, specific properties of a given system may cause the existence of special
solutions which can still be computed using some substitution, an extra free
parameter and an extra condition. This situation occurs, for example, with
phase shifts in oscillators and will be explained in Section 4.3.

Note that these situations differ from the case of a system of differential-
algebraic equations. In this case, the algebraic equations are part of the system
definition and determine the stability together with the differential equations.
In our application extra conditions are used to select special solutions of the
(given) differential system.

4. EXAMPLES

DDE-BIFTOOL hides, as much as possible, its numerical methods and details
from the user. For example, default method parameters can be obtained, some
of which adapt automatically during continuation. We comment on these pa-
rameters and illustrate typical results and their accuracy by analysing three
examples. For the analysis of steady state solutions, no parameters need to be
user-chosen. For periodic solutions, the user needs to specify the degree of col-
location polynomial and the size of the meshes used. Typically, one uses Gauss-
Legendre collocation points (default), degrees d = 3, 4, and adaptive meshes
with different number of subintervals, L = 20, 40, . . . , 160 (starting from low
values and going to higher values as difficulties are encountered).

4.1 Example 1

As a first illustrative example we use the following system of delay differential
equations, taken from Shayer and Compbell [2000],{

ẋ1(t) = −κx1(t)+ β tanh(x1(t − τs))+ a12 tanh(x2(t − τ2))

ẋ2(t) = −κx2(t)+ β tanh(x2(t − τs))+ a21 tanh(x1(t − τ1)).
(20)

This system models two coupled neurons with time delayed connections. We fix
the parameters κ = 0.5, β = −1, a12 = 1 and τ1 = τ2 = 0.2 and vary a21 and τs.

It is clear that (20) has a trivial steady state solution (x∗1, x∗2) = (0, 0) for
all values of the parameters. We fix a21 = 2.5 and τs = 1.5 and compute the
rightmost roots of the characteristic equation at the zero steady state solution—
see Figure 3. The solution is unstable due to the presence of a real characteristic
root at λ ≈ 0.4223. By default, the characteristic roots are approximated and
corrected up to <(λ) ≥ − 1

τ
. A different value r < 0 can be set by the user

in order to obtain the roots, <(λ) ≥ r. For practical reasons, the steplength
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Fig. 3. Left: Correctly computed rightmost characteristic roots of (20), at (x∗1, x∗2) = (0, 0), a21 =
2.5, τs = 1.5. Roots were computed up to <(λ) ≥ −2. Right: Approximated (◦) and corrected (×)
characteristic roots of (20), at (x∗1, x∗2) = (0, 0), a21 = 2.5, τs = 1.5. Roots were computed up to
<(λ) ≥ −3.5.

Fig. 4. Left: Real part of the characteristic roots of (20) along (x∗1, x∗2) = (0, 0) versus a21 for τs = 1.5.
Right: Branches of steady state solutions of (20) undergoing Hopf bifurcations (◦) and a pitchfork
bifurcation. Stable and unstable parts of the branches denoted by solid, respectively, dashed lines.

h used to approximate the characteristic roots (cf. Section 3.1.2) is restricted
from below (where, of course, the particular bound can be changed whenever
required). If this bound is reached, a warning signals that approximated and
corrected roots may diverge, possibly causing part of the wanted spectrum to
be missed—see Figure 3 (right).

Figure 4 (left) depicts the stability along the constant zero branch versus a21
for τs = 1.5. From this figure, it is not immediately clear which lines correspond
to real roots or complex pairs of roots with the same real part. This can easily be
decided upon by drawing figures like Figure 3. The zero steady state solution
loses stability at a Hopf bifurcation near a21 ≈ 0.8071, τs = 1.5 and further
undergoes a pitchfork bifurcation at a21 = 2.25, τs = 1.5. The intersecting
branch of nonzero solutions is shown in Figure 4 (right). Its stability is depicted
in Figure 5 (left) versus x∗1 and shows the existence of two symmetrically placed
Hopf bifurcations.
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Fig. 5. Left: Real part of rightmost characteristic roots along the nonzero branch. Right: Branches
of Hopf bifurcation points (−), branch of pitchfork bifurcation points (−−), Bogdanov-Takens point
(∗) and branch of homoclinic solutions (·−) of (20). To the left of the branch of pitchfork bifurcation
points, Hopf points belong to the zero steady state solution, to the right of this line, Hopf points
correspond to the nonzero steady state solution.

In the (a21, τs)-plane, the branch of pitchfork bifurcation points is just a ver-
tical line, see Figure 5 (right). This is because the position of the pitchfork
bifurcation is independent of the delays. The branch was computed by adding
the symmetry condition (here x1 = 0) to the determining system for a fold point.
Because of the added condition, the resulting determining system is nonsquare
(i.e. it is overdetermined) and is solved using a least squares approach as sig-
nalled by a warning (cf. Section 3.1.1). Due to the (nongeneric) symmetry, the
extended system has isolated solutions.

