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Basic arithmetic

The fundamental theorem of arithmetic, which dates back to Euclid,
states that every positive integer can uniquely be factored into primes.

In abstract algebra one learns about rings, where one can add, subtract
and multiply.

The integers form a prototypical example of a ring, and the fundamental
theorem of arithmetic describes the multiplicative structure.

But what happens for other rings? Many applications ranging from
abstract number theory and geometry to cryptography.
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The Gaussian integers

In 1832 Gauss introduced the Gaussian integers
Z[i ] := {a + bi : a, b ∈ Z}.

We can add Gaussian integers

(1 + i) + (−3− 2i) = −2− i

and multiply Gaussian integers by expanding
brackets and using the rule i2 = −1

(2 + 5i) · (3− 4i) = 6 + 15i − 8i − 20i2 = 26 + 7i .

Every Gaussian integer can uniquely be factored as a unit and Gaussian
primes. The units of Z[i ] are {±1,±i}.



7/24

The Gaussian integers

In 1832 Gauss introduced the Gaussian integers
Z[i ] := {a + bi : a, b ∈ Z}.

We can add Gaussian integers

(1 + i) + (−3− 2i) = −2− i

and multiply Gaussian integers by expanding
brackets and using the rule i2 = −1

(2 + 5i) · (3− 4i) = 6 + 15i − 8i − 20i2 = 26 + 7i .

Every Gaussian integer can uniquely be factored as a unit and Gaussian
primes. The units of Z[i ] are {±1,±i}.



8/24

The Gaussian integers

In 1832 Gauss introduced the Gaussian integers
Z[i ] := {a + bi : a, b ∈ Z}.

We can add Gaussian integers

(1 + i) + (−3− 2i) = −2− i

and multiply Gaussian integers by expanding
brackets and using the rule i2 = −1

(2 + 5i) · (3− 4i) = 6 + 15i − 8i − 20i2 = 26 + 7i .

Every Gaussian integer can uniquely be factored as a unit and Gaussian
primes. The units of Z[i ] are {±1,±i}.



9/24

Primes and irreducibles

To study factorization in more general rings, we make a definition.

Definition 1

Let R be a commutative ring. We say that a ∈ R \ {0} is irreducible if it
is not the product of two non-units. Furthermore, an element a ∈ R, that
is non-zero and not a unit, is called prime if for all b, c ∈ R we have
a | bc implies a | b or a | c.

If R is an integral domain, then every prime element is irreducible. The
converse also holds for R = Z and R = Z[i ], but it does not hold in
general.
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Failure of unique factorization

In the ring Z[
√
−5] := {a + b

√
−5 : a, b ∈ Z} we have

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

It is not hard to see that 2, 3, 1 +
√
−5 and 1−

√
−5 are all irreducible.

The problem comes from the fact that 3 is irreducible but not prime.

We see that factorizations may no longer be unique! We say that a ring
R is a number ring if it is a subring of a finite field extension of Q.

Theorem 1

If R is a a number ring, then every element of R can be factored into
irreducible elements.
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Kummer and ideals

Kummer realized around 1850 that the correct notion for factorization in
number rings is that of ideals. Roughly speaking, every ideal can uniquely
be factored into prime ideals.

This led to the introduction of an abelian group called the class group,
which measures the failure of unique factorization of elements.

Class groups are known to be finite, but still very mysterious. Cohen and
Lenstra conjectured that class groups behave like random finite abelian
groups in families of number fields.
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Random finite abelian groups

How does one generate random finite abelian groups? Suppose that we
want to generate a random finite abelian group A with 4 elements, say a,
b, c and d .

A a b c d
a ∗ ∗ ∗ ∗
b ∗ ∗ ∗ ∗
c ∗ ∗ ∗ ∗
d ∗ ∗ ∗ ∗

Idea: generate a random addition table for A by picking a, b, c and d
uniformly at random for each ∗ entry above. Discard those addition
tables that do not give rise to an abelian group.

Then we get the finite abelian groups of size 4 with probability
proportional to 1

|Aut(A)| .
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Current research: thin families

Only very few instances of the Cohen-Lenstra conjectures have been
proven. Proving randomness of deterministic objects is extremely tricky.
The following theorem builds on earlier joint work with Milovic.

Theorem 2 (K., 2018)

The density of prime numbers p such that the class number of Q(
√
−p)

is divisible by 16 is equal to 1
16 .
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Current research: wide families

Let l be an odd prime number. If K is a degree l cyclic field, then Cl(K )
becomes a Z[ζl ]-module in a natural way. The following theorem
generalizes a result due to Smith.

Theorem 3 (K.-Pagano, 2018)

Assume GRH and let l be an odd prime number. Then the group
((1− ζl)Cl(K ))[l∞] has the distribution predicted by Cohen and Lenstra
as K varies over degree l cyclic fields over Q ordered by discriminant.
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Questions


