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1 Introduction

In 1844, Catalan conjectured that 8 and 9 are the only consecutive positive integers which
both are perfect powers. More formally, the only solution in the natural numbers of

xp − yq = 1 (1)

for p, q > 1, x, y > 0 is x = 3, p = 2, y = 2, b = 3. Cassels [8] made the weaker conjecture
that (1) has only finitely many solutions in positive integers x > 1, y > 1, p > 1, q > 1.
The latter conjecture was proven by Tijdeman [19]. His proof heavily relies on the theory of
linear forms in logarithms. In section 4 we will see his proof using more recent and improved
bounds for linear forms in logarithms. A key point of Tijdemans proof is that it is effective
in the sense that an upper bound for the solutions can be computed.

Despite Tijdemans work, Catalan’s conjecture remained unproven until 2002. The prob-
lem was that the bounds resulting from Tijdemans work were exceedingly large. In 2002,
Mihăilescu [15] was able to prove Catalan’s conjecture using algebraic methods.

Here, we consider Catalan’s equation over other integral domains. Together with Brindza
and Győry, Tijdeman was able to generalize his proof to the ring of integers of a number field
K, see [6]. They showed that there exists an effectively computable number C which depends
only on K such that all solutions of the equation

xp ± yq = 1 in x, y ∈ OK , p, q ∈ N

with x, y not roots of unity and p > 1, q > 1, pq > 4 satisfy

max(h(x), h(y), p, q) < C,

where h(·) denotes the absolute logarithmic height of an algebraic number.

Brindza [4] further generalized this to the ring of S-integers of a number field. However,
Brindza’s proof is quite technical. In section 5 we will prove Brindza’s result by generalizing
the proof given for the ordinary ring of integers in [6]. Furthermore, we will make the resulting
upper bounds for the solutions completely explicit.

Brindza [5] also gave effective upper bounds for p and q for the Catalan equation over
finitely generated domains in the case that x and y are transcendental. In section 6 we will
strengthen his result by giving explicit upper bounds for p and q without restrictions on x
and y. This will be our main theorem, which we state below.

Let A = Z[z1, . . . , zr] be an integral domain finitely generated over Z of characteristic 0
with r > 0 and denote by K the quotient field of A. We have

A ∼= Z[X1, . . . , Xr]/I

where I is the ideal of polynomials f ∈ Z[X1, . . . , Xr] such that f(z1, . . . , zr) = 0. Then I is
prime and I ∩ Z = (0). Furthermore, I is finitely generated. Let d ≥ 1, h ≥ 1 and assume
that

I = (f1, . . . , fm)

with deg fi ≤ d, h(fi) ≤ h for i = 1, . . . ,m. Here deg means the total degree of the polynomial
fi and h(fi) is the logarithmic height of fi., i.e., the logarithm of the maximum of the absolute
values of the coefficients of fi.
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Theorem 1. All solutions of the equation

xp − yq = 1

in positive integers p and q, x, y ∈ A and x, y not roots of unity must satisfy

max{p, q} < (2d)C
r
1

if x, y are transcendental and

max{p, q} < exp
(
exp

(
exp

(
(2d)C

r
2 (h+ 1)

)))
if x, y are algebraic, where C1 and C2 are effectively computable absolute constants.

In the case that x and y are transcendental, we will use a relatively straightforward
function field argument. But the case x and y algebraic presents more difficulties. The proof
uses a specialization technique. By means of a so called specialization homomorphism we
embed our finitely generated domain into an algebraic number field, after which we can apply
our results in section 5.

In section 7 we generalize our result to characteristic l > 0. We will first phrase our
theorem and then make some remarks. Let A = Fl[z1, . . . , zr] with r > 0 be an integral
domain finitely generated over Fl and denote by K the quotient field of A. We have

A ∼= Fl[X1, . . . , Xr]/I

where I is the ideal of polynomials f ∈ Fl[X1, . . . , Xr] such that f(z1, . . . , zr) = 0. Then I is
finitely generated. Let d ≥ 1 and assume that

I = (f1, . . . , fm)

with deg fi ≤ d. Here deg means the total degree of the polynomial fi.

Theorem 2. All solutions of the equation

xp − yq = 1

in positive integers p and q coprime with l and x, y ∈ A, x, y 6∈ Fl must satisfy

max{p, q} < (2d)C
r
3 ,

where C3 is an effectively computable absolute constant.

Note that all elements of Fl are roots of unity. Hence the condition x, y not roots of unity
translates to x, y 6∈ Fl. Furthermore, if we have a solution (x, y, p, q) in characteristic l > 0,
we can apply Frobenius to get a new solution (x, y, lp, lq). So it is natural to require that p
and q are coprime with l. The proof will use a similar function field argument as in section 6.
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2 Preliminaries

For our proofs we will need some basic knowledge about function fields and algebraic number
theory. This section covers the necessary preliminaries.

2.1 Function fields

Let k be a field. A function field K over k is a finitely generated field extension of tran-
scendence degree 1 over k. For now we will assume that k is algebraically closed and of
characteristic 0. By a valuation on K over k we mean a surjective map v : K → Z ∪ {∞}
such that

v(x) =∞⇔ x = 0;

v(xy) = v(x) + v(y), v(x+ y) ≥ min(v(x), v(y)) for x, y ∈ K;

v(x) = 0 for x ∈ k∗.

Denote by MK the set of valuations on K. Then we have the so called sum formula∑
v∈MK

v(x) = 0

for x ∈ K∗. Let x = (x1, . . . , xn) ∈ Kn \ {0} be a vector. We define

v(x) := −min(v(x1), . . . , v(xn)) for v ∈MK

and

Hhom
K (x) = Hhom

K (x1, . . . , xn) :=
∑
v∈MK

v(x).

We call Hhom
K (x) the homogeneous height of x with respect to K. Let L be a finite extension

of K. Then

Hhom
L (x) = [L : K]Hhom

K (x)

Next we define the height for elements of K by

HK(x) := Hhom
K (1, x) = −

∑
v∈MK

min(0, v(x)).

Now we mention the most important properties of the height HK . It is straightforward to
show that

HK(x) ≥ 0 for x ∈ K, HK(x) = 0⇔ x ∈ k.

Furthermore, it follows from the sum formula that

HK(xm) = |m|HK(x) for x ∈ K∗,m ∈ Z,

HK(x+ y) ≤ HK(x) +HK(y),

and

HK(xy) ≤ HK(x) +HK(y)

Mathematical Institute 5
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for x, y ∈ K. We conclude that

HK(x) =
1

2

(
HK(x) +HK(x−1)

)
=

1

2

∑
v∈MK

|v(x)| ≥ 1

2
|S| for x ∈ K∗,

where S is the set of valuations v ∈MK for which v(x) 6= 0.

Let S be a finite subset of MK . Then the group of S-units of K is given by

O∗S = {x ∈ K∗ : v(x) = 0 for v ∈MK \ S}.

To each function field K over k we can associate a unique natural integer gK/k, which is called
the genus of the function field. For us the precise definition will not be important. The genus
plays a key role in the following theorem.

Theorem 3. Let K be a finite extension of k(z) and S be a finite subset of MK . Then for
every solution of

x+ y = 1 in x, y ∈ O∗S \ k∗

we have

max(HK(x), HK(y)) ≤ |S|+ 2gK/k − 2.

Proof. See Chapter I, section 3, Lemma 2 of Mason [13].

To apply this theorem, we need an upper bound for the genus. Such an upper bound is
provided by the following lemma.

Lemma 4. Let K be the splitting field over k(z) of F := Xm + f1X
m−1 + · · · + fm, where

f1, . . . , fm ∈ k[z]. Then

gK/k ≤ (d− 1)m · max
1≤i≤m

deg fi,

where d = [K : k(z)].

Proof. This is lemma H of Schmidt [16].

Now suppose that k is algebraically closed and of characteristic l > 0. As in characteristic
0 we can define the height and deduce its most important properties. Furthermore, there is
the following analogue of Theorem 3.

Theorem 5. Let K be a finite extension of k(z) and S be a finite subset of MK . Then for
every solution of

x+ y = 1 in x, y ∈ O∗S \K l

we have

max(HK(x), HK(y)) ≤ |S|+ 2gK/k − 2.

Proof. See Chapter VI, section 2, Lemma 10 of Mason [13].

We will need an upper bound for the genus in arbitrary characteristic. The following two
lemmas will be sufficient for our purposes.
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Master Thesis Leiden University

Lemma 6. Let K = k(x, y) be a function field over k, where x and y are related by a
polynomial equation

F (x, y) = 0

of total degree n. If F is irreducible, then we have

gK/k ≤
1

2
(n− 1)(n− 2).

Proof. See Chapter XVI, section 6, Theorem 12 of Artin [1].

Lemma 7. Let K/k be a function field. Suppose there are given two subfields F1/k and F2/k
of K/k satisfying

(1) K = F1F2 is the compositum of F1 and F2, and

(2) [K : Fi] = ni and Fi/k has genus gi (i = 1, 2).

Then the genus g of K/k is bounded by

gK/k ≤ n1g1 + n2g2 + (n1 − 1)(n2 − 1).

Proof. See Chapter III, section 3, Theorem 3.11.3 of Stichtenoth [18].

2.2 Algebraic number theory

We start by introducing the notion of absolute value, which makes sense for any infinite field.
So let K be an infinite field. An absolute value on K is a function | · | : K → R≥0 satisfying
the following conditions

|xy| = |x| · |y| for x, y ∈ K;

there is C ≥ 1 such that |x+ y| ≤ C max(|x|, |y|) for x, y ∈ K;

|x| = 0⇔ x = 0.

From now on, we let K be an algebraic number field. Our goal will be to introduce a
collection of absolute values {| · |v} on K. To do this, we will use the notion of places. A
real place of K is a set {σ} where σ : K → R is a real embedding of K. A complex place of
K is a pair {σ, σ} of conjugate complex embeddings K → C. An infinite place is a real or
complex place. A finite place of K is a non-zero prime ideal of OK . Denote by MK the set
of all places of K.

It turns out that we can associate to every place v ∈ MK an absolute value | · |v, which
we define as follows for α ∈ K

|α|v := |σ(α)| if v = {σ} is real;

|α|v := |σ(α)|2 = |σ(α)|2 if v = {σ, σ} is complex;

|α|v := NK(p)−ordp(α) if v = p is a prime ideal of OK .

Then we have the so called product formula over K∏
v∈MK

|α|v = 1

Mathematical Institute 7
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for α ∈ K∗. Later on it will be useful to deal with all absolute values simultaneously. For
this we have the useful inequality

|x1 + . . .+ xn| ≤ ns(v) max(|x1|v, . . . , |xn|v)

for v ∈MK , x1, . . . , xn ∈ K, where s(v) = 1 if v is real, s(v) = 2 if v is complex and s(v) = 0

if v is finite. Furthermore, |α|1/2v satisfies the triangle inequality for all v ∈MK .
Let S denote a finite subset of MK containing all infinite places. Write s = |S|. We define

the ring of S-integers by

OS := {α ∈ K : |α|v ≤ 1 for all v ∈MK \ S}.

This is a subring of K containing OK , hence it is a Dedekind domain. Concretely, this means
that every non-zero proper ideal factors uniquely into prime ideals.

Let WK denote the group of roots of unity of K. Then we have the following important
generalization of the well-known Dirichlet’s unit theorem.

Theorem 8. We have
O∗S ∼= WK × Zs−1.