Branches of Hopf bifurcation points for both the zero and the nonzero steady
state solutions are depicted in Figure 5 (right). Both branches end in the same
Bogdanov-Takens point located on the branch of pitchfork bifurcations. This
and the occurrence of double Hopf points can be concluded by monitoring the
rightmost characteristic roots along the branch of Hopf bifurcations, depicted
(for the zero steady state solution) in Figure 6. At a double Hopf point one
can switch to the intersecting branch of Hopf bifurcations associated with the
second pair of purely imaginary eigenvalues. The intersecting branches of Hopf
bifurcations shown in Figure 5 (right) were computed in this way.

During computation of periodic solution branches, the (user specified) de-
gree of collocation polynomials and the number of subintervals remain fixed.
By default, a mesh adaptation is applied every third point. If difficulties are
encountered, the mesh should be refined and mesh adaptation can be applied
every point. Such a situation can be signalled by an increase in the number of
failures with respect to the number of successful corrections causing a steady
decrease in the steplengths taken; by an apparent loss of smoothness of the
computed branch and/or of the computed solutions, and by a loss of accuracy
of the computed trivial multiplier. Some of these indications can also be caused
by other phenomena, such as a steplength decrease due to a sharp turn in the
branch, and an inaccurate trivial multiplier due to additional multipliers in the
neighbourhood of 1.
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Fig. 6. Left: Real part of characteristic roots of the zero solution of (20) along the branch of Hopf
bifurcation points emanating from the Bogdanov-Takens point shown in Figure 5 (right). Right:
The frequency of the Hopf bifurcations along the same branch.

Fig. 7. Left: Period along a part of the branch of periodic solutions emanating from the Hopf
point of the zero steady state solution of (20) versus a21 for τs = 1.5. Stable and unstable parts
of the branch are denoted by solid, respectively, dashed lines. Middle: Profiles of two periodic
solutions approximating a double homoclinic (top) and normal homoclinic (bottom) solutions. For
both profiles, period T = 300, τs = 1.5, a21 ≈ 2.3460. Right: Nonsmooth profile computed using a
coarse mesh with d = 3 and L = 20.

The branch of periodic solutions which emanates from the Hopf point of
the zero steady state branch for τs = 1.5 is initially stable, looses stability
in a turning point, and approaches a double homoclinic loop (due to symme-
try). Its period is depicted in Figure 7 (left); a solution profile is depicted in
Figure 7 (middle, top). The symmetric branches of periodic solutions that em-
anate from the nonzero steady state branches are always unstable. As a21 grows,
both branches approach a (normal) homoclinic solution (see Figure 7 (middle,
bottom)) which corresponds to the symmetric halves of the double homoclinic
solution approached from the other side by the periodic solutions emanating
from the zero steady state solution—see Figure 8.

As the periodic solutions approximate the homoclinic solution, computa-
tions were restarted with finer meshes (L was increased from 20 to 40 and
d from 3 to 4). In this case, all criteria mentioned above apply and a computed
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Fig. 8. Branches of stable (thin lines) and unstable (−−) steady state solutions as shown in
Figure 4 (right). Hopf bifurcations (◦) and minimum and maximum of x1(t) over the stable (thick
lines) and unstable (· · ·) branches of periodic solutions emanating from these Hopf bifurcations.
The branch of periodic solutions emanating from the zero steady state solution looses stability in a
turning point and subsequently approaches a double homoclinic orbit (d). The symmetric branches
of periodic solutions emanating from the nonzero steady state solutions are always unstable and
each approach a homoclinic orbit (d) which is half of the double homoclinic orbit.

Table I. Approximated, Corrected and Exact Characteristic Roots for the
Zero Steady State Solution of (20) at a21 = 1e − 8, τs = 1.5

approximated roots corrected roots exact roots
λ1,2 −0.16081± 1.2270i −0.16091± 1.2270i −0.16088± 1.2269i
λ3,4 −0.16085± 1.2271i −0.16091± 1.2270i −0.16091± 1.2270i

nonsmooth solution indicating that a finer mesh is needed is depicted in Figure 7
(right).

A branch of homoclinic solutions in two-parameter space can be approxi-
mated by a branch of periodic solutions with fixed, large period. We add the extra
condition T = 300 and free a second parameter, τs. The computed branch, see
Figure 5 (right), emanates nontangentially from the Bogdanov-Takens point.
This behaviour does not completely correspond with the normal form analysis
of a Bogdanov-Takens point (for a system of ordinary differential equations, see,
e.g., Kuznetsov [1995, §VIII.4.2]) probably due to the extra symmetry involved
here .

