
An overview of arithmetic statistics

Peter Koymans
Utrecht University

Bonn

18 November 2025

Peter Koymans An overview of arithmetic statistics 18 November 2025 1 / 22



1 Introduction

2 Hilbert’s tenth problem

3 The negative Pell equation

4 Sums of rational cubes

5 Class groups



Introduction

Arithmetic statistics

The aim of arithmetic statistics is to answer statistical questions of arithmetic
objects (e.g. zeta functions, number fields, class groups) with many applications
to other areas of mathematics.

We will discuss several leading conjectures in arithmetic statistics in this talk and
my recent work on them.

Techniques from arithmetic statistics can also be used to prove results that do not
have a statistical nature.
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Hilbert’s tenth problem

Hilbert’s tenth problem

David Hilbert

At the 1900 mathematical conference in Paris, Hilbert introduced
his famous list of 23 problems.

Question (Hilbert’s tenth problem)

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

In modern terms: does there exist an algorithm such that:
Input: a polynomial p ∈ Z[x1, . . . , xn].
Output: “YES” if there is an integer solution (a1, . . . , an) ∈ Zn

with p(a1, . . . , an) = 0, “NO” otherwise.
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Hilbert’s tenth problem

Diophantine and listable sets

Definition (Diophantine set)

We say that a subset S ⊆ Zn is Diophantine if there exists a polynomial
p(x1, . . . , xn, y1, . . . , ym) ∈ Z[x, y] such that

S = {x ∈ Zn : ∃y ∈ Zm such that p(x, y) = 0}.

Definition (Listable set)

We say that a subset S ⊆ Zn is listable (or recursively enumerable) if there is an
algorithm that enumerates S when left running forever.

Theorem (MRDP, 1970)

A subset S ⊆ Zn is Diophantine if and only if it is listable.

Corollary (Hilbert’s tenth problem)

Hilbert’s tenth problem is undecidable, i.e. there is no algorithm that can decide
whether a polynomial p ∈ Z[x1, . . . , xn] has a zero or not.
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Hilbert’s tenth problem

Finitely generated rings
Matiyasevich asks in the 1970s: what about other rings?

Definition

For a finitely generated ring R, we have analogues of “Hilbert’s tenth problem”,
“Diophantine set” and “listable set” by replacing all occurrences of Z by R.

Theorem (Mazur–Rubin, 2009)

Assume BSD. Let R be a finitely generated ring with |R| = ∞. Then Hilbert’s
tenth problem is undecidable over R.

Theorem (K.–Pagano, 2024)

Let R be a finitely generated ring with |R| = ∞. Then Hilbert’s tenth problem is
undecidable over R.

We do this by proving the following conjecture of Denef–Lipshitz (1978).

Theorem (K.–Pagano, 2024)

Let K be a number field. Then Z is Diophantine over OK .
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Hilbert’s tenth problem

Proof sketch

By work of Poonen and Shlapentokh, it suffices to construct for every quadratic
extension L/K an elliptic curve E/K such that rkE (K ) = rkE (L) > 0.

We start with some Ẽ of the shape

y2 = (x − a1)(x − a2)(x − a3).

Then we take the following quadratic twist of Ẽ

(n − a1d)(n − a2d)(n − a3d)dy
2 = (x − a1)(x − a2)(x − a3),

which has the rational point (x , y) = (n/d , 1/d2) ensuring positivity of the rank.

In order to make sure that the rank stays stable in L/K , we apply 2-descent.

Note that 2-descent involves the prime factors of (n − a1d)(n − a2d)(n − a3d)d ;
these are controlled via additive combinatorics.
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Hilbert’s tenth problem

Applications of new techniques

The combination of 2-descent with additive combinatorics has become a very
active research area, and I envision many future applications.

Theorem (K.–Pagano, 2025)

Let K be a number field. Then there exists an elliptic curve E/K with
rkE (K ) = 1.

Theorem (K.–Morgan, 2025)

Let K be a number field and let g ≥ 1 be an integer. Then there exists a
hyperelliptic curve C/K of genus g such that rk Jac(C )(K ) = 1.
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The negative Pell equation

Pell’s equation
Pell’s equation is

x2 − dy2 = ±1 to be solved in x , y ∈ Z.

Studied by Archimedes, Pythagoras, Bhaskara II, Brahmagupta, Fermat,
Brouncker, Wallis, Euler, Lagrange, Legendre, Gauss, Dirichlet ...

Pythagoras proved that
√
2 is irrational, i.e. x2 − 2y2 = 0 has no solutions in

x , y ∈ Z (except x = y = 0).

The Pell equation is instead the “next best thing”, namely x2 − 2y2 = ±1. It
provides the best rational approximations to

√
2.