More explicitly, there are ε1, . . . , εs−1 ∈ O∗S such that every ε ∈ O∗S can be expressed uniquely
as

ε = ζεb11 · · · ε
bs−1

s−1 ,

where ζ is a root of unity of K and b1, . . . , bs−1 are rational integers.

Proof. See Corollary 1.8.2 in [10].

A system {ε1, . . . , εs−1} as above is called a fundamental system of S-units. Write S =
{v1, . . . , vs}. We define the S-regulator by

RS :=
∣∣∣det

(
log |εi|vj

)
i,j=1,...,s−1

∣∣∣ ,
Then RS 6= 0 and furthermore RS is independent of the choice of ε1, . . . , εs−1 and of the
choice v1, . . . , vs−1 of S.

We define the absolute multiplicative height of α ∈ K by

H(α) :=
∏

v∈MK

max(1, |α|v)1/[K:Q].

Next we define the absolute logarithmic height by

h(α) := logH(α).

Let α, α1, . . . , αn ∈ K and m ∈ Z. Then we have the following important properties

h(α1 · · ·αn) ≤
n∑
i=1

h(αi);

h(α1 + · · ·+ αn) ≤ log n+
n∑
i=1

h(αi);

h(αm) = |m|h(α) if α 6= 0.

For a proof of the above properties, see chapter 3 in [21]. Furthermore, we have Northcott’s
theorem.

8 Mathematical Institute
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Theorem 9. Let D,H be positive reals. Then there are only finitely many α ∈ Q such that
degα ≤ D and h(α) ≤ H.

Proof. See Theorem 1.9.3 in [10].

Mathematical Institute 9



Leiden University Master Thesis

3 Lemmas

In this section we will formulate the necessary lemmas. This section is subdivided into three
subsections. In the first subsection we will give some algebraic lemmas. In the second and
third subsection we cover advanced lemmas concerning linear forms in logarithms and the
hyperelliptic equation.

Let K be a number field of degree d, discriminant DK and denote by MK the set of
places of K. Let S be a finite subset of MK containing all infinite places. Write s = |S|.
Let p1, . . . , pt be the prime ideals in S. From now on f1, f2, . . . are effectively computable
absolute constants and c1, c2, . . . are effectively computable constants depending only on K
and S. Put

P := max{N(p1), . . . , N(pt)} if t > 0, P := 2 if t = 0

and

Q := N(p1 · · · pt) if t > 0, Q := 1 if t = 0.

3.1 Algebraic lemmas

Our first lemma gives a lower bound for the height of α ∈ K.

Lemma 10. Let α ∈ K, α 6= 0, α not a root of unity. Then

dh(α) ≥ log 2

(log(3d))3
=: c1. (1)

Proof. This follows from the work in [20].

Now we need some results on S-units.

Lemma 11. There is a fundamental system of S-units {η1, . . . , ηs−1} and an effectively com-
putable absolute constant f1 such that

(i)
∏s−1
i=1 h(ηi) ≤ (2s)f1sRS,

(ii) h(ηi) ≤ (2s)f1sRS for i = 1, . . . , s− 1,

(iii) the absolute values of the entries of the inverse of the matrix (log |ηi|vj )i,j=1,...,s−1 do
not exceed (2s)f1s.

Proof. This is a less precise version of Lemma 1 in [7].

Let h denote the class number of K, let r be the unit rank and let R be the regulator of
K. Put

c2 :=


0 if r = 0,
1/d if r = 1,
29er!r

√
r − 1 log d if r ≥ 2.

Define the S-norm of α ∈ K by NS(α) :=
∏
v∈S |α|v. More generally, define

MS(α) := max

 ∏
v∈MK\S

max(1, |α|v),
∏

v∈MK\S

max(1, |α|−1v )



10 Mathematical Institute
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for α ∈ K∗. By the product formula we have

MS(α) =
∏

v∈MK\S

|α|−1v = NS(α) for α ∈ OS \ {0}.

Lemma 12. Let α ∈ K∗ and let n be a positive integer. Then there exists ε ∈ O∗S such that

h(εnα) ≤ 1

d
logMS(α) + n

(
c2R+

h

d
logQ

)
.

Proof. See Proposition 4.3.12 in [10].

Let α, β ∈ K∗. Put

H := max{1, h(α), h(β)}.

Lemma 13. Every solution x, y of

αx+ βy = 1 in x, y ∈ O∗S

satisfies

max(h(x), h(y)) < (2s)f2s(P/ logP )HRS max{logP, log∗RS}

for an effectively computable absolute constant f2.

Proof. This is a less precise version of Corollary 4.1.5 in [10].

3.2 Linear forms in logarithms

Let K be an algebraic number field of degree d, and assume that it is embedded in C. We
put χ = 1 if K is real, and χ = 2 otherwise. Let

Σ = b1 logα1 + · · ·+ bn logαn

where α1, . . . , αn are n(≥ 2) non-zero elements of K with some fixed non-zero values of
logα1, . . . , logαn, and b1, . . . , bn are rational integers, not all zero. We put

Ai ≥ max{dh(αi), | logαi|, 0.16}, i = 1, . . . , n

and

B = max{1,max{|bi|Ai/An : 1 ≤ i ≤ n}}.

Theorem 14. Suppose that Σ 6= 0. Then

log |Σ| > −a1(n, d)A1 · · ·An log(eB),

where

a1(n, d) = min

{
1

χ

(
1

2
en

)χ
30n+3n3.5, 26n+20

}
d2 log(ed).

Further, B may be replaced by max(|b1|, . . . , |bn|).

Proof. This is Corollary 2.3 of [14].

Mathematical Institute 11
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Put

Λ = αb11 · · ·α
bn
n − 1 (1)

and
A′i = dh(αi) + π, i = 1, . . . , n.

Lemma 15. Suppose that Λ 6= 0, and that B′ satisfies

B′ ≥ max {|b1|, . . . , |bn|} .

Then we have
log |Λ| > −a2(n, d)A′1 · · ·A′n log

(
e(n+ 1)B′

)
,

where

a2(n, d) = 2πmin

{
1

χ

(
1

2
e(n+ 1)

)χ
30n+4(n+ 1)3.5, 26n+26

}
d2 log(ed).

Proof. We use the principal value of the logarithm. Let z be a complex number such that
|z − 1| < 1

2 . Then

| log(z)| =

∣∣∣∣∣
∞∑
n=1

(−1)n−1(z − 1)n

∣∣∣∣∣ ≤ |z − 1|
∞∑
n=1

|z − 1|n−1 = |z − 1| 1

1− |z − 1|
< 2|z − 1|.

Hence

|z − 1| > 1

2
| log(z)|.

We apply this with z = αb11 · · ·αbnn . Because we want to give a lower bound for |z − 1|, we
may assume that |z − 1| < 1

2 . This gives

|z − 1| > 1

2

∣∣∣log
(
αb11 · · ·α

bn
n

)∣∣∣ =
1

2
|b1 log(α1) + · · ·+ bn log(αn) + 2kπi|

for some k ∈ Z. But

|z − 1| < 1

2
,

so taking imaginary parts

|k| ≤ 1

2π
(1 + |b1|π + · · ·+ |bn|π) ≤ (n+ 1)B′/2.

Put

Σ = b1 log(α1) + · · ·+ bn log(αn) + 2kπi = b1 log(α1) + · · ·+ bn log(αn) + 2k log(−1).

We apply Theorem 14 with n+ 1, (α1, . . . , αn,−1) and (b1, . . . , bn, 2k). Then

| logαi| ≤ log |αi|+ π ≤ dh(αi) + π.

So we can take Ai = A′i for i = 1, . . . , n, An+1 = π and B = (n+1)B′. Our assumption Λ 6= 0
implies Σ 6= 0. Theorem 14 gives

|z − 1| > 1

2
|b1 log(α1) + · · ·+ bn log(αn) + 2kπi|

>
1

2
exp(−a1(n+ 1, d)A1 · · ·An+1 log(e(n+ 1)B′))

12 Mathematical Institute
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where

a1(n, d) = min

{
1

χ

(
1

2
en

)χ
30n+3n3.5, 26n+20

}
d2 log(ed).

This implies
log |z − 1| > −a2(n, d)A′1 · · ·A′n log

(
e(n+ 1)B′

)
where

a2(n, d) = 2πmin

{
1

χ

(
1

2
e(n+ 1)

)χ
30n+4(n+ 1)3.5, 26n+26

}
d2 log(ed)

as desired.

Keep the above notation and assumptions and consider again Λ as defined by (1). Let
now B and Bn be real numbers satisfying

B ≥ max{|b1|, . . . , |bn|}, B ≥ Bn ≥ |bn|.

Let p be a prime ideal of OK and denote by ep and fp the ramification index and the residue
class degree of p, respectively. Suppose that p lies above the rational prime number p. Then
NK(p) = pfp .

Lemma 16. Assume that ordpbn ≤ ordpbi for i = 1, . . . , n and set

h′i := max{h(αi), 1/16e2d2}, i = 1, . . . , n.

If Λ 6= 0, then for any real δ with 0 < δ ≤ 1/2 we have

ordpΛ < a3(n, d)
enpN(p)

(logN(p))2
max

{
h′1 · · ·h′n log(Mδ−1),

δB

Bna4(n, d)

}
,

where

a3(n, d) = (16ed)2(n+1)n3/2 log(2nd) log(2d),

a4(n, d) = (2d)2n+1 log(2d) log3(3d),

and
M = Bna5(n, d)N(p)n+1h′1 · · ·h′n−1

with
a5(n, d) = 2e(n+1)(6n+5)d3n log(2d).

Proof. This is the second consequence of the Main Theorem in [22].

3.3 The super- and hyperelliptic equation

Let
f(X) = a0X

n + a1X
n−1 + · · ·+ a0 ∈ OS [X]

be a polynomial of degree n ≥ 2 without multiple roots and let b be a non-zero element of
OS . Put

ĥ :=
1

d

∑
v∈MK

log max(1, |b|v, |a0|v, . . . , |an|v).

Our next lemma concerns the superelliptic equation

f(x) = bym (1)

in x, y ∈ OS with a fixed exponent m ≥ 3.

Mathematical Institute 13
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Lemma 17. Assume that m ≥ 3, n ≥ 2. If x, y ∈ OS is a solution to equation (1) then we
have

h(x), h(y) ≤ (6ns)14m
3n3s|DK |2m

2n2
Q3m2n2

e8m
2n3dĥ.

Proof. See Theorem 2.1 in [3].

We now consider the hyperelliptic equation

f(x) = by2 (2)

in x, y ∈ OS .

Lemma 18. Assume that n ≥ 3. If x, y ∈ OS is a solution to equation (2) then we have

h(x), h(y) ≤ (4ns)212n
4s|DK |8n

3
Q20n3

e50n
4dĥ.

Proof. See Theorem 2.2 in [3].

The following lemma is an explicit version of the Schinzel-Tijdeman theorem over the
S-integers.

Lemma 19. Assume that (1) has a solution x, y ∈ OS where y is neither 0 nor a root of
unity. Then

m ≤ (10n2s)40ns|DK |6nPn
2
e11ndĥ.

Proof. See Theorem 2.3 in [3].
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4 A special case

In this section we will bound p and q for the Catalan equation over Z. We will follow [19].

Setup
Consider the equation

xp − yq = 1 (1)

in integers p > 1, q > 1, x > 1, y > 1. Our goal will be to prove the following theorem.