If the parameter a21 is set to zero, one of the connections between the neurons
is absent and all characteristic roots appear double. This does not produce
any problems. However, for small values of a21 the spectrum consists of pairs
of nearby roots. Here, we could observe—see Table I—the occurrence of two
different approximated roots being corrected to the same exact root by the
Newton’s iteration. In this way, part of the spectrum is missed by the corrections.
For this reason, approximations and corrections should best be compared. We
note, however, that the situation here is rather special and, considering the
distance between the exact roots, one could say that the two equal corrected
roots still form a reasonable approximation of the exact spectrum. During other
tests, we did not encounter problems of this nature.
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Fig. 9. Left: Real part of the rightmost roots of the characteristic equation along the solution
branch (v∗, w∗) of (21) for varying µ. All depicted roots consist of complex pairs and four Hopf
bifurcations (◦) occur. Right: Amplitude of v(t) along the emanating branches of periodic solutions.
Stable branches (—), unstable branches (−−). Several torus bifurcations (∗), turning points and
two period doubling bifurcations (¦) were detected. The period doubled branches are also shown.

4.2 Example 2

The following model describes recurrent neural feedback and was analysed in
Plant [1981] and Castelfranco and Stech [1987],{

v̇(t) = h(v(t))−w(t)+ µ(v(t − τ )− v∗)

ẇ(t) = ρ(v(t)+ a − bw(t)),
(21)

where h(v) = v− 1
3 v3, a = 0.7, b = 0.8, ρ = 0.08, τ = 25 and v∗ ≈ −1.1994 is the

unique real root of h(v∗) − (v∗ + a)/b = 0 which, together with w∗ = (v∗ + a)/b
corresponds to an equilibrium of the system.

Stability along the constant (v∗, w∗) steady state branch is shown in Figure 9
(left) versus µ. Four Hopf bifurcations are visible. The emanating branches of
periodic solutions are depicted in Figure 9 (right). Several bifurcations (turning
points, torus bifurcations, and period doubling bifurcations) were found and
detected using appropriate visualisation of the computed Floquet multipliers.

The stability results—Figure 9 (right)—differ partially from the ones ob-
tained in Castelfranco and Stech [1987], where the periodic solutions are
computed using Fourier approximation. This is probably caused by the steep
gradients in the solutions, which are not easily captured using this type of ap-
proximation. Convergence of the computed period and Floquet multipliers for
a periodic solution with steep gradients is illustrated in Tables II and III. Note
that the accuracy of the trivial multiplier is not a good indication of the accu-
racy of the other multipliers (whose corresponding eigenfunctions may differ
greatly). For Figure 9 (right), we used collocation polynomials of degree d = 3, 4
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Table II. Convergence of the Period and Dominant
Floquet Multipliers for a Stable Periodic Solution at
µ = −2 on Uniform Meshes as the Mesh is Refined

L T |µ1 − 1| µ2,3
10 50.23794 1.3e + 0 0.14433
20 50.47178 1.7e + 0 0.20480 ± 0.04283i
40 50.78587 2.7e − 2 0.13953 ± 0.04233i
80 50.72830 2.4e − 2 0.14449 ± 0.03806i

160 50.73267 1.4e − 3 0.14439 ± 0.03820i

Table III. Convergence of the Period and Dominant
Floquet Multipliers for a Stable Periodic Solution at
µ = −2 on Adapted Meshes as the Mesh is Refined

L T |µ1 − 1| µ2,3
10 50.56190277 2.8e + 1 0.21162 ± 0.05819i
20 50.73279409 1.0e − 2 0.16182 ± 0.01437i
40 50.73262760 5.1e − 5 0.14179 ± 0.04098i
80 50.73262554 3.3e − 6 0.14506 ± 0.03884i

160 50.73262542 1.1e − 6 0.14437 ± 0.03817i

Fig. 10. Computed stable periodic solution of (21) at µ = −2 using L = 20, d = 3 and an equidis-
tant (thin line) or an adapted (thick line) mesh. Unphysical oscillations near steep gradients are
computed on the uniform mesh when the subinterval size is not fine enough.

on adapted meshes with L = 40, 50 subintervals. The effectiveness of the mesh
adaptation is further illustrated in Figure 10.

4.3 Example 3

The following model of two linearly coupled oscillators was studied in Reddy
et al. [1998, 1999],{

Ż 1(t) = (1+ iω1 − |Z1(t)|2)Z1(t)+ K (Z2(t − τ )− Z1(t))

Ż 2(t) = (1+ iω2 − |Z2(t)|2)Z2(t)+ K (Z1(t − τ )− Z2(t)).
(22)
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Here, Z j is the complex amplitude of the j -th oscillator and K ≥ 0 is the
coupling strength.

