Averages of multiplicative functions over integer sequences

Peter Koymans (Joint work with Stephanie Chan, Carlo Pagano, Efthymios Sofos)

Chennai Mathematical Insitute

~

8 January 2024

Overview

1. For $f: \mathbb{N} \to [0, \infty)$ and $c_n \in \mathbb{N}$ can we estimate

$$\sum_{n=1}^{N} f(c_n) ?$$

Overview

1. For $f: \mathbb{N} \to [0, \infty)$ and $c_n \in \mathbb{N}$ can we estimate

$$\sum_{n=1}^{N} f(c_n) ?$$

2. Applications to arithmetic geometry?

Overview

1. For $f: \mathbb{N} \to [0, \infty)$ and $c_n \in \mathbb{N}$ can we estimate

$$\sum_{n=1}^{N} f(c_n) ?$$

2. Applications to arithmetic geometry?

3. Applications to algebraic number theory?

Class numbers

 $\underline{B}/$ If p is a small odd prime, the proportion of imaginary quadratic fields whose class number is divisible by p seems to be significantly greater than 1/p (for instance 43% for p=3, 23.5% for p=5).

▶ Consider $K = \mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.

- ▶ Consider $K = \mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- ▶ The ideal class group Cl_K :
 - Finite abelian group encoding crucial arithmetic information.

- ▶ Consider $K = \mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- ► The ideal class group Cl_K:
 - Finite abelian group encoding crucial arithmetic information.
 - ► For $n \ge 1$, $Cl_K[n]$ is the n-torsion subgroup.

- ▶ Consider $K = \mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- The ideal class group Cl_K:
 - Finite abelian group encoding crucial arithmetic information.
 - ► For $n \ge 1$, $Cl_K[n]$ is the n-torsion subgroup.
- Interesting properties:
 - ▶ If $\#\operatorname{Cl}_K[n] = 1$, then $n \nmid \#\operatorname{Cl}_K[n]$.
 - Average upper bounds: $\#Cl_K[n] = O(|D|^{\alpha(n)})$ (Soundararajan, Heath-Brown–Pierce, Frei–Widmer, Koymans–Thorner).

- ▶ Consider $K = \mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- The ideal class group Cl_K:
 - Finite abelian group encoding crucial arithmetic information.
 - ► For $n \ge 1$, $Cl_K[n]$ is the *n*-torsion subgroup.
- Interesting properties:
 - ▶ If $\#\operatorname{Cl}_{\kappa}[n] = 1$, then $n \nmid \#\operatorname{Cl}_{\kappa}[n]$.
 - Average upper bounds: $\#Cl_K[n] = O(|D|^{\alpha(n)})$ (Soundararajan, Heath-Brown–Pierce, Frei–Widmer, Koymans–Thorner).

Conjecture (Cohen & Lenstra)

• $\#Cl_K[n]$ has constant average when n odd.

- ▶ Consider $K = \mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- ► The ideal class group Cl_K:
 - Finite abelian group encoding crucial arithmetic information.
 - ► For $n \ge 1$, $\operatorname{Cl}_K[n]$ is the *n*-torsion subgroup.
- Interesting properties:
 - If $\#\operatorname{Cl}_K[n] = 1$, then $n \nmid \#\operatorname{Cl}_K[n]$.
 - Average upper bounds: $\#Cl_K[n] = O(|D|^{\alpha(n)})$ (Soundararajan, Heath-Brown–Pierce, Frei–Widmer, Koymans–Thorner).

Conjecture (Cohen & Lenstra)

- $\#Cl_K[n]$ has constant average when n odd.
- $\#Cl_K[n]$ exhibits average of order $\log |D|$ when n even.

- ▶ Consider $K = \mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- ► The ideal class group Cl_K:
 - Finite abelian group encoding crucial arithmetic information.
 - ► For $n \ge 1$, $Cl_K[n]$ is the *n*-torsion subgroup.
- Interesting properties:
 - ▶ If $\#\operatorname{Cl}_K[n] = 1$, then $n \nmid \#\operatorname{Cl}_K[n]$.
 - Average upper bounds: $\#\mathrm{Cl}_K[n] = O(|D|^{\alpha(n)})$ (Soundararajan, Heath-Brown–Pierce, Frei–Widmer, Koymans–Thorner).