Theorem 20. The equation (1) has only finitely many solutions in integers p > 1, q > 1,
x > 1, y > 1. Effective bounds for the solutions p, q, x, y can be given.

Auxiliary results
The proof of Theorem 20 is rather short, but it contains three applications of the theory of
linear forms in logarithms. At the end of the proof we obtain that there are absolute bounds
for p and q for every solution p, q, x, y of (1). We then complete our proof by using Lemma
17 and 18. Before we start the proof of the theorem, we first state and prove a simple lemma.

Lemma 21. Let a be a real number such that 0 ≤ a ≤ 1
2 and let n ≥ 1 be an integer. Then

(1− a)n + an ≤ 1.

Proof. Define
f(a) := (1− a)n + an.

Then f is differentiable and f(0) = 1. So it suffices to prove that

f ′(a) = −n(1− a)n−1 + nan−1 ≤ 0,

or equivalently
an−1 ≤ (1− a)n−1.

But this is clear by our assumption on a.

Proof of Theorem 20
We are now ready to prove Theorem 20.

Proof. Without loss of generality we may assume that p and q are different primes. Further
we assume that q is odd. This last assumption is justified by Lebesgue’s result that q 6= 2,
see [11].

We have
xp = yq + 1 = (y + 1)(yq−1 − yq−2 + · · ·+ 1).

Let d = gcd(y + 1, yq−1 − yq−2 + · · ·+ 1). Then y ≡ −1 mod d and, hence,

yq−1 − yq−2 + · · ·+ 1 ≡ q mod d.

It follows that d | q, and therefore d = 1 or d = q. Since the product of y + 1 and yq−1 −
yq−2 + · · ·+ 1 is a p-th power, we find that there is a δ2 ∈ {−1, 0, 1} and a positive integer σ
such that

y + 1 = qδ2σp. (2)
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In a similar way we derive from

yq = xp − 1 = (x− 1)(xp−1 + xp−2 + · · ·+ 1)

that there is a δ1 ∈ {−1, 0, 1} and a positive integer ρ such that

x− 1 = pδ1ρq. (3)

On substituting (2) and (3) in (1) we obtain

(pδ1ρq + 1)p − (qδ2σp − 1)q = 1. (4)

The equation is almost symmetrical in (p, ρ, δ1) and (q, σ, δ2). Since we have to distinguish
the cases p > q and p < q and the proofs in both cases are similar in virtue of this symmetry,
we assume p > q in the sequel. In particular we have that p > 2.

We shall first prove that there exist two absolute constants C1 and C2 such that

q ≤ C1(log p)C2 . (5)

Throughout we will use the well-known inequality

| log(1 + a)| ≤ a

for a ≥ 0. We distinguish two cases, (a) and (b).

(a) ρ = 1 or σ = 1. The following argument shows that x ≤ p2 in both cases. Indeed, if
σ = 1, then we get from (2) that δ2 = 1 and y = q − 1. Now it follows from (1) and
p > q that x < y < q < p. If ρ = 1, then we have from (3) that either x = 2 or x = p+1.
We conclude that in both cases x ≤ p2.

By (1)

0 < |p log x− q log y| = | log(1 + xpy−q − 1)| ≤ xpy−q − 1 = exp(−q log y).

We apply Theorem 14 with K = Q, n = 2, α1 = x, α2 = y, b1 = p and b2 = q. Then
we can choose

A1 = 2 log p ≥ log x, A2 = log y, B = max{p, q} = p.

This gives

|p log x− q log y| > exp(−2C3 log p log y log(ep)) > exp(−4C3 log y(log p)2)

for some absolute constant C3, where we used that p > 2. The combination of both
inequalities yields (5) in case (a).

(b) ρ > 1 and σ > 1. It follows from (4) and (x− 1)p < yq + 1 < (y + 1)q that

1 > pδ1pρpqq−δ2qσ−pq =

(
1 +

1

pδ1ρq

)−p
((1− q−δ2σ−p)q + q−δ2qσ−pq).
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Using Lemma 21 we get for 0 ≤ a ≤ 1
2

| log((1− a)q + aq)| ≤ | log((1− a)q)| = −q log(1− a)

= q log

(
1

1− a

)
= q log

(
1 +

a

1− a

)
≤ aq

1− a
≤ 2aq.

This gives∣∣∣δ1p log p− δ2q log q + pq log
ρ

σ

∣∣∣ =

∣∣∣∣−p log

(
1 +

1

pδ1ρq

)
+ log((1− q−δ2σ−p)q + q−δ2qσ−pq)

∣∣∣∣
≤ p

pδ1ρq
+

2q

qδ2σp
.

Note that indeed 0 ≤ q−δ2σ−p ≤ 1
2 , since

σp ≥ 2p ≥ 2p ≥ 2q ≥ 2q−δ2

by our assumption σ > 1. Because p > q, we have y > x by (1). Hence qδ2σp > pδ1ρq

by (2) and (3). It follows that∣∣∣δ1p log p− δ2q log q + pq log
ρ

σ

∣∣∣ ≤ 3p2

ρq
.

We want to prove (5). We may therefore assume that

q > 10 log p. (6)

Hence, from ρ > 1,

ρq/2 > ρ5 log p = p5 log ρ ≥ p5 log 2 > p3 ≥ 3p2,

where we used that p > 2. Thus,

0 <
∣∣∣δ1p log p− δ2q log q + pq log

ρ

σ

∣∣∣ < exp

(
−1

2
q log ρ

)
. (7)

It is an easy consequence of (3) and (7) that∣∣∣log
ρ

σ

∣∣∣ ≤ 2 log p

q
+ 1 < 2.

Hence, σ < e2ρ < ρ4. We can therefore apply Theorem 14 to the left-hand side of (7)
with K = Q, n = 3, α1 = p, α2 = q, α3 = ρ/σ, b1 = δ1p, b2 = −δ2q and b3 = pq. Then
we can choose

A1 = log p, A2 = log p ≥ log q, A3 = 4 log ρ ≥ log max{σ, ρ}, B = p2 ≥ max{p, q, pq}.

This gives∣∣∣δ1p log p− δ2q log q + pq log
ρ

σ

∣∣∣ > exp(−4C4 log p log p log(ep2) log ρ) (8)

> exp(−12C4(log p)3 log ρ). (9)

for some absolute constant C4, where we used that p > 2. The combination of (7) and
(9) gives (5) in case (b). This completes the proof of (5).
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Subsequently we show that there is an absolute constant C such that p ≤ C for every
solution x, y, p, q of (1). Again we distinguish two cases, (a) and (b).

(a) σ = 1. We see from (2) that δ2 = 1 and y = q − 1. By (1) we obtain

p log 2 ≤ p log x < q log y + 1 < q log q + 1.

It now follows from (5) that

p < 2q log q < C5(log p)C6

for some absolute constants C5 and C6. Hence, there is an absolute upper bound C for
p in this case.

(b) σ > 1. It follows from (4) that

(pδ1ρq + 1)pq−δ2qσ−pq =

(
1− 1

qδ2σp

)q
+

1

qδ2qσpq
< 1

Using our earlier estimate

| log((1− a)q + aq)| ≤ 2aq,

we obtain ∣∣∣∣δ2q log q − p log
pδ1ρq + 1

σq

∣∣∣∣ ≤ 2q

qδ2σp
<

2q2

σp
.

If p ≥ 32, then 2q2 < 2p2 < 2p/2 ≤ σp/2, and

0 <

∣∣∣∣δ2q log q − p log
pδ1ρq + 1

σq

∣∣∣∣ ≤ exp

(
−1

2
p log σ

)
. (10)

It follows from this inequality in combination with (5) that∣∣∣∣log
pδ1ρq + 1

σq

∣∣∣∣ ≤ q log q

p
+

1

p
≤ 2C2

1 (log p)2C2

p
≤ 1,

if p ≥ p0, where p0 is some absolute constant. Since we want to prove that p is bounded,
we can assume that p ≥ 32 and p ≥ p0 without loss of generality.

We apply Theorem 14 with K = Q, n = 2, α1 = q, α2 = pδ1ρq+1
σq , b1 = δ2q and b2 = p.

Then we can choose

A1 = log p ≥ log q, A2 = log σ2q ≥ log eσq ≥ log max{pδ1ρq+1, σq}, B = max{p, q} = p.

On using (5) we obtain absolute constants C7 and C8 such that∣∣∣∣δ2q log q − p log
pδ1ρq + 1

σq

∣∣∣∣ ≥ exp
(
−C7(log p)C8 log σ

)
. (11)

The combination of (10) and (11) yields

p ≤ 2C7(log p)C8 .

Hence, in both cases (a) and (b) there exists an effectively computable upper bound for p.
By (5) this gives at the same time an effectively computable upper bound for q. The case
q > p leads similarly to effective upper bounds for p and q.
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5 The algebraic case

We will give bounds for the solutions of the Catalan equation over the ring of S-integers of a
number field K. This was already proven in [4], but our proof is less technical. We will also
make the bounds explicit. Instead of following [4], we generalize the proof in [6] dealing with
the Catalan equation for the ordinary ring of integers.

Setup
Let K be a number field of degree d, discriminant DK and denote by MK the set of places of
K. Let S be a finite subset of MK containing all infinite places. Write s = |S|. Let p1, . . . , pt
be the prime ideals in S. Put

P := max{2, N(p1), . . . , N(pt)}

and
Q := N(p1 · · · pt) if t > 0, Q := 1 if t = 0.

Consider the equation

xp ± yq = 1 (1)

in x, y ∈ OS , p, q ∈ N with x, y not roots of unity and p > 1, q > 1, pq > 4.

Theorem 22. Suppose that p and q are prime. Then there exists an effectively computable
absolute constant f3 such that all solutions of (1) satisfy

max{p, q} < (P 2s)f3Ps|DK |6PPP
2

=: c3 (2)

and

max{h(x), h(y)} < (c3s)
c63 |DK |c

4
3Qc

4
3 . (3)

Furthermore, if p and q are arbitrary natural integers, we have

max{p, q} < (c3s)
c63 |DK |c

4
3Qc

4
3 . (4)

Basic lemmas
We will need an elementary lemma to make our estimates easier. Let us start by proving a
prepatory lemma.

Lemma 23. Let A > e, z > 2A logA. Then

z

log z
> A.

Proof. The function f(z) = z
log z is increasing for z > e. By our assumptions we get

z > 2A logA > 2e

and hence

f(z) > f(2A logA) =
2A logA

logA+ log 2 + log logA
.
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So it suffices to prove
2A logA

logA+ log 2 + log logA
> A,

which is equivalent to
2 logA > logA+ log 2 + log logA.

But this is equivalent to

f(A) =
A

logA
> 2,

which follows from A > e and our observation that f(z) is increasing for z > e.

We are now ready to state and prove our final lemma.

Lemma 24. Let a > 0, b > 1, c > 0 and x > 0. Assume that

a

log b
c1/a > e

and

bx/a > 2
a

log b
c1/a log

(
a

log b
c1/a

)
.

Then
xa

bx
< c−1.

Proof. Take z := bx/a = ex log b/a. Then

xa

bx
< c−1 ⇔ x

z
< c−1/a ⇔ log z

z
<

log b

a
c−1/a

⇔ z

log z
>

a

log b
c1/a.

Now apply Lemma 23 with z and A := a
log bc

1/a.