Solution x , y Ratio x/y Expansion of
√
2

x = 1, y = 1 1 1.4142135...
x = 3, y = 2 1.5 1.4142135...
x = 7, y = 5 1.4 1.4142135...
x = 17, y = 12 1.4166666... 1.4142135...
x = 41, y = 29 1.4137931... 1.4142135...
x = 99, y = 70 1.4142857... 1.4142135...
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The negative Pell equation

The positive Pell equation

Dirichlet proved that one can always non-trivially solve

x2 − dy2 = 1

in integers x , y (i.e. x2 = 1 and y2 = 0 being the trivial solution).

Archimedes seems to have already been aware of this, and the Indian
mathematicians even provided an algorithm for solving this equation.

Example (Fermat’s challenge to Brouncker and Wallis)

The smallest non-trivial solution to x2 − 61y2 = 1 is

x = 1766319049, y = 226153980.
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The negative Pell equation

The negative Pell equation
The negative Pell equation x2 − dy2 = −1 is more elusive.

To solve this equation, one certainly needs to be able to solve it modulo p for all
primes p. But if p divides d , we get

x2 ≡ −1 mod p.

This implies that p ≡ 1 mod 4 or p = 2. Define D to be the set of squarefree d
for which p | d implies p ≡ 1 mod 4 or p = 2.

Nagell (1930s) conjectured

lim
X→∞

#{d ≤ X : d ∈ D, x2 − dy2 = −1 sol.}
#{d ≤ X : d ∈ D}

exists and lies in (0, 1). The smallest d ∈ D for which the negative Pell equation is
not soluble is d = 34. Stevenhagen (1995) predicted a precise value for the limit.

Theorem (K.–Pagano, 2022)

Nagell’s and Stevenhagen’s conjecture are true.
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The negative Pell equation

Translating to class groups

Consider the ring Z[
√
d ]. There is an automorphism σ : Z[

√
d ] → Z[

√
d ] given by

x + y
√
d 7→ x − y

√
d . Let N(α) = ασ(α). Note that

x2 − dy2 = ±1 ⇐⇒ N(x + y
√
d) = ±1.

The norm map is multiplicative, i.e. N(αβ) = N(α)N(β), thus sends units to
units. The only units of Z are ±1.

Conversely, if the norm is a unit, then the element itself is a unit. Thus negative
Pell is soluble if and only if there is a unit of norm −1.
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The negative Pell equation

Translating to class groups II

Recall that the negative Pell equation is soluble if and only if there is a unit of
norm −1.

This is equivalent to the ideal (
√
d) admitting a totally positive generator,

i.e. (
√
d) = (α) with α > 0 and σ(α) > 0.

Rephrase this as an equality between the narrow class group (ideals modulo
principal ideals with a totally positive generator) and the ordinary class group
(ideals modulo principal ideals).

Obtain the statistics of the joint distribution of the 2-Sylow subgroup of the
narrow class group and ordinary class group (in the style of Cohen–Lenstra).

We only need to consider the 2-Sylow since (
√
d) has order 2 in the narrow class

group. This is the only part of the class group that is well-understood by a recent
breakthrough of A. Smith.
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Sums of rational cubes

Sums of cubes

How many integers |n| ≤ X are such that

x3 + y3 = n

has a solution in rational numbers x , y?

Note: it is not hard to show that there are ≤ CX 2/3 integers n for which there is a
solution x , y ∈ Z, for some absolute constant C > 0.

Example

For n = 6 one can use the factorization x3 + y3 = (x + y)(x2 − xy + y2) to show
that there are no integer solutions. However, we have

6 =

(
17

21

)3

+

(
37

21

)3

.
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Sums of rational cubes

Results

Alpöge–Bhargava–Shnidman (2022) showed that a proportion of at least 2/21 of
integers are sums of two rational cubes and at least 1/6 are not sums of two
rational cubes.

Theorem (K.–Smith, 2024)

At least 31.4% of the integers are not sums of two rational cubes. Assuming a
parity conjecture, at least 47.4% of integers are sums of two rational cubes.

Key tool in our work: obtain distribution of 3-Selmer group of x3 + y3 = n (ABS
obtain average of 2-Selmer).

Conjecturally, the limit should be 1/2.

Theorem (K.–Smith, in progress)

For 100% of the integers n, the rank of x3 + y3 = n is 0 or 1. Thus assuming a
parity conjecture, exactly 50% of integers are sums of two rational cubes.
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Sums of rational cubes

Proof overview
As already noted in ABS, it is natural to work with the

√
−3-Selmer group, but

this does not have a distribution. This requires a new strong analytic tool. We
first recall the bilinear (large) sieve.

Theorem (Heath-Brown, 1995)

We have for all complex numbers αm, βn ∈ C of magnitude at most 1∑
m≤M

∑
n≤N

αmβn

(m
n

)
≪ϵ (MN)1+ϵ(M−1/2 + N−1/2).

The key to our work is a new trilinear large sieve. It involves the trilinear Rédei
symbol [a, b, c] that measures the splitting of c in a D4-extension containing
Q(

√
a,
√
b) (this is an analogue of the “triple linking number” from knot theory).