Conjecture (Cohen & Lenstra)

- $\#Cl_K[n]$ has constant average when n odd.
- ▶ $\#Cl_K[n]$ exhibits average of order $\log |D|$ when n even.

Known cases:

- ▶ n = 3: Davenport-Heilbronn, Bhargava-Shankar-Tsimerman.
- ▶ $n = 2^k$: Fouvry–Klüners, A. Smith.

n-torsion with *n* divisible by more than one prime? -know $\#\text{Cl}_{\kappa}[6] = \#\text{Cl}_{\kappa}[2] \cdot \#\text{Cl}_{\kappa}[3]$ but nothing on averages. *n*-torsion with *n* divisible by more than one prime? -know $\#\text{Cl}_K[6] = \#\text{Cl}_K[2] \cdot \#\text{Cl}_K[3]$ but nothing on averages.

n-torsion with *n* divisible by more than one prime? -know $\#\text{Cl}_K[6] = \#\text{Cl}_K[2] \cdot \#\text{Cl}_K[3]$ but nothing on averages.

1.0002

1.0004

1.0000

 $D \approx -10^6$ $\#\text{Cl}_{\kappa}[2]$ $\#\text{Cl}_{\kappa}[3]$

1.0006

Theorem (CKPS, 2023) 2- and 3-torsions are independent

1.0008

1.0010

-know $\#\mathrm{Cl}_{\mathcal{K}}[6] = \#\mathrm{Cl}_{\mathcal{K}}[2] \cdot \#\mathrm{Cl}_{\mathcal{K}}[3]$ but nothing on averages.

Theorem (CKPS, 2023) 2- and 3-torsions are independent

There are c, c' > 0 such that

$$c\log X \leq \frac{1}{X} \sum_{0 < D < X} \# \operatorname{Cl}_{K}[6] \leq c' \log X.$$

-know $\#\mathrm{Cl}_{\mathcal{K}}[6] = \#\mathrm{Cl}_{\mathcal{K}}[2] \cdot \#\mathrm{Cl}_{\mathcal{K}}[3]$ but nothing on averages.

Theorem (CKPS, 2023) 2- and 3-torsions are independent

There are c, c' > 0 such that

$$c\log X \leq \frac{1}{X} \sum_{0 < D < X} \# \operatorname{Cl}_{K}[6] \leq c' \log X.$$

-know $\#Cl_K[6] = \#Cl_K[2] \cdot \#Cl_K[3]$ but nothing on averages.

Theorem (CKPS, 2023) 2- and 3-torsions are independent

There are c, c' > 0 such that

$$c\log X \leq \frac{1}{X} \sum_{0 < D < X} \# \mathrm{Cl}_K[6] \leq c' \log X.$$

First "independence" result for Cohen–Lenstra

-know $\#Cl_K[6] = \#Cl_K[2] \cdot \#Cl_K[3]$ but nothing on averages.

Theorem (CKPS, 2023) 2- and 3-torsions are independent

There are c, c' > 0 such that

$$c \log X \le \frac{1}{X} \sum_{0 \le D \le Y} \# \operatorname{Cl}_K[6] \le c' \log X.$$

- First "independence" result for Cohen-Lenstra
- same for negative discriminants
- MIXED MOMENTS:

$$\forall s > 0 \sum_{D \leq X} \# Cl_K[2]^s \# Cl_K[3] \times X(\log X)^{2^s-1}.$$

Multiplicative functions over integer sequences

ON THE SUM
$$\sum_{k=1}^{x} d(f(k))$$

P. Erdös*.

1. Let d(n) denote the number of divisors of a positive integer n, and let f(k) be an irreducible polynomial of degree l with integral coefficients. We shall suppose for simplicity that f(k) > 0 for $k = 1, 2, \ldots$ In the present paper we prove the following result.

THEOREM. There exist positive constants c₁ and c₂ such that

$$c_1 x \log x < \sum_{k=1}^{x} d\left(f(k)\right) < c_2 x \log x \tag{1}$$

for $x \geqslant 2$.