5.1 A key theorem

Before proving theorem 22, we generalize Lemma 6 in [6]. The proof is a more modern and
simplified version of Theorem 9.3 in [17].

Setup
Consider the equation

x1 + x2 = yq (1)

in q ∈ Z>0, x1, x2 ∈ O∗S and y ∈ OS not zero and not a S-unit.

Theorem 25. Equation (1) implies that

P (q) ≤ (2s)f4sP 2R4
S

for an effectively computable absolute constant f4. Here P (q) denotes the greatest prime factor
of q.
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Simplifications
To prove theorem 25, we first make some simplifications. We may assume q > 1. Further,
since every power of y is a non-zero non-unit in OS , there is no loss of generality in assuming
that q is prime.

We have the useful inequality
d ≤ 2s,

which we will use throughout without further mention. We write RS for the S-regulator.
Then we have by Lemma 3 in [7]

RS ≥ 0.2052(log 2)t. (2)

Choose a fundamental system of S-units {η1, . . . , ηs−1} as in Lemma 11. We may write

x1 = ζ1η
a1
1 · · · η

as−1

s−1 , x2 = ζ2η
b1
1 · · · η

bs−1

s−1

where a1, . . . , as−1, b1, . . . , bs−1 ∈ Z and ζ1, ζ2 ∈ OK roots of unity. For 1 ≤ i ≤ s− 1,write

bi = qbi,1 + bi,2, 0 ≤ bi,2 < q

and
ε1 = η

b1,1
1 · · · ηbs−1,1

s−1 , ε2 = η
b1,2
1 · · · ηbs−1,2

s−1 .

Thus x2 = ζ2ε2ε
q
1. On dividing both the sides of (1) by εq1 and observing that yε−11 is a

non-zero non-unit in OS , we may assume that

0 ≤ bi < q (1 ≤ i ≤ s− 1).

Set
W = max(|a1|, . . . , |as−1|, b1, . . . , bs−1, e).

We will need two lemmas before proving the main theorem.

Lemmas
Here we will state and prove the necessary lemmas. We take c4 := (2s)f5sP 2R2

S with f5
sufficiently large.

Lemma 26. Assume the above simplifications and q > c4. Then

W ≤ c5qh(y) (3)

with c5 := (2s)f6sRSqh(y).

Proof. By max(b1, . . . , bs−1, e) < q, (2) and Lemma 10, we may assume that

W = max(|a1|, . . . , |as−1|).

Fix v ∈ S. Then we have

|x1|v = |y − x2|v ≤ 4 max(|y|v, |x2|v).

Hence

log |x1|v ≤ log 4 + max(log |y|v, log |x2|v) ≤ log 4 + | log |y|v|+ | log |x2|v|.
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But

| log |x2|v| =

∣∣∣∣∣
s−1∑
i=1

log |ηbii |v

∣∣∣∣∣ ≤
s−1∑
i=1

|bi|| log |ηi|v| ≤ q
s−1∑
i=1

2dh(ηi) ≤ (2s)f7sqRS

by our choice of the fundamental system {η1, . . . , ηs−1} of S-units. We conclude that

log |x1|v ≤ log 4 + | log |y|v|+ (2s)f7sqRS ≤ (2s)f8sqRS + | log |y|v|.

Also, by the product formula,

− log |x1|v =
∑
w∈S
w 6=v

log |x1|w ≤ (2s)f9sqRS +
∑
w∈S
w 6=v

| log |y|w| ≤ (2s)f9sqRS + 2dh(y).

But then

|a1 log |η1|v + · · ·+ as−1 log |ηs−1|v| = | log |x1|v| ≤ (2s)f9sqRS + 2dh(y),

for all v ∈ S. Then in view of Lemma 11 (iii), we obtain a system of linear inequalities whose
coefficient matrix has an inverse of which the elements have absolute values at most (2s)f1s.
Consequently,

W = max(|a1|, . . . , |as−1|) ≤ s(2s)f1s((2s)f9sqRS + 2dh(y)) ≤ (2s)f6sRSqh(y)

by (2) and Lemma 10.

Lemma 27. Assume the above simplifications and q > c4. Then

h(y) ≤ (2s)f10sRS =: c6. (4)

Proof. Fix v ∈ S. By (1)

|x2|v = |yq − x1|v = |yq|v|1− x1y−q|v = |yq|v|1− ζ1ηa11 · · · η
as−1

s−1 y
−q|v.

We distinguish two cases, namely v archimedean and v non-archimedean. First suppose that
v is archimedean. We apply Lemma 15 with n = s+ 2, (α1, . . . , αn) = (ζ1, η1, . . . , ηs−1,−1, y)
and (b1, . . . , bn) = (1, a1, . . . , as−1, 2k,−q). For i = 2, . . . , s, we use

dh(αi) + π ≤ d(1 + πc−11 )h(αi).

So we can take Ai = dh(αi)+π for i 6∈ {2, . . . , s} and Ai = d(1+πc−11 )h(αi) for i ∈ {2, . . . , s}.
Because we need to prove that h(y) is bounded, we may suppose that h(y) > π. Then it follows
that h(y) < An < (d+ 1)h(y) and B < (2s)f11sR2

Sq. Lemma 15 gives

|1−x1y−q| >
1

2
| log ζ1+a1 log η1+· · ·+as−1 log ηs−1+2k log(−1)−q log y| > exp(−c7h(y) log q)

with

c7 = (2s)f12sRS
log(e(2s)f11sR2

Sq)

log q
.

By taking f5 sufficiently large, we get q > e(2s)f11sR2
S and hence

c7 ≤ 2(2s)f12sRS .
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Next suppose that v is non-archimedean. Suppose that v corresponds to a prime ideal p.
We may assume that ordp(q) = 0 since q > c4. We apply Lemma 16 with n = s + 1,
(α1, . . . , αn) = (ζ1, η1, . . . , ηs−1, y) and (b1, . . . , bn) = (1, a1, . . . , as−1,−q). Take δ = 1

2 . Then
B ≤ c5qh(y), Bn = q, h′n = h(y) by assuming h(y) ≥ 1

16e
2d2 and

M ≤ f13f s
2

14P
s+3RSq.

This gives

|1− x1y−q|v = exp(− logN(p)ordp(1− ζ1ηa11 · · · η
as−1

s−1 y
−q))

> exp
(
−(2s)f15sP max

(
(2s)f16sRSh(y) log(2M), c5h(y)

))
By taking f5 sufficiently large again, we find thanks to our assumption q > c4

q >
s

√
2f13fs

2

14P
s+3RS

and therefore
|1− x1y−q|v > exp

(
−(2s)f17sPRSh(y) log q

)
.

We conclude that
|1− x1y−q|v > exp(−c8h(y) log q)

for all v ∈ S with
c8 := (2s)f18sPRS .

Define S1 = {v ∈ S : |y|v > 1}. Then it follows by∏
v∈S1

|y|v =
∏

v∈MK

max(1, |y|v) = exp(dh(y))

that

exp(s(2s)f7sqRS) ≥
∏
v∈S1

|x2|v = exp(qdh(y))
∏
v∈S1

|1− x1y−q|v

> exp(qdh(y)− sc8h(y) log q).

Making f5 sufficiently large gives
√
q >

2sc8
d
.

But we have the well-known inequality

q

log q
>
√
q,

so
qdh(y) > 2sc8h(y) log q.

We conclude that

exp(s(2s)f7sqRS) > exp

(
1

2
qdh(y)

)
,

hence

h(y) ≤ 2s

d
(2s)f7sRS ≤ (2s)f19sRS .
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So we can take

c6 = max

(
π,

1

16
e2d2, (2s)f19sRS

)
≤ (2s)f10sRS

proving (4).

Proof of Theorem 25
It will now be straightforward to prove Theorem 25.

Proof. We showed earlier that

|1− x1y−q|v > exp(−c8h(y) log q)

for all v ∈ S. We may assume that q > c4 with c4 sufficiently large so that (4) is valid. Then,
because x2 = yq(1− x1y−q) is a S-unit, we have

1 =
∏
v∈S
|x2|v

=
∏
v∈S
|y|qv

∏
v∈S
|1− x1y−q|v

≥ NS(y)q exp(−sc6c8 log q),

where

NS(y) =
∏
v∈S
|y|v.

Because y is a non-zero non-unit in OS , we have |NS(y)| ≥ 2. Hence

1 ≥ 2q exp(−sc6c8 log q)

giving

sc6c8
√
q ≥ sc9c8 log q ≥ q log 2.

We conclude that

q ≤
(
sc6c8
log 2

)2

≤ (2s)f20sP 2R4
S .

This gives the desired bound for q, completing the proof.

5.2 Proof of Theorem 22

We will now prove Theorem 22 in several steps.

A: simplifications
Let x, y, p, q be a solution of (1) satisfying the conditions of the theorem. We first show that
we can make certain assumptions without loss of generality.

Note that (4) is an easy consequence of (3). So from now on we may assume that p and q
are prime and our goal will be to show (2). If we have (2), then (3) follows from Lemma 17
and 18. We may further assume that p > 2 and q > 2. Indeed, if e.g. p = 2, then we apply
Lemma 19 with f(X) = ±(X2 − 1) to conclude that q is bounded.
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If q is a prime with q > 2, then q is odd. Hence we may restrict our attention to the
equation

xp + yq = 1 (1)

in x, y ∈ OS , p, q ∈ N with p and q primes, since we can replace y by −y when necessary.
It is further no restriction to assume that neither x nor y is an S-unit. Indeed, if both x

and y are S-units, then (1) and Lemma 13 with α = β = 1 imply

h(xp) = ph(x) ≤ (2s)f21sP 2R2
S

and
h(yq) = qh(y) ≤ (2s)f21sP 2R2

S ,

whence we are done by Lemma 10. If exactly one of x, y is an S-unit, x say, then by applying
Theorem 25 with x1 = −xp, x2 = 1 to −xp + 1 = yq, we obtain

q ≤ (2s)f22sP 2R4
S

and
p ≤ (2s)f23sP 2R6

S ,

giving us the desired bounds.
We may also assume that h(x) > 3 and h(y) > 3. Indeed, suppose e.g. that h(y) ≤ 3.

Observe that there are only finitely many y ∈ K such that h(y) ≤ 3. Now take S′ large
enough such that all y ∈ K with h(y) ≤ 3 become S′-units. If x becomes an S′-unit, we apply
Lemma 13. Otherwise we apply Theorem 25.

If p = q, then xp, −xy is a solution of the equation

u(u− 1) = vp

in u, v ∈ OS . But xy is not an S-unit so certainly not a root of unity. Hence, by Lemma 19,
we have

p = q ≤ (2s)f24s|DK |12P 4.

So we may assume without loss of generality that p > q.
Finally, we may assume that q > c10 := P ≥ 2. Indeed, if q ≤ c10, then we apply Lemma

19 with f(Y ) = 1− Y q to conclude that

p ≤ (P 2s)f25Ps|DK |6PPP
2
. (2)

B: a special case
By A) we may restrict our attention to equation (1) in non-zero non-S-units x, y ∈ OS with
h(x) > 3 and h(y) > 3 and primes p, q with p > q > c10 ≥ 2. We first deal with the special
case that

(x− 1)p + (y − 1)q = 0, (3)

which can be dealt with in an elementary way.
If p | x − 1 for some prime ideal p in OS , then (3) implies p | y − 1. But it follows then

from (1) that p | x. Hence p | 1 which is impossible. Thus x − 1 is an S-unit and, by (3),
y − 1 is also an S-unit.
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Subsequently we show that there is an S-unit ε such that

x = 1− εq and y = 1 + εp.

