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3. Applications to algebraic number theory?



Class numbers

_@/ If p is a small odd prime, the proportion of imaginary quadratic fields whose
class number is divisible by p seems to be significantly greater than 1/p (for

instance 43% for p=3, 23.5% for p=5).
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» The ideal class group Clk:
» Finite abelian group encoding crucial arithmetic information.
» For n > 1, Clk[n] is the n-torsion subgroup.
» Interesting properties:
» If #Clk[n] = 1, then n ¢ #Clk][n].
» Average upper bounds: #Clk[n] = O(|D|*() (Soundararajan,
Heath-Brown—Pierce, Frei-Widmer, Koymans—Thorner).

Conjecture (Cohen & Lenstra)

» #Clk[n] has constant average when n odd.
» #Clk[n] exhibits average of order log |D| when n even.

» Known cases:

» n = 3: Davenport—Heilbronn, Bhargava—Shankar—Tsimerman.
» n = 2K: Fouvry—Kliiners, A. Smith.
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Theorem (CKPS, 2023)  2- and 3-torsions are independent

There are ¢, ¢’ > 0 such that

1 ’
clogX < + > #Cik[6] < ¢’ log X.
0<D<X

» First “independence” result for Cohen—Lenstra
» same for negative discriminants
» MIXED MOMENTS:

Vs > 03 pex #Clk[2]°#Clk[3] = X(log X)Z*~".



Multiplicative functions over
Integer sequences

ON THE SUM I d(f(k))
k=1

P. ERrpos*.-

1. Let d(n) denote the number of divisors of a positive integer n, and
let f(k) be an irreducible polynomial of degree ! with integral coefficients.
We shall suppose for simplicity that f(k) >0 for k=1, 2, .... In the
present paper we prove the following result.

THEOREM. There exist positive constants ¢, and c, such that
czlogzr < z d(f(lc)) <cyzlogz (1)
k=1

Jor x>2.
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Goal
For “nice” integer sequences c,, estimate

Z wx(a)f(ca)  for X >1.
acA
» A countable set,

» f multiplicative and 0 < f < d°,
» wy : A — [0, o) finite support function or more general.

Asymptotics are very open: co Square-Free values of t* + 2 open.
» Happy with “correct” bounds
» Erdés (1952), Wolke (1971) special cases



~ Assumption: sequence “equidistributed” in progressions
AM = M(X), €, € > 0: forall d < M¢

> wx(a) = h(d)M (1 + O(log™ M)) + O(M'™).

aeA
c2=0(mod d)



Assumption: sequence “equidistributed” in progressions
AM = M(X), €, € > 0: for all d < M¢

> wx(a) = h(d)M (1+ O(log™* M)) + O(M'™).

aeA
c2=0(mod d)

» h multiplicative
» h(p) looks like x/p over the primes
» h(p') = Op(1/p°") for some 6 > 0



Assumption: sequence “equidistributed” in progressions
AM = M(X), €, € > 0: for all d < M¢

> wx(a) = h(d)M (1+ O(log™* M)) + O(M'™).

aeA
c2=0(mod d)

» h multiplicative
» h(p) looks like x/p over the primes
» h(p') = Op(1/p°") for some 6 > 0

Theorem (CKPS, 2023) The main tool



Assumption: sequence “equidistributed” in progressions
AM = M(X), €, € > 0: for all d < M¢

> wx(a) = h(d)M (1+ O(log™* M)) + O(M'™).

aeA
c2=0(mod d)

» h multiplicative
» h(p) looks like x/p over the primes
» h(p') = Op(1/p°") for some 6 > 0

Theorem (CKPS, 2023) The main tool

Fix s > 0, multiplicative 0 < f < d®, equidistributed c;.