► $d(n) = \#\{\text{positive integer divisors of } n\}$

- ► $d(n) = \#\{\text{positive integer divisors of } n\}$
- ► multiplicative: d(ab) = d(a)d(b) for coprime a, b

- ► $d(n) = \#\{\text{positive integer divisors of } n\}$
- ▶ multiplicative: d(ab) = d(a)d(b) for coprime a, b
- ► Gauss' genus theory, $\#Cl_K[2]$ is essentially d(|D|).

- ► $d(n) = \#\{\text{positive integer divisors of } n\}$
- ▶ multiplicative: d(ab) = d(a)d(b) for coprime a, b
- ▶ Gauss' genus theory, $\#Cl_K[2]$ is essentially d(|D|).
- ▶ 3-torsion parametrized by polynomials $F(x_1, x_2, x_3, x_4)$

- ► $d(n) = \#\{\text{positive integer divisors of } n\}$
- ► multiplicative: d(ab) = d(a)d(b) for coprime a, b
- ► Gauss' genus theory, $\#Cl_K[2]$ is essentially d(|D|).
- ▶ 3-torsion parametrized by polynomials $F(x_1, x_2, x_3, x_4)$

$$\sum_{0 < D < X} \# \operatorname{Cl}_K[2] \# \operatorname{Cl}_K[3] \xrightarrow{\mathsf{vo}} \sum_{(a_1, a_2, a_3, a_4) \in \mathbb{Z}^4 \cap \mathcal{A}(X)} d(F(a_1, a_2, a_3, a_4))$$

For "nice" integer sequences c_a , estimate

$$\sum_{a\in\mathcal{A}}w_X(a)f(c_a)\qquad\text{for }X\geq 1.$$

A countable set,

- ► $d(n) = \#\{\text{positive integer divisors of } n\}$
- multiplicative: d(ab) = d(a)d(b) for coprime a, b
- ► Gauss' genus theory, $\#Cl_K[2]$ is essentially d(|D|).
- ▶ 3-torsion parametrized by polynomials $F(x_1, x_2, x_3, x_4)$

$$\sum_{0 < D < X} \# \operatorname{Cl}_K[2] \# \operatorname{Cl}_K[3] \xrightarrow{\mathsf{vo}} \sum_{(a_1, a_2, a_3, a_4) \in \mathbb{Z}^4 \cap \mathcal{A}(X)} d(F(a_1, a_2, a_3, a_4))$$

For "nice" integer sequences c_a , estimate

$$\sum_{a\in\mathcal{A}}w_X(a)f(c_a)\qquad\text{for }X\geq 1.$$

- A countable set,
- f multiplicative and $0 \le f \le d^s$,

- $d(n) = \#\{\text{positive integer divisors of } n\}$
- ▶ multiplicative: d(ab) = d(a)d(b) for coprime a, b
- ► Gauss' genus theory, $\#Cl_K[2]$ is essentially d(|D|).
- ▶ 3-torsion parametrized by polynomials $F(x_1, x_2, x_3, x_4)$

$$\sum_{0 < D < X} \# \operatorname{Cl}_K[2] \# \operatorname{Cl}_K[3] \xrightarrow{\mathsf{vo}} \sum_{(a_1, a_2, a_3, a_4) \in \mathbb{Z}^4 \cap \mathcal{A}(X)} d(F(a_1, a_2, a_3, a_4))$$

For "nice" integer sequences c_a , estimate

$$\sum_{a\in\mathcal{A}}w_X(a)f(c_a)\qquad\text{for }X\geq 1.$$

- f multiplicative and $0 \le f \le d^s$,
- $\mathbf{w}_{\mathbf{X}}: \mathcal{A} \to [0, \infty)$ finite support function or more general.

- ► $d(n) = \#\{\text{positive integer divisors of } n\}$
- ► multiplicative: d(ab) = d(a)d(b) for coprime a, b
- ► Gauss' genus theory, $\#Cl_K[2]$ is essentially d(|D|).
- ▶ 3-torsion parametrized by polynomials $F(x_1, x_2, x_3, x_4)$

For "nice" integer sequences c_a , estimate

$$\sum_{a\in\mathcal{A}}w_X(a)f(c_a)\qquad\text{for }X\geq 1.$$

- A countable set,
- f multiplicative and $0 \le f \le d^s$,
- ▶ $\mathbf{w}_{\mathbf{X}}: \mathcal{A} \rightarrow [0, \infty)$ finite support function or more general.