Let w ∈ Q be such that wq = 1 − x. Then wpq = (y − 1)q. Hence wp = ρ(y − 1) with ρ a
qth root of unity. For any qth root of unity ζ we have (ζw)q = 1− x and (ζw)p = ζpρ(y− 1).
By gcd(p, q) = 1 we can choose ζ such that ζp = ρ−1. Put ε = ζw. Then εq = 1 − x and
εp = y − 1. Hence εp, εq ∈ K. Since gcd(p, q) = 1, we find ε ∈ K by applying Euclid’s
algorithm to the exponents. But εp is an S-unit, thus ε is also an S-unit. Furthermore,

3 < h(y) ≤ h(1) + h(εp) + log 2 = ph(ε) + log 2

hence ε is not a root of unity. Therefore we have by Lemma 10

dh(ε) > c1. (4)

Let p be an arbitrary prime ideal divisor of q in OS . (1) and (3) imply that

(x− 1)p ≡ 1− yq ≡ xp mod p. (5)

Since x − 1 is an S-unit, we have p - x − 1 and so, by (5), p - x. There is an x′ ∈ OS with
p - x′ and xx′ ≡ 1 mod p. Hence (5) gives

((x− 1)x′)p ≡ 1 mod p.

Here (x−1)x′ ≡ 1−x′ 6≡ 0 and 6≡ 1 mod p. This means that p is the smallest positive integer
t for which

(1− x′)t ≡ 1 mod p.

But
(1− x′)N(p)−1 ≡ 1 mod p,

hence p | N(p)− 1 in Z. Since N(p) = qf with some positive integer f ≤ d, we obtain

p ≤ qd. (6)

Using (4) and (6), we shall now prove that q is bounded. Take a place v ∈ S such that
|ε|v ≥ H(ε)d/s. Then

|ε|v ≥ H(ε)d/s = exp(h(ε)d/s) ≥ 1 + h(ε)d/s > 1 + c1/s (7)

by (4). Put
f(z) = (1− zq)p + (1 + zp)q − 1.

Then

0 = f(ε) =

p∑
k=0

(
p

k

)
(−εq)k +

q∑
l=0

(
q

l

)
εpl − 1. (8)

The leading term of f is pz(p−1)q. First suppose that v is infinite and let σ : K → C be an
embedding corresponding to v. We may suppose that σ is the identity. Then |ε|v = |ε|s(v)
with s(v) = 1 if v is real and s(v) = 2 if v is complex, hence by (7)

|ε| >
√

1 + c1/s =: 1 + c11. (9)
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So by (8), we have

p|ε|(p−1)q =

∣∣∣∣∣
p−2∑
k=0

(
p

k

)
(−εq)k +

q−1∑
l=0

(
q

l

)
εpl − 1

∣∣∣∣∣
≤ q|ε|p(q−1) +

p−2∑
k=0

(
p

k

)
|ε|kq +

q−2∑
l=1

(
q

l

)
|ε|lp.

Combined with p > q and (9) this gives

1 ≤ |ε|q−p +
1

p

p−2∑
k=0

(
p

k

)
|ε|(k−p+1)q +

1

p

q−2∑
l=1

(
q

l

)
|ε|(l−q)p+q

≤ 1

|ε|
+

1

p

p−1∑
k=1

(
p

k + 1

)
|ε|−kq +

1

p

q−2∑
l=1

(
q

l + 1

)
|ε|−lp

<
1

|ε|
+
∞∑
k=1

pk|ε|−kq +
∞∑
l=1

ql|ε|−lp, (10)

and subsequently, by (6) and (9),

p

|ε|p
≤ p

|ε|q
≤ qd

(1 + c11)q
<

c11
4(1 + c11)

<
1

2
(11)

after taking q sufficiently large. To find a suitable lower bound for q, we want to apply Lemma
24 with x = q, a = d, b = 1 + c11 and c = 4(1+c11)

c11
. So we need to check that

2d

log(1 + c1/s)
c1/d =

d

log(1 + c11)
c1/d > e.

Observe that c1/s < 1, hence c11 < 1. This gives

2dc1/d ≥ 4,

so we can apply Lemma 24. Lemma 24 tells us that we can take

q > (2ds)f26 . (12)

If q ≤ (2ds)f26 , then (6) gives us the desired bound for p. So from now on we may assume
(12) and hence (11).

It follows from (9), (10) and (11) that

c11
1 + c11

≤ 1− 1

|ε|
<
∞∑
k=1

pk|ε|−kq +
∞∑
l=1

ql|ε|−lp ≤ 2p

|ε|q
+

2q

|ε|p
<

c11
1 + c11

,

a contradiction.
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Now suppose that v is finite. Then (8) implies

|p|v|ε|(p−1)qv =

∣∣∣∣∣
p−2∑
k=0

(
p

k

)
(−εq)k +

q−1∑
l=0

(
q

l

)
εlp − 1

∣∣∣∣∣
v

=

∣∣∣∣∣qεp(q−1) +

p−2∑
k=0

(
p

k

)
(−εq)k +

q−2∑
l=1

(
q

l

)
εlp

∣∣∣∣∣
v

≤ max
i,j

(
|q|v|ε|p(q−1)v ,

∣∣∣∣(pi
)

(−εq)i
∣∣∣∣
v

,

∣∣∣∣(qj
)
εjp
∣∣∣∣
v

)
,

where the maximum is taken over i = 0, . . . , p− 2 and j = 1, . . . , q − 2. Hence

1 ≤ max
i,j

(∣∣∣∣qp
∣∣∣∣
v

|ε|q−pv ,

∣∣∣∣1p
(
p

i

)∣∣∣∣
v

|ε|(i−p+1)q
v ,

∣∣∣∣1p
(
q

j

)∣∣∣∣
v

|ε|(j−q)p+qv

)
.

If p is sufficiently large as we may assume, we have∣∣∣∣1p
∣∣∣∣
v

= 1.

So we get by p > q

1 ≤ |ε|−1v ,

a contradiction.

C: ideal arithmetic
In view of A) and B) we restrict our further attention to equation (1) in non-zero non-S-units
x, y ∈ OS with h(x) > 3 and h(y) > 3 and primes p, q with p > q > c10 ≥ 2 such that

(x− 1)p + (y − 1)q 6= 0. (13)

For any α ∈ K we denote by [α] the fractional principal ideal of OS generated by α. We have,
by (1),

[y]q = [1− x][1 + x+ · · ·+ xp−1] = [x− 1][β(x− 1) + p]

for some β ∈ OS . Assuming p > P , we can write

[p] = pa11 · · · p
ar
r

where p1, . . . , pr are distinct prime ideals in OS , r ≤ d, and a1, . . . , ar are positive integers
not exceeding d. If, for some prime ideal p and positive integer a, pa is a common divisor of
[x− 1] and [β(x− 1) + p] then pa | [p] and therefore a ≤ d. Hence we can write

[x− 1] = pb11 · · · p
br
r aq

where a is an integral ideal and b1, . . . , br are rational integers with absolute values at most
d. Since N(pi) = pfi for some positive integer fi ≤ d, we have

p−d
2 ≤ N(pbii ) ≤ pd2 (i = 1, . . . , r).
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Let h denote the class number of K. We have

[x− 1]h = (pb11 · · · p
br
r )hahq. (14)

Here ah = [κ] and (pb11 · · · pbrr )h = [π0] for some κ ∈ OS and π0 ∈ K such that π0 = π1
π2

with
π1, π2 ∈ OS and

| logN(πk)| ≤ d3h log p (k = 0, 1, 2). (15)

It follows from (14) that

(x− 1)h = επ0κ
q (16)

for some S-unit ε. By virtue of Lemma 11 and Lemma 12 and (15) and (16) there are
fundamental S-units η1, . . . , ηs−1 such that h(ηi) ≤ (2s)f1s and that

(x− 1)h = ηu11 · · · η
us−1

s−1 θ0w
q (17)

where the ui are rational integers with 0 ≤ ui < q for i = 1, . . . , s − 1, 0 6= w ∈ OS and
0 6= θ0 ∈ K with θ0 = θ1

θ2
such that θ1, θ2 ∈ OS and

h(θk) ≤
1

d
logN(πk) + c2R+

h

d
logQ ≤ d2h log p+ c2R+

h

d
logQ ≤ (2s)f27sRhP log p (18)

for k = 1, 2. By making f27 sufficiently large, (18) also holds for k = 0. Similarly, we can
write

(1− y)h = ηv11 · · · η
vs−1

s−1 τ0σ
p (19)

with rational integers vi such that 0 ≤ vi < p for i = 1, . . . , s − 1, and with 0 6= σ ∈ OS ,
0 6= τ0 ∈ K such that

h(τ0) ≤ (2s)f27sRhP log q. (20)

D: first bounds for p and q
We show that

p ≤ f28d13sP log Y log p. (21)

Let v ∈ S be such that |x|v ≥ H(x)d/s. Put X = H(x) and Y = H(y). It follows from (1)
that

Λ1 := 1− (−y)q

xp
=

1

xp
, (22)

whence

|Λ1|v =
1

|x|pv
≤ X−pd/s. (23)

If v is infinite, embed K in C using an embedding σ corresponding to v. We use Lemma 15
with n = 2, (α1, α2) = (−y, x) and (b1, b2) = (q,−p), giving∣∣∣∣1− (−y)q

xp

∣∣∣∣
v

> e−f29d
5 logX log Y log(3ep). (24)
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Assuming p > 3e, (23) and (24) imply

p ≤ f29d4s log Y log p, (25)

hence (21).
If v is finite, we apply Lemma 16 with n = 2, (α1, α2) = (−y, x) and (b1, b2) = (q, p). So

we can take B = Bn = p and δ = 1
2 . By assuming p and q sufficiently large, the necessary

conditions are satisfied. Because we want to prove (21) in the case v finite, we may assume
that

p > dP log Y.

Hence

|Λ1|v > exp
(
−f30d14P logX log Y log p

)
. (26)

Now (23) and (26) imply

p ≤ f30d13sP log Y log p. (27)

So in all cases we have (21). By estimating |Λ2|v with Λ2 := 1− (−x)p
yq = 1

yq we can prove in
a similar way that

q ≤ f28d13sP logX log p. (28)

E: a bound for q
We shall now prove that

q < c12(log p)4 (29)

with c12 = (2s)f31sR3h3P 4R2
S . To prove this we may assume that

q > log p. (30)

Further, we may assume that

min(X,Y ) > pc13 (31)

with c13 := 4s/d. Now if Y ≤ pc13 then q < p ≤ f28d13sPc13(log p)2 follows from (21), whence
(29). Further, in case X ≤ pc13 , (29) immediately follows from (28). Let v ∈ S be such that
|x|v ≥ Xd/s. From (1) we obtain ∣∣∣∣(−y)q

xp
− 1

∣∣∣∣
v

=
1

|x|pv
. (32)

We combine the cases v real, v complex and v finite. Note that in all cases | · |1/2v satisfies the
triangle inequality. Because c13 = 4s/d, we get |x|v ≥ 12. Hence

|x− 1|1/2v ≥ |x|1/2v − |1|1/2v = |x|1/2v − 1 ≥ 1

2

√
2|x|1/2v

and

|x− 1|v ≥
1

2
|x|v ≥ p2 (33)
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again because c13 = 4s/d. It follows that∣∣∣∣ xp

(x− 1)p
− 1

∣∣∣∣1/2
v

=

∣∣∣∣((x− 1) + 1)p − (x− 1)p

(x− 1)p

∣∣∣∣1/2
v

≤
p∑
i=1

(
pi

|x− 1|iv

)1/2

≤ p
(

p

|x− 1|v

)1/2

and after squaring ∣∣∣∣ xp

(x− 1)p
− 1

∣∣∣∣
v

≤ p3

|x− 1|v
≤ 2p3

|x|v
. (34)

Furthermore, by (1), p > q and |x|v ≥ 12

|y|q/2v

|x|q/2v

≥ |x|
p/2
v − 1

|x|q/2v

≥ |x|
p/2
v − 1

|x|p/2v

≥ 1

2
>

(
1

2

)q/2
.