Theorem (K.–Smith, 2024)

We have for all H ≥ 3∣∣∣∣∣∣
∑

|d1|<H

∑
|d2|<H

∑
|d3|<H

[d1, d2, d3]

∣∣∣∣∣∣ ≪ϵ H
3−1/512+ϵ.
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Class groups

Class groups

Definition

Let R be a commutative domain. Let I , J ⊆ R be non-zero ideals. We write I ∼ J
if there exist α, β ∈ R − {0} such that

I · (α) = J · (β).

The class group Cl(R) of R is the set of equivalence classes under ∼.

For nice rings R (Dedekind domains), this is a commutative group. Furthermore,
R is an UFD if and only if Cl(R) is trivial.

Example

We have Cl(Z) = {0} and Cl(Z[
√
−6]) ∼= Z/2Z.

This definition also plays a key role in other areas of mathematics (Picard group,
Jacobian etc.).
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Class groups

Why is the class group so important?

David Hilbert

Teiji Takagi

Number theorists are really interested in describing extensions
(i.e. covers) of their favorite number ring (like Z, Z[ζn] or
Z[
√
−6]).

The crowning achievement of early 20th century algebraic
number theory (Hilbert, Takagi) was class field theory. It
describes all abelian extensions of R in terms of Cl(R).
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Class groups

Statistical questions

Statistical questions about class groups are exceptionally difficult.

Gauss already asked if there are infinitely many squarefree integers d such that
Cl(Z[

√
d ]) = {0}, i.e. Z[

√
d ] is an UFD. Completely open!

If one numerically enumerates d such that 9 exactly divides |Cl(Z[
√
−d ])|, then

one sees that the group Z/3Z⊕ Z/3Z is 8 times less likely than Z/9Z. Why?

Conjecture (Cohen–Lenstra, 1984)

Let p be an odd prime. Let A be a finite abelian p-group. Then

lim
X→∞

|{0 < d < X sqf. : Cl(Z[
√
−d ])[p∞] ∼= A}|

|{0 < d < X : d sqf.}|
=

∏∞
i=1

(
1− 1

pi

)
|Aut(A)|

I will now sample some of my results related to the Cohen–Lenstra heuristics.
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Class groups

Average class numbers
Write hℓ(d) for the size of the ℓ-torsion of the class group of Q(

√
d).

Theorem (K.–Pagano–Sofos, 2024)

Let n = 3 · 2k with k ≥ 1. Then we have

X logX ≪
∑
|d|≤X

hn(d) ≪ X logX .

Theorem (K.–Thorner, 2024)

Let ℓ be a prime. Then
∑

|d|≤X hℓ(d) ≪ϵ X
3
2−

1
ℓ+1+ϵ.

Theorem (K.–Lemke Oliver–Sofos–Thorne, in progress)

There is a constant C > 0 such that
∑

|d|≤X h6(d) ∼ CX logX.

Theorem (Chan–K., 2025)

We have h3(d) ≪ |d |0.3194.
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Class groups

Bad primes

The Cohen–Lenstra heuristics exclude the prime p = 2 (since Cl(K )[2] is
predictable by Gauss genus theory).

Gerth found an adaptation to include “bad primes”. This was proven for quadratic
extensions by A. Smith (2017), and by K.–Pagano (2018) for Cl(K )[ℓ∞] when K
varies over degree ℓ cyclic extensions (conditional under GRH).

It is also natural to study prime parameter families.

Theorem (K.–Milovic)

The proportion of primes p ≡ 1 mod 4 such that 16 | h(−2p) is 1/8, and the
proportion satisfying 16 | h(−p) is also 1/8.

Moreover, assuming a short character sum conjecture, there does not exist a
number field K/Q and a class function f : Gal(K/Q) → {0, 1} such that

116|h(−p) = f (Frobp) for all but finitely many p.
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Class groups

Some future work

Conjecture (Chowla’s conjecture)

We have L( 12 , χ) ̸= 0 for all primitive Dirichlet characters χ.

There has also been interest in the function field case of this conjecture.

Theorem (Li, 2018)

Let q be an odd prime power. There are infinitely many monic, squarefree
polynomials D ∈ Fq[t] such that L( 12 , χD) = 0.

Theorem (K.–Pagano–Shusterman, in progress)

We have L( 12 , χD) ̸= 0 for 100% of the monic squarefree polynomials D.

Theorem (K.–Smith, in progress)

We have for every finite abelian 2-group M

lim
X→∞

∑
K/Q(

√
−1) quadratic,DK≤X #Surj(2Cl(K )[2∞],M)

#{K/Q(
√
−1) quadratic : DK ≤ X}

=
# ∧2 (M)[2]

#M
.
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Questions

Questions?

Thank you for your attention! Quick recap:

1 Introduction

2 Hilbert’s tenth problem

3 The negative Pell equation

4 Sums of rational cubes

5 Class groups
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