Asymptotics are very open: ∞ Square-Free values of $t^4 + 2$ open.

- ▶ $d(n) = \#\{\text{positive integer divisors of } n\}$
- multiplicative: d(ab) = d(a)d(b) for coprime a, b
- ► Gauss' genus theory, $\#Cl_K[2]$ is essentially d(|D|).
- ▶ 3-torsion parametrized by polynomials $F(x_1, x_2, x_3, x_4)$

$$\sum_{0 < D < X} \# \operatorname{Cl}_{K}[2] \# \operatorname{Cl}_{K}[3] \xrightarrow{\mathsf{vo}} \sum_{(a_{1}, a_{2}, a_{3}, a_{4}) \in \mathbb{Z}^{4} \cap \mathcal{A}(X)} d(F(a_{1}, a_{2}, a_{3}, a_{4}))$$

For "nice" integer sequences c_a , estimate

$$\sum_{a\in\mathcal{A}}w_X(a)f(c_a)\qquad\text{for }X\geq 1.$$

- \[
 \mathcal{H}\]
 countable set,
- f multiplicative and $0 \le f \le d^s$,
- ▶ $\mathbf{w}_{\mathbf{X}}: \mathcal{A} \to [0, \infty)$ finite support function or more general.

Asymptotics are very open: ∞ Square-Free values of $t^4 + 2$ open.

- ► Happy with "correct" bounds
- Erdős (1952), Wolke (1971) special cases

 $\exists M = M(X), \ \epsilon, \ \epsilon' > 0$: for all $d \leq M^{\epsilon}$

$$\sum_{\substack{a \in \mathcal{A} \\ c_a \equiv 0 \pmod{d}}} w_X(a) = h(d)M\left(1 + O(\log^{-2\kappa} M)\right) + O(M^{1-\epsilon'}).$$

$$\exists M = M(X), \ \epsilon, \ \epsilon' > 0$$
: for all $d \leq M^{\epsilon}$

$$\sum_{\substack{a\in\mathcal{A}\\c_a\equiv 0 (\text{mod }d)}} w_X(a) = h(d)M\left(1+O(\log^{-2\kappa}M)\right) + O(M^{1-\epsilon'}).$$

- h multiplicative
- h(p) looks like κ/p over the primes
- $h(p^t) = O_p(1/p^{\delta t})$ for some $\delta > 0$

 $\exists M = M(X), \ \epsilon, \ \epsilon' > 0$: for all $d \leq M^{\epsilon}$

$$\sum_{\substack{a\in\mathcal{A}\\ c_a\equiv 0 \pmod{d}}} w_X(a) = h(d)M\left(1+O(\log^{-2\kappa}M)\right) + O(M^{1-\epsilon'}).$$

- h multiplicative
- ▶ h(p) looks like κ/p over the primes
- $h(p^t) = O_p(1/p^{\delta t})$ for some $\delta > 0$

Theorem (CKPS, 2023) The main tool

$$\exists M = M(X), \ \epsilon, \ \epsilon' > 0$$
: for all $d \leq M^{\epsilon}$

$$\sum_{\substack{a \in \mathcal{A} \\ c_a \equiv 0 \pmod{d}}} w_X(a) = h(d)M\left(1 + O(\log^{-2\kappa} M)\right) + O(M^{1-\epsilon'}).$$

- h multiplicative
- ▶ h(p) looks like κ/p over the primes
- $h(p^t) = O_p(1/p^{\delta t})$ for some $\delta > 0$

Theorem (CKPS, 2023) The main tool

Fix s > 0, multiplicative $0 \le t \le d^s$, equidistributed c_a .