We conclude that

|y|v ≥
1

2
|x|v ≥ p2 > q. (35)

Hence we have∣∣∣∣(1− y)q

(−y)q
− 1

∣∣∣∣1/2
v

=

∣∣∣∣(1− y)q + yq

(−y)q

∣∣∣∣1/2
v

≤
q∑
i=1

(
qi

|y|iv

)1/2

≤ q
(

q

|y|v

)1/2

and after squaring ∣∣∣∣(1− y)q

(−y)q
− 1

∣∣∣∣
v

≤ q3

|y|v
≤ 2p3

|x|v
. (36)

From (32), (34), (36) and the identity

z1z2z3 − 1 =
3∏
i=1

(zi − 1) +
∑

1≤i<j≤3
(zi − 1)(zj − 1) +

3∑
i=1

(zi − 1),

we infer ∣∣∣∣ (1− y)q

(x− 1)p
− 1

∣∣∣∣
v

≤ 26p6

|x|v
=:

f32p
6

|x|v
. (37)

Further we have, by (1), (33) and (35),∣∣∣∣ (1− y)q

(x− 1)p

∣∣∣∣1/2
v

=

∣∣∣∣(1− y)q

yq

∣∣∣∣1/2
v

·
∣∣∣∣ 1− xp

(x− 1)p

∣∣∣∣1/2
v

≤ 2

(
1 +

1

|y|1/2v

)q (
1 +

1

|x− 1|1/2v

)p

≤ 2

(
1 +

√
2

|x|1/2v

)p+q
≤ 2

(
1 +

2

p

)2p

≤ 2e4 =: f33. (38)

For

Λ3 :=
(1− y)qh

(x− 1)ph
− 1 (39)
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we obtain, from (37) and (38),

|Λ3|v <
f32

(
1 + f33 + · · ·+ fh−133

)2
p6

|x|v
≤ f32f

2h
33 p

6

|x|v
. (40)

Suppose now that Λ3 6= 0, i.e. that (x − 1)ph 6= (1 − y)qh. Using (39), (17) and (19), we
obtain

Λ3 = ηe11 · · · η
es−1

s−1 τ
q
0 θ
−p
0

( σ
w

)pq
− 1

where ei ∈ Z with |ei| ≤ pq for i = 1, . . . , s − 1. Put H1 = H(σ), H2 = H(w) and H0 =
max(H1, H2). Then

H
( σ
w

)
≤ H(σ)H(w) ≤ H2

0 . (41)

First suppose that v is infinite. By applying Lemma 15 to Λ3 and using (18), (20), (41) and
p > q we obtain

|Λ3|v > exp(−(2s)f34sR2h2P 2RS(log p)3 log∗H0)

if pq > e(s+ 3). Next suppose that v is finite. By applying Lemma 16 to Λ3 and using (18),
(20), (41) and p > q we obtain

|Λ3|v > exp(−(2s)f35sR2h2P 3RS(log p)3 log∗H0)

if pq > sRhPRS log p log q. This together with (40) gives in all cases

d/s logX ≤ log |x|v ≤ (2s)f36sR2h2P 3RS(log p)3 log∗H0. (42)

If H0 ≤ c14 := e(2s)
f37sRhPRS , then (28) and (42) give (29). We therefore assume that

H0 > c14.

First suppose that H2 > c14. Then, by (18) and (30), we have∣∣∣∣ 1

θ0

∣∣∣∣
v

≤ H
(

1

θ0

)
= H(θ0) ≤ e(2s)

f27sRhP log p < e(2s)
f27sRhPq ≤ H

q
4s
2

for all v ∈ S by taking f37 sufficiently large. Hence we obtain from (17)

|w|qv ≤ |x− 1|hv
∣∣∣∣ 1

θ0

∣∣∣∣
v

·
s−1∏
i=1

∣∣∣∣ 1

ηi

∣∣∣∣ui
v

≤ |x− 1|hvH
q
4s
2 e(s−1)(2s)

f1sRSq < 4dhXhH
q
3s
2

again by taking f37 sufficiently large. Choosing v ∈ S such that |w|v ≥ Hd/s
2 , we obtain

4dhXhH
q
3s
2 > |w|qv ≥ H

qd/s
2 .

Consequently, we have

h logX >
qd

s
logH2 − log(4dhH

q
3s
2 ) ≥

(
d

s
− 2

3s

)
q logH2 ≥

d

3s
q logH2 (43)
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if H
q
3s
2 ≥ c

q
3s
14 ≥ 4dh. By using (19) and (20) one can prove in a similar manner that

log Y >
d

3hs
p logH1 (44)

if H1 > c14. If H0 = H2, then (42) and (43) imply

q < (2s)f38sR2h3P 3RS(log p)3,

hence (29). Next suppose H0 = H1. From (1) we obtain

qh(y) = h(yq) = h(xp − 1) ≤ log 2 + h(xp) + h(1) = log 2 + ph(x),

so

q log Y <

(
1 +

d

c1
log 2

)
p logX. (45)

Now (42), (44) and (45) imply

d

3hs
pq logH0 < q log Y <

(
1 +

d

c1
log 2

)
p logX < (2s)f39sR2h2P 3RSp(log p)3 log∗H0,

whence (29).

F: completing the proof of E)
To prove (29) we are left with the case

(x− 1)ph = (1− y)qh. (46)

We can now repeat the argument of part E) above with

Λ4 :=
(1− y)q

(x− 1)p
− 1

instead of Λ3. So we need to derive a lower bound for |Λ4|v. Note that

(1− y)q

(x− 1)p

is a h-th root of unity, hence

1

d
log |Λ4|v ≥ −h(Λ4) = −h

(
(1− y)q

(x− 1)p
− 1

)
≥ − log 2− h

(
(1− y)q

(x− 1)p

)
− h(−1) = − log 2.

We conclude that

|Λ4|v ≥ 2−d.

Now inequality (29) follows.
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G: finishing the proof
We shall now prove that p is bounded from above by using (21) and (29). By (21) we may
assume that Y > 4s/d. Let v ∈ S be such that |y|v ≥ Y d/s ≥ 4. Then, by (1),∣∣∣∣ xp

(1− y)q

∣∣∣∣1/2
v

=

∣∣∣∣ 1− yq

(1− y)q

∣∣∣∣1/2
v

≤ 2|y|q/2v

(|y|1/2v /2)q
≤ 4q. (47)

Hence, using again (1),∣∣∣∣ xp

(1− y)q
− 1

∣∣∣∣1/2
v

=

∣∣∣∣xp + (y − 1)q

(1− y)q

∣∣∣∣1/2
v

≤ q2q/2|y|(q−1)/2v

(|y|1/2v /2)q
≤ 4q

|y|1/2v

. (48)

Putting

Λ5 :=
xph

(1− y)qh
− 1,

it follows from (47) and (48) that

|Λ5|v <
16q

(
1 + 4q + · · ·+ 4q(h−1)

)2
|y|v

≤ 16q(h+1)

|y|v
. (49)

Suppose that |Λ5| 6= 0, i.e. that xph 6= (1 − y)qh. We are going to derive a lower bound for
|Λ5|. By (19) we have

xph

(1− y)qh
= ηd11 · · · η

ds−1

s−1 τ
−q
0

(
xh

σq

)p
with rational integers di such that |di| < pq for i = 1, . . . , s− 1. We claim that

|x|v ≥
1

2
H(x)d/s.

To prove our claim, we note that

|yq|v = |1− xp|v ≤ 4 max(1, |xp|v)

and
H(xp) = H(1− yq) ≤ 2H(yq).

Combining gives

|x|pv = |xp|v ≥
1

4
|yq|v − 1 ≥ 1

4
H(y)qd/s − 1 ≥ 1

8
H(x)pd/s − 1 ≥

(
1

2

)p
H(x)pd/s

if p ≥ 4 and p ≥ s/d, proving the claim. Hence, by (47) and (20),

∣∣∣∣xhσq
∣∣∣∣
v

≤ 4h

(
s−1∏
i=1

|ηi|−diw

)1/p

|τ0|q/pw ≤ 4he(s−1)(2s)
f1sRSqq(2s)

f27sRhP .

So (
1

2

)h
H(xh)d/s ≤ |xh|v ≤ |σq|v4he(s−1)(2s)

f1sRSqq(2s)
f27sRhP .
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Put H3 = H(σ). Then

H

(
xh

σq

)
≤ H(xh)H(σ)q ≤

(
8he(s−1)(2s)

f1sRSqq(2s)
f27sRhP

)s/d
H
q(1+s/d)
3 . (50)

First suppose that v is infinite. By applying Lemma 15 to

Λ5 = ηd11 · · · η
ds−1

s−1 τ
−q
0

(
xh

σq

)p
− 1

and using (20) and (50), we obtain

|Λ5|v > exp(−(2s)f40sR2h2P 2R2
Sq(log p)2 log∗H3). (51)

Next suppose that v is finite. By applying Lemma 16 to Λ5 and using (20), we obtain

|Λ5|v > exp(−(2s)f41sR2h2P 3R2
Sq(log p)2 log∗H3) (52)

if pq > sRhPRS log p. So in all cases

|Λ5|v > exp(−(2s)f42sR2h2P 3R2
Sq(log p)2 log∗H3). (53)

Comparing (49) and (53) we obtain

log Y ≤ s/d log |y|v ≤ (2s)f43sR2h2P 3R2
Sq(log p)2 log∗H3. (54)

If H3 ≤ c15 := e(2s)
f44sRhPRS then (54) together with (21) and (29) yields

p ≤ (2s)f45sR6h6P 9R5
S(log p)7.

Suppose now that H3 > c15. Then we have, analogously to (44),

log Y >
d

3hs
p logH3. (55)

From (29), (54) and (55) it follows now again that

p ≤ (2s)f46sR5h6P 7R4
S(log p)6.

So in all cases
p ≤ (2s)f47sR6h6P 9R5

S(log p)7,

whence

p ≤ (2s)f48sR12h12P 18R10
S . (56)

Using the well-known inequalities

Rh ≤ |DK |1/2(log∗ |DK |)d−1

and

RS ≤ Rh
t∏
i=1

logN(pi) ≤ |DK |1/2(log∗ |DK |)d−1(logP )t,
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we get from (56)

p ≤ (2s)f48s|DK |11(log∗ |DK |)22(d−1)P 18(logP )10t, (57)

completing the proof. Recall that in A) we assumed that q > c10 := P ≥ 2. If q ≤ c10, we
derived (2). But observe that (2) gives a significantly larger bound for p than (57). So our
final bound for p is (2).