Assumption: sequence “equidistributed” in progressions
AM = M(X), €, € > 0: for all d < M¢

> wx(a) = h(d)M (1+ O(log™* M)) + O(M'™).

aeA
c2=0(mod d)

» h multiplicative
» h(p) looks like x/p over the primes
» h(p') = Op(1/p°") for some 6 > 0

Theorem (CKPS, 2023) The main tool

Fix s > 0, multiplicative 0 < f < d®, equidistributed c,. Then

> wx(@)f(ca) = O (M[ (1 +(1(p) - D(p) }

aeA p<

<



Assumption: sequence “equidistributed” in progressions
AM = M(X), €, € > 0: for all d < M¢

> wx(a) = h(d)M (1+ O(log™* M)) + O(M'™).

aeA
c2=0(mod d)

» h multiplicative
» h(p) looks like x/p over the primes
» h(p') = Op(1/p°") for some 6 > 0

Theorem (CKPS, 2023) The main tool

Fix s > 0, multiplicative 0 < f < d®, equidistributed c,. Then

> wx(@)f(ca) = O (M[ (1 +(1(p) - D(p) }

acA p<M

> [Ip<m gives the expected logarithms.



Assumption: sequence “equidistributed” in progressions
AM = M(X), €, € > 0: for all d < M¢

> wx(a) = h(d)M (1+ O(log™* M)) + O(M'™).

aeA
c2=0(mod d)

» h multiplicative
» h(p) looks like x/p over the primes
» h(p') = Op(1/p°") for some 6 > 0

Theorem (CKPS, 2023) The main tool

Fix s > 0, multiplicative 0 < f < d®, equidistributed c,. Then
> wx(@)f(ca) = O (M [ ](1+ (f(p) - )h(p)) )
acA p<M

> [Ip<m gives the expected logarithms.
» 6-torsion: Belabas & Bhargava—Shankar—Tsimerman.
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Wolke:
» didn’t allow twists w (wx(D) = #Clk[3]1(|D| < X) in 6-torsion)
» assumed polynomial saving; we assume logarithmic
» assumed h(p') = O(1/p")

v

O(1/p°") crucial applications with singular polynomials:
e.g. for the sequence (y2 + x3)y yenw and t = 0 (mod 6) :

t #{y,x €Z/p'Z:y? = —x° (mod pf)} pt/2+2t/3 1
h(p') = p2t 2 p2t - p5t/6




Sums of three squares

Y. Linnik

x? 4 y?2 + 22 =1 000 003
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Goal

Let F € Z[xq, ..., Xs] polynomial. Count integer solutions of F =0
in expanding box centered at origin.

n
> 2489(F) | OK by circle method
F“ " | deg(F) Y
\ n , —_—
_ > < 2 | circle method “sub-convex” situation
L deg(F)
0=
:’E » (1< ﬁ(,:) < 2| Manin’s conjecture for cubic surfaces,
o
é dynamics for Markoff-Hurwitz equations
ws
l;é G < 1| Fermat—Wiles regime: solutions rare
' deg(F)
> n < L Very few examples known:
deg(F) 2 y P ’

singular planar curves (by determinant method:
Bombieri—Pila and Heath-Brown—Salberger)
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Theorem (CKPS, 2023).

For square-free N = 3 (mod 8) the number of sol’s of

X2+ y2+ 22w =N

= ¢(N)L(1,x_n)NZ log N.

» < means < ¢y and > ¢4 for absolute constants c;.

» Gauss: L(1,X_N)N% = # solutions of x% + y? 4+ z° = N.

> Proof: ¥, d(z), sumover x? + y2 + z% = N.

» Duke’s work on cusp forms for equidistribution in progressions

> Friedlander—lwaniec: . , , A(x) on Elliot-Halberstam & GRH

> also (x1 -+~ xk)® + X¢; + X2,, = N (where n/ deg(F) — 1/2),
and (x1 - xk)? 4+ (X1 Xek)? + X5, = N etc.

|
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(x,y,z) € N® with x> + y> + 22 = N

o e
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N=1716 099 N = 1707 035
Color intensity analogous to the size of 7(x)7(y)7(z).

» 960 solutions in first image, 936 solutions in second!

» 1716099 =3-7-11-17-19-23 (all except 17 are 3 mod 4)
1707035 =5-11-41-757 (only 11 is 3 mod 4)

» prefactor ¢(N) biased against primes 3 mod 4



1. Tool for general averages.

2. Independent Cohen—Lenstra.

3. Count solutions in few variables.