 $\exists M = M(X), \ \epsilon, \ \epsilon' > 0$: for all $d \leq M^{\epsilon}$

$$\sum_{\substack{a \in \mathcal{A} \\ c_a \equiv 0 \pmod{d}}} w_X(a) = h(d)M\left(1 + O(\log^{-2\kappa} M)\right) + O(M^{1-\epsilon'}).$$

- h multiplicative
- ▶ h(p) looks like κ/p over the primes
- $h(p^t) = O_p(1/p^{\delta t})$ for some $\delta > 0$

Theorem (CKPS, 2023) The main tool

Fix s > 0, multiplicative $0 \le f \le d^s$, equidistributed c_a . Then

$$\sum_{a\in\mathcal{A}}w_X(a)f(c_a)=O\left(M\prod_{p\leq M}(1+(f(p)-1)h(p))\right).$$

Assumption: sequence "equidistributed" in progressions

$$\exists M = M(X), \ \epsilon, \ \epsilon' > 0$$
: for all $d \leq M^{\epsilon}$

$$\sum_{\substack{a \in \mathcal{A} \\ c_a \equiv 0 \pmod{d}}} w_X(a) = h(d)M\left(1 + O(\log^{-2\kappa} M)\right) + O(M^{1-\epsilon'}).$$

- h multiplicative
- ▶ h(p) looks like κ/p over the primes
- $h(p^t) = O_p(1/p^{\delta t})$ for some $\delta > 0$

Theorem (CKPS, 2023) The main tool

Fix s > 0, multiplicative $0 \le f \le d^s$, equidistributed c_a . Then

$$\sum_{a\in\mathcal{A}}w_X(a)f(c_a)=O\left(M\prod_{p\leq M}(1+(f(p)-1)h(p))\right).$$

▶ $\prod_{p \le M}$ gives the expected logarithms.

Assumption: sequence "equidistributed" in progressions

$$\exists M = M(X), \ \epsilon, \ \epsilon' > 0$$
: for all $d \leq M^{\epsilon}$

$$\sum_{\substack{a \in \mathcal{A} \\ c_a \equiv 0 \pmod{d}}} w_X(a) = h(d)M\left(1 + O(\log^{-2\kappa} M)\right) + O(M^{1-\epsilon'}).$$

- h multiplicative
- h(p) looks like κ/p over the primes
- $h(p^t) = O_p(1/p^{\delta t})$ for some $\delta > 0$

Theorem (CKPS, 2023) The main tool

Fix s > 0, multiplicative $0 \le f \le d^s$, equidistributed c_a . Then

$$\sum_{a\in\mathcal{A}}w_X(a)f(c_a)=O\left(M\prod_{p\leq M}(1+(f(p)-1)h(p))\right).$$

- ▶ $\prod_{p < M}$ gives the expected logarithms.
- ► 6-torsion: Belabas & Bhargava—Shankar—Tsimerman.

► Proved it for more general *f* (submultiplicative).

- Proved it for more general f (submultiplicative).
- ▶ Obtained matching lower bound if $f(p^t) > g(t)$ for some g > 0.

- Proved it for more general f (submultiplicative).
- ▶ Obtained matching lower bound if $f(p^t) > g(t)$ for some g > 0.
- ▶ Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.

- Proved it for more general f (submultiplicative).
- ▶ Obtained matching lower bound if $f(p^t) > g(t)$ for some g > 0.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:

- Proved it for more general f (submultiplicative).
- ▶ Obtained matching lower bound if $f(p^t) > g(t)$ for some g > 0.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:
 - ► didn't allow twists w ($w_X(D) = \#\text{Cl}_K[3]\mathbf{1}(|D| < X)$ in 6-torsion)

- Proved it for more general f (submultiplicative).
- ▶ Obtained matching lower bound if $f(p^t) > g(t)$ for some g > 0.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:
 - ▶ didn't allow twists $w(w_X(D) = \#Cl_K[3]\mathbf{1}(|D| < X)$ in 6-torsion)
 - assumed polynomial saving; we assume logarithmic

- Proved it for more general f (submultiplicative).
- ▶ Obtained matching lower bound if $f(p^t) > g(t)$ for some g > 0.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:
 - ▶ didn't allow twists w ($w_X(D) = \#\operatorname{Cl}_K[3]\mathbf{1}(|D| < X)$ in 6-torsion)
 - assumed polynomial saving; we assume logarithmic
 - assumed $h(p^t) = O(1/p^t)$