H: the remaining case
We are left with the case xph = (1− y)qh. We can now repeat the argument of part G) above
with

Λ6 :=
xp

(1− y)q
− 1

instead of Λ5. So we need to derive a lower bound for |Λ6|v. Note that

xp

(1− y)q

is a h-th root of unity, hence

1

d
log |Λ6|v ≥ −h(Λ6) = −h

(
xp

(1− y)q
− 1

)
≥ − log 2− h

(
xp

(1− y)q

)
− h(−1) = − log 2.

We conclude that
|Λ6|v ≥ 2−d.

Now inequality (57) follows.
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6 Specialization

In this section we will bound p and q for the Catalan equation over finitely generated domains.
We will follow [5].

Notation
Let A = Z[z1, . . . , zr] be an integral domain finitely generated over Z with r > 0 of charac-
teristic 0 and denote by K the quotient field of A. We have

A ∼= Z[X1, . . . , Xr]/I

where I is the ideal of polynomials f ∈ Z[X1, . . . , Xr] such that f(z1, . . . , zr) = 0. Then I is
prime and I ∩ Z = (0). Furthermore, I is finitely generated. Let d ≥ 1, h ≥ 1 and assume
that

I = (f1, . . . , fm)

with deg fi ≤ d, h(fi) ≤ h for i = 1, . . . ,m. Here deg means the total degree of the polynomial
fi and h(fi) is the logarithmic height of fi. Now we are ready to state and prove our main
theorem.

Theorem 28. All solutions of the equation

xp − yq = 1

in positive integers p and q, x, y ∈ A and x, y not roots of unity must satisfy

max{p, q} < (2d)C
r
1 (1)

if x, y are transcendental and

max{p, q} < exp
(
exp

(
exp

(
(2d)C

r
2 (h+ 1)

)))
(2)

if x, y are algebraic, where C1 and C2 are effectively computable absolute constants.

Proof. We use the notation O(·) as an abbreviation for c times the expression between the
parentheses, where c is an effectively computable absolute constant. At each occurrence of
O(·), the value of c may be different.

Let x, y, p, q be an arbitrary solution. Without loss of generality we may assume that
z1, . . . , zk forms a transcendence basis of K/Q. We write t := r − k and rename zk+1, . . . , zr
as y1, . . . , yt respectively. Define

A0 := Z[z1, . . . , zk],K0 := Q(z1, . . . , zk).

Then
A = A0[y1, . . . , yt],K = K0(y1, . . . , yt).

By Corollary 3.4 in [9] we have K = K0(u), u ∈ A, u is integral over A0, and u has minimal
polynomial

F (X) = XD + F1X
D−1 + · · ·+ FD

over K0 with Fi ∈ A0, degFi ≤ (2d)expO(r) and h(Fi) ≤ (2d)expO(r)(h + 1). Furthermore,
Lemma 3.2(i) in [9] tells us that D ≤ dt.

Mathematical Institute 37



Leiden University Master Thesis

By Lemma 3.6 in [9] there exists non-zero f ∈ A0 such that

A ⊆ B := A0[u, f
−1]

and moreover deg f ≤ (2d)expO(r) and h(f) ≤ (2d)expO(r)(h+ 1). From now on, we will work
in the larger ring B to bound p and q. So we will assume that x, y ∈ B and bound p and q.

We distinguish two cases. First, we consider the case k = 0. In this case we have A0 = Z,
K0 = Q and t = r. Then K is a number field of degree D ≤ dt and

|DK | ≤ D2D−1 exp
(

(2d)expO(r)(h+ 1)
)
≤ exp

(
(2d)expO(r)(h+ 1)

)
by using the result on the bottom of page 335 in [12]. Let S contain all infinite valuations
and all prime ideal divisors of f . Write s = |S|. Let p1, . . . , pn be the prime ideals in S. Put

P := max{2, N(p1), . . . , N(pn)}

and
Q := N(p1 · · · pn) if n > 0, Q := 1 if n = 0.

By h(f) ≤ (2d)expO(r)(h+ 1), it follows that

s ≤ (2d)expO(r)(h+ 1)

and
P ≤ exp

(
(2d)expO(r)(h+ 1)

)
.

We conclude that
Q ≤ |f |D ≤ exp

(
(2d)expO(r)(h+ 1)

)
and we can apply Theorem 22 to get (2).

Now consider the case k > 0. Fix an algebraic closure K0 of K0. Put

Ti = {z1, . . . , zk} \ {zi}.

Let ki be an algebraic closure of Q(Ti) contained in K0. Thus, A0 is contained in ki[zi]. Define

Mi := ki(zi, u
(1), . . . , u(D)),

where u(1), . . . , u(D) are the conjugates of u over K0. Now we need a lemma.

Lemma 29. We have that
k⋂
i=1

ki = Q.

Proof. To prove our lemma, we need the following simple observation. If F1 ⊆ F2 are fields
and µ, ν ∈ F2 are algebraically independent over F1, then

F1(µ) ∩ F1(ν) = F1.

It is clear that
F1(µ) ∩ F1(ν) ⊇ F1.
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We will now prove the reverse inclusion. Assume the contrary and let τ be an element of
F1(µ) ∩ F1(ν) with τ 6∈ F1. Then τ satisfies a polynomial relation

fsτ
s + · · ·+ f1τ + f0 = 0

with fi ∈ F1[µ], i = 0, . . . , s and at least one fi, i ≥ 0, is not a constant in µ. Hence µ
satisfies a similar non-trivial relation with coefficients from F1[τ ], that is µ ∈ F1(τ) and the
same argument gives ν ∈ F1(τ). This is a contradiction, since µ and ν are algebraically
independent over F1.

Using the observation we find that

k⋂
i=1

ki =
k⋂
i=2

(ki ∩ k1) =
k⋂
i=2

Q(Ti \ {z1}).

The lemma now follows by induction on the transcendence degree.

We may assume that there exists an i ∈ {1, . . . , k} such that x 6∈ ki, for otherwise x ∈ ki
and y ∈ ki, i = 1, . . . , q; hence x, y belong to the algebraic number field Q ∩K and our goal
will be to apply Theorem 22. For this, we will use a so called specialization argument.

Recall that K = K0(u), u ∈ A, u is integral over A0, and u has minimal polynomial

F (X) = XD + F1X
D−1 + · · ·+ FD

over K0 with Fi ∈ A0, degFi ≤ (2d)expO(r) and h(Fi) ≤ (2d)expO(r)(h+1). In the case D = 1,
we take u = 1, F (X) = X − 1.

Let y = (y1, . . . , yk) ∈ Zk. We put

|y| := max(|y1|, . . . , |yk|).

The substitution z1 7→ y1, . . . , zk 7→ yk defines a ring homomorphism (specialization)

ϕy : α 7→ α(y) : {g1/g2 : g1, g2 ∈ A0, g2(y) 6= 0} → Q.

We want to extend this to a ring homomorphism from B to Q and for this, we have to impose
some restrictions on y. Denote by ∆F the discriminant of F , and let

H := ∆FFDf.

It follows that H ∈ A0. Using that ∆F is a polynomial of degree 2D − 2 with integer
coefficients in F1, . . . , FD, it follows easily that

degH ≤ (2d)expO(r).

Let N be an integer with N ≥ (2d)expO(r). Lemma 5.4 in [9] implies that if N ≥ degH then

T := {y ∈ Zk : |y| ≤ N,H(y) 6= 0}

is non-empty. Take y ∈ T and consider the polynomial

Fy := XD + F1(y)XD−1 + · · ·+ FD(y),
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which has D distinct zeros which are all different from 0, say u1(y), . . . , uD(y). Thus, for
j = 1, . . . , D the assignment

z1 7→ y1, . . . , zk 7→ yk, u 7→ uj(y)

defines a ring homomorphism ϕy,j from B to Q. It is obvious that ϕy,j is the identity on
B ∩Q. Thus, if α ∈ B ∩Q, then ϕy,j(α) has the same minimal polynomial as α and so it is
conjugate to α.

Define the algebraic number fields Ky,j := Q(uj(y)) (j = 1, . . . , D). Denote by ∆L the
discriminant of an algebraic number field L. Then for j = 1, . . . , D we have by Lemma 5.5 in
[9] that [Ky,j : Q] ≤ D and

|∆Ky,j | ≤ D2D−1
(
dk0 · eh0 ·max(1, |y|)d0

)2D−2
,

where

d0 ≥ max(degF1, . . . ,degFD), h0 ≥ max(h(F1), . . . , h(FD)).

So we can take d0 = (2d)expO(r) and h0 = (2d)expO(r)(h+ 1) giving

|∆Ky,j | ≤ D2D−1
(

(2d)k expO(r) · exp
(

(2d)expO(r)(h+ 1)
)
· (2d)(2d)

expO(r)
)2D−2

≤ exp
(

(2d)expO(r)(h+ 1)
)
.

Now pick any j = 1, . . . , D. Let S contain all infinite valuations and all prime ideal divisors
of f(y). Then ϕy,j maps B to the ring of S-integers of Ky,j . In order to apply Theorem 22
in our previous work, we still need to bound s, P and Q.

It is easy to verify that for any g ∈ A0, y ∈ Zk,

log |g(y)| ≤ k log deg g + h(g) + deg g log max(1, |y|).

Applying this with f and y we get

|f(y)| ≤ (2d)k expO(r) · exp
(

(2d)expO(r)(h+ 1)
)
· (2d)(2d)

expO(r) ≤ exp
(

(2d)expO(r)(h+ 1)
)
.

Hence

s ≤ (2d)expO(r)(h+ 1)

and

P ≤ exp
(

(2d)expO(r)(h+ 1)
)
.

We conclude that

Q ≤ |f(y)|D ≤ exp
(

(2d)expO(r)(h+ 1)
)

and we can apply Theorem 22 to get (2).

If x 6∈ ki for some i, then also y 6∈ ki. Let S denote the subset of valuations v of Mi/ki
such that v(zi) < 0, v(f) > 0, v(x) > 0 or v(y) > 0. Now let v be any valuation such that
v 6∈ S. We claim that

v(x) = v(y) = v(1) = 0.
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Because v 6∈ S, it follows that v(zi) ≥ 0. Recall that u is integral over k[zi]. Together this
implies that v(u) ≥ 0. We also have that v(f) ≤ 0, hence v(f−1) ≥ 0. But x, y ∈ B, so we
get v(x), v(y) ≥ 0. But then

v(x) = v(y) = v(1) = 0

as claimed.

Define ∆i = [Mi : ki(zi)]. Each valuation of ki(zi) can be extended to at most ∆i

valuations of Mi. Hence Mi has at most ∆i valuations with v(zi) < 0 and at most ∆i degzi f
valuations with v(f) > 0. So

|S| ≤ ∆i + ∆i degzi f +HMi/ki(x) +HMi/ki(y) ≤ ∆i(1 + deg f) +HMi/ki(x) +HMi/ki(y)

Now we consider

xp − yq = 1

as an S-unit equation. Because xp 6∈ ki and yq 6∈ ki, we can apply Theorem 3 resulting in

HMi/ki(x
p) ≤ |S|+ 2gMi/ki − 2 ≤ ∆i(1 + deg f) +HMi/ki(x) +HMi/ki(y) + 2gMi/ki − 2

and

HMi/ki(y
q) ≤ |S|+ 2gMi/ki − 2 ≤ ∆i(1 + deg f) +HMi/ki(x) +HMi/ki(y) + 2gMi/ki − 2.

