
Homoclinic Bifurcations to Equilibria Computer Practical 2

1(a) Move to a clean directory and load the HomCont demo cir. Follow all the steps described in the manual to
compute the curve of homoclinic orbits in two parameters and detect various codimension-two homoclinic
bifurcation points.

(b) At which point in parameter space does the transition from a tame to a chaotic homoclinic bifurcation
occur? Note that in order to see the eigenvalues of the equilibrium in fort.9 (d.*) you will need to
make a change in the constant files so that IID=3. From those eigenvalues we note that the equilibrium
(before the Hopf bifurcation) is a saddle or a saddle-focus with a one-dimensional unstable manifold and
two-dimensional stable manifold. Note that AUTO has auto-detected the dimensions of these manifolds by
using the eigenvalues of the equilibrium point. We could have chosen to force auto to make this choice by
adding NUNSTAB=1, NSTAB=2 to c.cir.*

(c) Try adding the line

unames={1:x,2:y,3:z}, parnames={1:nu,2:beta,3:gamma,4:r,5:a3,6:b3}

to the c.cir.* file and rerun and replot the *.2 files. What do you notice?

(d) Also try decrease each of the error tolerances EPSL EPSU and EPSS by a factor of 100. Rerun. Note how
the codim 2 points are detected more accurately.

(c) Restart AUTO from one of the saddle-focus homoclinic points (e.g. at label 6) switch to regular continuation
of periodic orbits IPS=2. Allow the period PAR(11) to decrease while PAR(1) varies. Plot the output as
period against PAR(1). You should see a wiggly curve with lots of fold point. This shows that it is possible
to switch immediately from computation of homoclinic to periodic orbits. Repeat this process from one of
the tame homoclinic orbits (e.g. from label between label 10 and 11 - you will need to rerun with a new
UZR function to label a point on this part of the branch). Do you notice the difference?

(d) Try now to compute each of the Belyakov-type codimension-two points (the ones from labels 5, 10 and 11
in the original run of the demo) in the three parameters ν, β and γ (PAR(1), PAR(2) and (PAR(3)). To do
this we set IFIXED equal to the number of the test function ψi that has been zeroed (remember to remove
the same label from the list IPSI and the parameter i+ 20 from the list of active continuation parameters
ICP). Plot the three separate curves on a single graph (by using ap( ) to append the data files).

2 Now try running the demo kpr. This demo illustrates many different features: (i) the computation of the adjoint
variational equations and the detection of an inclination flip, (ii) the computation of a central saddle-node
homoclinic orbit and the switching between saddle-node and saddle homoclinic orbits, (iii) three-parameter
continuation of codim 2 homoclinic orbits.

Run the demo carefully step by step, noting which constants are being changed in each run. By appending
various data files try to produce a 3D version of the final figure in the manual showing the three-parameter
continuations of the non-central saddle-node homoclinic orbits and the two inclination flips. Make sure all
the axes are labelled with the correct variable names rather than PAR(1) etc.

3 Now try running the demo she which illustrates the computation of a branch of heteroclinic orbits. Make a 3D
plot of the heteroclinic orbits as the parameter µ varies as depicted in the AUTO manual. Try continuation
of the heteroclinic orbits in the other problem parameters Q, σ and ζ.

4 (optional) Read chapter 27 of the manual. Try running the demos. This is advanced material only rec-
ommended for expert users, on how to switch branches to compute multi-pulse homoclinic orbits in a
neighbourhood of a codim 2 homoclinic bifurcation. Try running the demos. Find the reference Oldeman
et al (2003) referred to in the manual and try to understand the theory behind the method. Try using this
method to find multi-pulse homoclinic orbits in other demos.
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Assignment

Choose two of the following questions. Submit the solution as a single .pdf file which comprises a write up of
your working within any graphical output included. The file should be no longer than 10 pages. Note that each
question is intended to open-ended and it a full investigation is not required in order to obtain good marks.