 $O(1/p^{\delta t})$ crucial applications with singular polynomials:

- Proved it for more general f (submultiplicative).
- ▶ Obtained matching lower bound if $f(p^t) > g(t)$ for some g > 0.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:
 - ▶ didn't allow twists w ($w_X(D) = \#\text{Cl}_K[3]\mathbf{1}(|D| < X)$ in 6-torsion)
 - assumed polynomial saving; we assume logarithmic
 - assumed $h(p^t) = O(1/p^t)$

 $O(1/p^{\delta t})$ crucial applications with singular polynomials: e.g. for the sequence $(y^2 + x^3)_{x,y \in \mathbb{N}}$ and $t \equiv 0 \pmod{6}$:

$$h(p^t) = \frac{\#\{y, x \in \mathbb{Z}/p^t\mathbb{Z} : y^2 \equiv -x^3 \left(\text{mod } p^t\right)\}}{p^{2t}} \ge \frac{p^{t/2 + 2t/3}}{p^{2t}} = \frac{1}{p^{5t/6}}$$

Sums of three squares

Y. Linnik

$$x^2 + y^2 + z^2 = 1000003$$

Let $F \in \mathbb{Z}[x_1, \dots, x_n]$ polynomial. Count integer solutions of F = 0 in expanding box centered at origin.

Let $F \in \mathbb{Z}[x_1, ..., x_n]$ polynomial. Count integer solutions of F = 0 in expanding box centered at origin.

OK by circle method

Let $F \in \mathbb{Z}[x_1, ..., x_n]$ polynomial. Count integer solutions of F = 0 in expanding box centered at origin.

$$\qquad \boxed{\frac{n}{\deg(F)} > 2^{\deg(F)}}$$

OK by circle method

$$\frac{n}{\deg(F)} < 2$$

< 2 circle method "sub-convex" situation

Let $F \in \mathbb{Z}[x_1, ..., x_n]$ polynomial. Count integer solutions of F = 0in expanding box centered at origin.

$$\frac{n}{\deg(F)} > 2^{\deg(F)}$$

OK by circle method

< 2 circle method "sub-convex" situation

$$1 \le \frac{n}{\deg(F)} < 2$$

 $1 \le \frac{n}{\deg(F)} < 2$ Manin's conjecture for cubic surfaces,

dynamics for Markoff-Hurwitz equations

Let $F \in \mathbb{Z}[x_1, \dots, x_n]$ polynomial. Count integer solutions of F = 0in expanding box centered at origin.

$$\frac{n}{\deg(F)} > 2^{\deg(F)}$$

OK by circle method

 $\frac{1}{\deg(F)}$ < 2 circle method "sub-convex" situation

$$1 \le \frac{n}{\deg(F)} < 2$$

► $1 \le \frac{n}{\deg(F)} < 2$ Manin's conjecture for cubic surfaces,

dynamics for Markoff-Hurwitz equations

$$| \frac{n}{\deg(F)} < 1$$

 $\frac{n}{\deg(F)}$ < 1 Fermat–Wiles regime: solutions rare

Let $F \in \mathbb{Z}[x_1, ..., x_n]$ polynomial. Count integer solutions of F = 0in expanding box centered at origin.

$$\frac{n}{\deg(F)} > 2^{\deg(F)}$$
 OK by circle method

- $\frac{n}{\deg(F)}$ < 2 circle method "sub-convex" situation
- ► $1 \le \frac{\pi}{\deg(F)} < 2$ Manin's conjecture for cubic surfaces, dynamics for Markoff-Hurwitz equations
- $\left| \frac{n}{\deg(F)} < 1 \right|$ Fermat–Wiles regime: solutions rare
- $\frac{n}{\deg(F)} < \frac{1}{2}$ | Very few examples known:

singular planar curves (by determinant method: Bombieri–Pila and Heath-Brown–Salberger)

For $N \in \mathbb{N}$: $L(1,\chi_{-N}) = \sum_{m=1}^{\infty} \left(\frac{-N}{m}\right) \frac{1}{m}$