Define Ki = ki(zi, u). Then we have that [Ki : ki(zi)] ≤ D. Hence

HMi/ki(x) = [Mi : Ki]HKi/ki(x) ≥ [Mi : Ki] = ∆i/[Ki : ki(zi)] ≥ ∆i/D

and similarly for y. This gives

∆i

D
(p− 2 + q − 2) ≤ (p− 2)HMi/ki(x) + (q − 2)HMi/ki(y) ≤ 2∆i(1 + deg f) + 4gMi/ki − 4,

hence

p+ q − 4 ≤ D

∆i
(2∆i(1 + deg f) + 4gMi/ki − 4) ≤ 2D(1 + deg f) +

D

∆i
4gMi/ki .

Recall that ∆i = [Mi : ki(zi)] and that Mi is the splitting field of F over k(zi). So Lemma 4
gives

gMi/ki ≤ (∆i − 1)Dmax
j

degzi(Fj) ≤ ∆i ·D · (2d)expO(r).

Combining gives

p+ q − 4 ≤ 2dt(1 + (2d)expO(r)) + 4(dt)2(2d)expO(r) ≤ (2d)expO(r)

and hence (1).
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7 Catalan’s equation in positive characteristic

In this section we will bound p and q for the Catalan equation in characteristic l > 0.

Notation
Let A = Fl[z1, . . . , zr] with r > 0 be an integral domain finitely generated over Fl and denote
by K the quotient field of A. We have

A ∼= Fl[X1, . . . , Xr]/I

where I is the ideal of polynomials f ∈ Fl[X1, . . . , Xr] such that f(z1, . . . , zr) = 0. Then I is
finitely generated. Let d ≥ 1 and assume that

I = (f1, . . . , fm)

with deg fi ≤ d. Here deg means the total degree of the polynomial fi. Our main result in
this section is as follows.

Theorem 30. All solutions of the equation

xp − yq = 1

in positive integers p and q coprime with l and x, y ∈ A, x, y 6∈ Fl must satisfy

max{p, q} < (2d)C
r
3 , (1)

where C3 is an effectively computable absolute constant.

Proof. Before we start with the proof, we state a key result due to Aschenbrenner. It is based
on earlier work of Hermann and Seidenberg.

Lemma 31. Let F be a field, N ≥ 1, and R := F [X1, . . . , XN ]. Further, let A be an n×m-
matrix and b an m-dimensional column vector, both consisting of polynomials from R of
degree ≤ d where d ≥ 1.

(i) The R-module of x ∈ Rn with Ax = 0 is generated by vectors x whose coordinates are

polynomials of degree at most (2md)2
N

.

(ii) Suppose that Ax = b is solvable in x ∈ Rn. Then it has a solution x whose coordinates

are polynomials of degree at most (2md)2
N

.

Proof. See Theorem 3.2 and Theorem 3.4 in Aschenbrenner [2].

We use again the notation O(·) as an abbreviation for c times the expression between the
parentheses, where c is an effectively computable absolute constant. At each occurrence of
O(·), the value of c may be different.

Let x, y, p, q be an arbitrary solution. Without loss of generality we may assume that
z1, . . . , zk forms a transcendence basis of K/Fl. We may assume that k > 0, for otherwise
there are no solutions by our assumption x, y 6∈ Fl.

We write t := r − k and rename zk+1, . . . , zr as y1, . . . , yt respectively. Define

A0 := Fl[z1, . . . , zk], K0 := Fl(z1, . . . , zk).
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Then
A = A0[y1, . . . , yt], K = K0(y1, . . . , yt).

Fix an algebraic closure K0 of K0. Put

Ti := {z1, . . . , zk} \ {zi}

for i = 1, . . . , k. Let ki be the algebraic closure of Fl(Ti) in K0. Then A0 is contained in ki[zi].
Define

Mi := ki(zi, y1, . . . , yt).

In analogy to Lemma 29, we have

k⋂
i=1

ki = Fl. (2)

The proof is similar. We first show that if F1 ⊆ F2 are fields and µ, ν ∈ F2 are algebraically
independent over F1, then

F1(µ) ∩ F1(ν) = F1.

It is clear that
F1(µ) ∩ F1(ν) ⊇ F1.

We will now prove the reverse inclusion. Assume the contrary and let τ be an element of
F1(µ) ∩ F1(ν) with τ 6∈ F1. Then τ satisfies a polynomial relation

fsτ
s + . . .+ f1τ + f0 = 0

with fi ∈ F1[µ], i = 0, . . . , s and at least one fi is not a constant in µ. Hence µ satisfies
a similar non-trivial relation with coefficients from F1[τ ], that is µ ∈ F1(τ) and the same
argument gives ν ∈ F1(τ). This is a contradiction, since µ and ν are algebraically independent
over F1.

Using this we find that

k⋂
i=1

ki =

k⋂
i=2

(ki ∩ k1) =

k⋂
i=2

Fl(Ti \ {z1}).

Now (2) follows by induction on the transcendence degree.
We may assume that there exists an i ∈ {1, . . . , k} such that x 6∈ ki. Otherwise it would

follow that x ∈ Fl by (2), contrary to our assumptions. From now on fix any i such that
x 6∈ ki, then also y 6∈ ki.

By assumption x, y 6∈ ki and hence

HMi/ki(x), HMi/ki(y) 6= 0.

So we can write
x = αl

a
, y = βl

b

with a, b ∈ Z≥0 and α, β 6∈ M l
i . We claim that a = b. Suppose for the sake of contradiction

that a > b, the other case can be dealt with similarly. Then

αpl
a − βqlb = 1
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implies

αpl
a−b − βq = 1.

But this implies that βq ∈M l
i . By assumption q is coprime with l and hence β ∈M l

i , giving
a contradiction. So we conclude that a = b and we get

αp − βq = 1

with α, β 6∈M l
i .

Let S denote the subset of valuations v of Mi/ki such that v(zi) < 0, v(yj) < 0 for some
j = 1, . . . , t, v(α) > 0 or v(β) > 0. Now let v be any valuation such that v 6∈ S. We claim
that

v(α) = v(β) = v(1) = 0.

Because v 6∈ S, it follows that v(zi) ≥ 0 and v(yj) ≥ 0 for all j = 1, . . . , t. Now x, y ∈ A gives
v(x), v(y) ≥ 0. Therefore v(α), v(β) ≥ 0 and hence

v(α) = v(β) = v(1) = 0

as claimed.

Define ∆i = [Mi : ki(zi)]. Before proceeding with the argument, we will bound ∆i.
It suffices to bound the degree of y1 over ki(zi). Write X = (X1, . . . , Xk+1) and Y =
(Xk+2, . . . , Xr). Throughout i = (ik+2, . . . , ir) will be an element of Zt−1≥0 and we define

Yi := X
ik+2

k+2 · · ·X
ir
r .

Furthermore, we define

|i| = ik+2 + · · ·+ ir.

Our goal is to make a non-zero polynomial m(X) ∈ Fl[X] such that

m(z1, . . . , zk, y1) = 0

with degXm bounded.

Let h(X) ∈ K0[Y ] be the minimal polynomial of y1 over K0. By clearing denominators
we may assume that h(X) ∈ A0[Y ], although h no longer needs to be monic. We find that

h(z1, . . . , zk, y1) = 0

and hence h ∈ I. So we can write

h(X) =

m∑
j=1

gj(X,Y)fj(X,Y)

with g1, . . . , gm ∈ Fl[X,Y] to be determined. We need to find g1, . . . , gm satisfying the above
with bounded total degree. Write for j = 1, . . . ,m

fj(X,Y) =
∑
i

pij(X)Yi
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with pij(X) ∈ Fl[X]. Furthermore, write for j = 1, . . . ,m

gj(X,Y) =
∑
i

qij(X)Yi,

where we view gj(X,Y) as unknown polynomials in Y over Fl(X). So for now we only require
that qij(X) ∈ Fl(X). Consider the linear equation

h(X) =
m∑
j=1

gj(X,Y)fj(X,Y)

in Fl(X)[Y] with unknowns gj(X,Y). Because h ∈ I, this equation has a solution. Hence
Lemma 31 tells us that there is a solution such that degY gj ≤ (2d)expO(r) for j = 1, . . . ,m.
Note that a priori we have qij(X) ∈ Fl(X), but by clearing denominators we may assume that
in fact qij(X) ∈ Fl[X]. This amounts to multiplying h(X) by a non-zero polynomial in X,
but for simplicity we will keep writing h(X).

Put N := d+ (2d)expO(r). By expanding

h(X) =
m∑
j=1

gj(X,Y)fj(X,Y),

we get the following system of linear equations in Fl[X]

m∑
j=1

∑
i1+i2=i
|i|≤N
i6=0

ri1j(X)pi2j(X) = 0

with unknowns ri1j(X). Lemma 31 tells us that the solution module is generated by vectors
r = (ri1j(X))i1j with components satisfying

degX ri1j(X) ≤ (2(2d)expO(r)d)expO(r) ≤ (2d)expO(r).

Recall that q = (qij(X))ij is inside the solution module. Furthermore,

m∑
j=1

q0j(X)p0j(X) 6= 0.

So there must be a generator r = (ri1j(X))i1j such that

m∑
j=1

r0j(X)p0j(X) 6= 0.

Now define

m1(X) =
m∑
j=1

r0j(X)p0j(X).

Then it follows that
[K0(y1) : K0] ≤ degXm1(X) ≤ (2d)expO(r).
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By following the same argument we get polynomials mj(X) ∈ Fl[X] for j = 1, . . . , t such that

[K0(yj) : K0] ≤ degXmj(X) ≤ (2d)expO(r)

and hence
∆i ≤ (2d)expO(r).

Each valuation of ki(zi) can be extended to at most ∆i valuations of Mi. Hence Mi has at
most ∆i valuations with v(zi) < 0 and at most ∆i(1+degXmi(X)) valuations with v(yj) < 0.
So

|S| ≤ (2d)expO(r) +HMi/ki(α) +HMi/ki(β).

Now we consider
αp − βq = 1

as an S-unit equation.
Recall that α, β 6∈M l

i , so we can apply Theorem 5 resulting in

HMi/ki(α
p) ≤ |S|+ 2gMi/ki − 2 ≤ (2d)expO(r) +HMi/ki(α) +HMi/ki(β) + 2gMi/ki − 2

and

HMi/ki(β
q) ≤ |S|+ 2gMi/ki − 2 ≤ (2d)expO(r) +HMi/ki(α) +HMi/ki(β) + 2gMi/ki − 2.

This gives

p− 2 + q − 2 ≤ (p− 2)HMi/ki(α) + (q − 2)HMi/ki(β) ≤ (2d)expO(r) + 4gMi/ki − 4.

We still need to bound gMi/ki . Let L be any function field over ki and write gL for the genus
of L over ki. Then we need to bound gMi . Fix any j = 1, . . . , t and define

Lj = ki(zi, yj).

Then Lj is a function field over ki and

gLj ≤ (2d)expO(r)

by Lemma 6. By repeatedly applying Lemma 7 we get

gMi ≤ (2d)expO(r).

This proves (1).
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[7] Y. Bugeaud, K. Győry, Bounds for the solutions of unit equations, Acta Arith. 74 (1996),
67-80.

[8] J.W.S. Cassels, On the equation ax − by = 1, Amer. J. Math. 75 (1953), 159-162.
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