1 (Written exercise) Complete the construction of a 2D Poincaré maps in the neighbourhood of a saddle-focus
homoclinic obrit as sketched in lecture 1. Try to find an asymptotic expression for the existence of two-pulse
homoclinic orbits that spend an intermediary time interval in a neighbourhood of the equilibrium point at
the origin. You may refer to any papers or text books as you wish.

2 (The demos cir and tor). These two demos solve the same set of equations but for different parameter
values. In particular γ = −0.6 in the demo tor but is zero in the demo cir. For this assignment we shall
take γ = −0.6. In practical 1 we found curves of two different homoclinic orbits to a nontrivial equilibrium
via following periodic orbits to large period. Find an expression for the non-trivial equilibrium and use
HomCont (IPS=9) to switch branches to compute curves of the two homoclinic orbits in the parameters
PAR(1) and PAR(2) (ν and β). Note that restarting from a periodic orbit of large period, AUTO performs a
“rotation” of the orbit automatically so that the equilibrium is located at the boundary points of the orbit.
Can you find any codimension-two points? Now consider the homoclinic orbits to the origin computed in
the demo cir. Recompute the two-parameter curves in ν and β for γ = −0.6. Find the codim-two points.
Try to build up an understanding of all the bifurcations that occur in this parameter plane (you may wish
to compute other curves of local bifurcations using AUTO or Matcont).

3 (Return to the demo rev). This system of equations is Hamiltonian and conserves the first integral

H(u1, u2, u3, u4) = u2u4 −
1

2
u2

3 +
1

2
u2

2 + F (u)

where F (u) =
∫
u
f(u), with f(u) = u− u3 for the example in the manual and f(u) = u− 1 + αu3 + βu5 for

the extension to this example that we considered in practical 1.

By re-writing the starting data in rev.dat.* over the full interval [−T, T ] (this can be achieved by setting
U(tmax+ t) = RU(tmax− t) where R = [1,−1, 1,−1]T in the case of rev.dat.1 and R = [−1, 1,−1, 1]T for
rev.dat.3 where in this case tmax = 1) and output the data to new data files rev.dat.4 and rev.dat.5

say. Note that the first column of the data should be the time rescaled back to [0,1] (i.e. divided by 2). Try
now to compute the homoclinic orbits over the full interval by using the conserved quantity H instead of the
reversibility. To do this we add α0∇H to the ODE system where α0 is a new dummy parameter. Remove
IREV=[*] from the c. file and double the initial value of PAR(11). It is also a good idea to double NTST.
Again try to find a homoclinic snake as P varies for fixed values of β > 0 and α ∈ [0, 1]. Can you find a
way to compute the asymmetric “ladder” states that bifurcate in pitchfork bifurcations close to each of the
folds? (Hint: AUTO detects many such BP points if ISP=2 and ISW=-1 tells AUTO to switch branches).

4 (Travelling waves in the FitzHugh-Nagumo system). Consider the FitzHugh-Nagumo equations for a
travelling wave written in the form

u̇ = v,

v̇ = cv + fa(u) + w,

ẇ =
ε

c
(u− γw).

in which fa(u) = u(u − a)(u − 1). Starting at values c = 0.21, a = 0.2, ε = 0.0025 and γ = 0 use the
homotopy method to compute a homoclinic orbit to the origin. (Hint: see the demo fnb). Compute a curve
of homoclinic orbits in the (a, b)-plane. Find two Belyakov points and continue them in three parameters,
allowing ε to be third parameter. Hence find a critical value of ε at which the two Belyakov points coincide.
Explain what this might mean in terms of the existence of multi-pulse orbits. Now increase γ from zero to a
fixed positive value. Again compute curves in the (a, b) plane. For parameter values at which the origin has
real leading eigenvalues, switch on the computation of the twistedness ITWIST=1. Can you find any orbit-flip
or inclination-flip bifurcations?
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