For $N \in \mathbb{N}$: $L(1,\chi_{-N}) = \sum_{m=1}^{\infty} \left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N) = \prod_{\substack{p \text{ prime} \\ p \mid N}} \left(1 + \left(\frac{-1}{p}\right) \frac{1}{p}\right)$

For
$$N \in \mathbb{N}$$
: $L(1,\chi_{-N}) = \sum_{m=1}^{\infty} \left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N) = \prod_{\substack{p \text{ prime} \\ p \mid N}} \left(1 + \left(\frac{-1}{p}\right) \frac{1}{p}\right)$

For square-free $N \equiv 3 \pmod{8}$ the number of sol's of

$$x^2 + y^2 + z^2 w^2 = N$$

$$\approx c(N)L(1,\chi_{-N})N^{\frac{1}{2}}\log N.$$

For
$$N \in \mathbb{N}$$
: $L(1,\chi_{-N}) = \sum_{m=1}^{\infty} \left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N) = \prod_{\substack{p \text{ prime} \\ \text{old}}} \left(1 + \left(\frac{-1}{p}\right) \frac{1}{p}\right)$

For square-free $N \equiv 3 \pmod{8}$ the number of sol's of

$$x^2 + y^2 + z^2 w^2 = N$$

is

$$\times c(N)L(1,\chi_{-N})N^{\frac{1}{2}}\log N.$$

 $ightharpoonup
m means \leq c_0$ and $\geq c_1$ for absolute constants c_i .

For
$$N \in \mathbb{N}$$
: $L(1,\chi_{-N}) = \sum_{m=1}^{\infty} \left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N) = \prod_{\substack{p \text{ prime} \\ p \mid N}} \left(1 + \left(\frac{-1}{p}\right) \frac{1}{p}\right)$

For square-free $N \equiv 3 \pmod{8}$ the number of sol's of

$$x^2 + y^2 + z^2 w^2 = N$$

$$otin c(N)L(1,\chi_{-N})N^{\frac{1}{2}}\log N.$$

- \triangleright \times means $\leq c_0$ and $\geq c_1$ for absolute constants c_i .
- Gauss: $L(1,\chi_{-N})N^{\frac{1}{2}} = \#$ solutions of $x^2 + y^2 + z^2 = N$.

For
$$N \in \mathbb{N}$$
: $L(1,\chi_{-N}) = \sum_{m=1}^{\infty} \left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N) = \prod_{\substack{p \text{ prime} \\ \text{pl}N}} \left(1 + \left(\frac{-1}{p}\right) \frac{1}{p}\right)$

For square-free $N \equiv 3 \pmod{8}$ the number of sol's of

$$x^2 + y^2 + z^2 w^2 = N$$

$$\approx c(N)L(1,\chi_{-N})N^{\frac{1}{2}}\log N.$$

- ▶ \times means $\leq c_0$ and $\geq c_1$ for absolute constants c_i .
- Gauss: $L(1,\chi_{-N})N^{\frac{1}{2}} = \#$ solutions of $x^2 + y^2 + z^2 = N$.
- Proof: $\sum_{x,y,z} d(z)$, sum over $x^2 + y^2 + z^2 = N$.

For
$$N \in \mathbb{N}$$
: $L(1,\chi_{-N}) = \sum_{m=1}^{\infty} \left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N) = \prod_{\substack{p \text{ prime} \\ \text{pl}N}} \left(1 + \left(\frac{-1}{p}\right) \frac{1}{p}\right)$

For square-free $N \equiv 3 \pmod{8}$ the number of sol's of

$$x^2 + y^2 + z^2 w^2 = N$$

$$\simeq c(N)L(1,\chi_{-N})N^{\frac{1}{2}}\log N.$$

- ▶ \times means $\leq c_0$ and $\geq c_1$ for absolute constants c_i .
- Gauss: $L(1,\chi_{-N})N^{\frac{1}{2}} = \#$ solutions of $x^2 + y^2 + z^2 = N$.
- ▶ Proof: $\sum_{x,y,z} d(z)$, sum over $x^2 + y^2 + z^2 = N$.
- Duke's work on cusp forms for equidistribution in progressions

For
$$N \in \mathbb{N}$$
: $L(1,\chi_{-N}) = \sum_{m=1}^{\infty} \left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N) = \prod_{\substack{p \text{ prime} \\ \text{old}}} \left(1 + \left(\frac{-1}{p}\right) \frac{1}{p}\right)$