Phase locked solutions in which the two oscillators synchronise to a common
frequency B, can be described by the representation

(Z1(t), Z2(t)) ≡ (r1ei(Bt−α/2), r2ei(Bt+α/2)), (23)

where r1, r2, α and B are real constants. For τ 6= 0, there is a rich set of such
solutions. In [Reddy et al. 1999], solutions of type (23) were tracked numerically
by solving a polar representation of (22) together with (23) for varying parame-
ter K . The stability of the obtained solutions was studied through the analysis
of the characteristic equation and time integration of the original system for a
number of parameter values.

Phase locked solutions can be computed and analysed as steady state solu-
tions using the substitution,

Z j (t) = Z̃ j (t)eiBt , j = 1, 2. (24)

This is possible, because, due to the special structure of the equations, terms
eiBt drop out and a new autonomous system of equations is obtained. For the
same reason, if (Z a

1 (t), Z a
2 (t)) ≡ (r1(t)eip1(t), r2(t)eip2(t)) is a solution then so is

(Z b
1(t), Z b

2(t)) ≡ (r1(t)ei(p1(t)+1p), r2(t)ei(p2(t)+1p)) for any (constant)1p. To remove
this indeterminacy we add an extra condition,

=(Z̃ 1(0)) = 0. (25)

In the real variables x j (t) = <(Z̃ j (t)), y j (t) = =(Z̃ j (t)) ( j = 1, 2) and B,
system (22) has the form,

ẋ1(t) = B y1(t)+ x1(t)(1− x1(t)2 − y1(t)2)− ω1 y1(t)
+ K (x2(t − τ ) cos(−Bτ )− y2(t − τ ) sin(−Bτ )− x1(t))

ẏ1(t) = −Bx1(t)+ y1(t)(1− x1(t)2 − y1(t)2)+ ω1x1(t)
+ K ( y2(t − τ ) cos(−Bτ )+ x2(t − τ ) sin(−Bτ )− y1(t))

ẋ2(t) = B y2(t)+ x2(t)(1− x2(t)2 − y2(t)2)− ω2 y2(t)
+ K (x1(t − τ ) cos(−Bτ )− y1(t − τ ) sin(−Bτ )− x2(t))

ẏ2(t) = −Bx2(t)+ y2(t)(1− x2(t)2 − y2(t)2)+ ω2x2(t)
+ K ( y1(t − τ ) cos(−Bτ )+ x1(t − τ ) sin(−Bτ )− y2(t))

(26)

and condition (25) is equivalent to

y1(0) = 0. (27)

Using system (26) and (27) as an extra condition, we computed a branch
of steady state solutions and an emanating branch of periodic solutions—see
Figure 11. Note that the branches are depicted with respect to the variables
r j (t) = |Z̃ j (t)| ( j = 1, 2). The non-smoothness of the branch in Figure 11 (left)
is due to the fact that r1(t̃) = 0 at some t̃ ∈ [0, T ] when K ≈ 0.6902. Such a
point cannot easily be passed using a polar representation, and this is why we
preferred the cartesian representation (26). The branch of periodic solutions
is initially stable but looses stability in a turning point. Remark that such a
periodic solution is actually quasi-periodic in terms of the original variables
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Fig. 11. Branches of steady state and periodic solutions (maximum and minimum values of r j )
of (26) for ω1 = 10.5, ω2 = 9.5, τ ≈ 0.4714. Stable (thin lines) and unstable (−−) branches of
steady state solutions and stable (thick lines) and unstable (· · ·) branches of periodic solutions,
Hopf bifurcation (◦).

(Z1(t), Z2(t)). One frequency is present in the periodicity of (x j (t), y j (t)), j =
1, 2. The other is present in the parameter B 6= 0 through (24).

5. CONCLUDING COMMENTS

The aim of DDE-BIFTOOL is to provide a portable, user-friendly tool for nu-
merical bifurcation analysis of steady state solutions and periodic solutions
of systems of delay equations with several fixed discrete delays. Part of this
goal was fulfilled through choosing the portable, programmer-friendly environ-
ment offered by Matlab. Furthermore, whenever possible, the user is shielded
off from numerical details. This is achieved through the availability of default
method parameters, through automatic steplength selection in approximating
the rightmost characteristic roots and through the use of adaptive mesh selec-
tion for the computation of periodic solutions.

Although there are no ‘hard’ limits programmed in the package (with respect
to system and/or mesh sizes), the user will notice the rapidly increasing com-
putation time for increasing system dimension and mesh sizes. This exhibits
itself most profoundly in the stability and periodic solution computations. In-
deed, eigenvalues are computed and the Newton procedure on periodic solutions
is implemented without exploiting the sparsity present in the large matrices
used. Nevertheless the current version is sufficient to perform bifurcation anal-
ysis of systems with reasonable properties in reasonable execution times.

Future plans include more efficient linear algebra procedures, a graphical
user interface and the extension to other types of delay equations (such as
distributed delay and neutral functional differential equations).
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