For square-free $N \equiv 3 \pmod{8}$ the number of sol's of

$$x^2 + y^2 + z^2 w^2 = N$$

$$\asymp c(N)L(1,\chi_{-N})N^{\frac{1}{2}}\log N.$$

- ▶ \times means $\leq c_0$ and $\geq c_1$ for absolute constants c_i .
- Gauss: $L(1,\chi_{-N})N^{\frac{1}{2}} = \#$ solutions of $x^2 + y^2 + z^2 = N$.
- ► Proof: $\sum_{x,y,z} d(z)$, sum over $x^2 + y^2 + z^2 = N$.
- Duke's work on cusp forms for equidistribution in progressions
- ► Friedlander–Iwaniec: $\sum_{x,v,z} \Lambda(x)$ on Elliot–Halberstam & GRH

For
$$N \in \mathbb{N}$$
: $L(1,\chi_{-N}) = \sum_{m=1}^{\infty} \left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N) = \prod_{\substack{p \text{ prime} \\ p \mid N}} \left(1 + \left(\frac{-1}{p}\right) \frac{1}{p}\right)$

For square-free $N \equiv 3 \pmod{8}$ the number of sol's of

$$x^2 + y^2 + z^2 w^2 = N$$

 $\approx c(N)L(1,\chi_{-N})N^{\frac{1}{2}}\log N.$

$$ightharpoonup
m means \leq c_0$$
 and $\geq c_1$ for absolute constants c_i .

- Gauss: $L(1,\chi_{-N})N^{\frac{1}{2}} = \#$ solutions of $x^2 + y^2 + z^2 = N$.
- ▶ Proof: $\sum_{x,y,z} d(z)$, sum over $x^2 + y^2 + z^2 = N$.
- Duke's work on cusp forms for equidistribution in progressions
- Friedlander–Iwaniec: $\sum_{x,y,z} \Lambda(x)$ on Elliot–Halberstam & GRH
- ▶ also $(x_1 \cdots x_k)^2 + x_{k+1}^2 + x_{k+2}^2 = N$ (where $n/\deg(F) \to 1/2$), and $(x_1 \cdots x_k)^2 + (x_{k+1} \cdots x_{2k})^2 + x_{2k+1}^2 = N$ e.t.c.

$$(x, y, z) \in \mathbb{N}^3$$
 with $x^2 + y^2 + z^2 = N$

N = 1716099

N = 1707035

$$(x, y, z) \in \mathbb{N}^3$$
 with $x^2 + y^2 + z^2 = N$

N = 1716099

N = 1707035

Color intensity analogous to the size of $\tau(x)\tau(y)\tau(z)$.

▶ 960 solutions in first image, 936 solutions in second!

$$(x, y, z) \in \mathbb{N}^3$$
 with $x^2 + y^2 + z^2 = N$

- ▶ 960 solutions in first image, 936 solutions in second!
- ► 1716099 = 3 · 7 · 11 · 17 · 19 · 23 (all except 17 are 3 mod 4)

$$(x, y, z) \in \mathbb{N}^3$$
 with $x^2 + y^2 + z^2 = N$

$$N = 1716099$$
 $N = 1707035$

- ▶ 960 solutions in first image, 936 solutions in second!
- ► 1716099 = 3 · 7 · 11 · 17 · 19 · 23 (all except 17 are 3 mod 4) 1707035 = 5 · 11 · 41 · 757 (only 11 is 3 mod 4)

$$(x, y, z) \in \mathbb{N}^3$$
 with $x^2 + y^2 + z^2 = N$

N = 1716099

N = 1707035

- ▶ 960 solutions in first image, 936 solutions in second!
- ► 1716099 = 3 · 7 · 11 · 17 · 19 · 23 (all except 17 are 3 mod 4) 1707035 = 5 · 11 · 41 · 757 (only 11 is 3 mod 4)
- prefactor c(N) biased against primes 3 mod 4

Summary

- 1. Tool for general averages.
- 2. Independent Cohen-Lenstra.
- 3. Count solutions in few variables.

