
Hilbert 10 via additive combinatorics I

Peter Koymans
Utrecht University

Number Theory Web Seminar

15 May 2025

1 / 17



History

At the 1900 mathematical conference in Paris, Hilbert introduced his
famous list of 23 problems.

Question (Hilbert’s tenth problem)

Given a Diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined in a finite number of operations
whether the equation is solvable in rational integers.

In modern terms: does there exist an algorithm such that:
Input: a polynomial p ∈ Z[x1, . . . , xn].
Output: “YES” if there is an integer solution (a1, . . . , an) ∈ Zn with
p(a1, . . . , an) = 0, “NO” otherwise.
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Diophantine and listable sets

Definition (Diophantine set)

We say that a subset S ⊆ Zn is Diophantine if there exists a polynomial
p(x1, . . . , xn, y1, . . . , ym) ∈ Z[x, y] such that

S = {x ∈ Zn : ∃y ∈ Zm such that p(x, y) = 0}.

Definition (Listable set)

We say that a subset S ⊆ Zn is listable (or recursively enumerable) if
there is an algorithm that enumerates S when left running forever.

Theorem (MRDP, 1970)

A subset S ⊆ Zn is Diophantine if and only if it is listable.

Corollary (Hilbert’s tenth problem)

Hilbert’s tenth problem is undecidable, i.e. there is no algorithm that can
decide whether a polynomial p ∈ Z[x1, . . . , xn] has a zero or not.
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The MRDP theorem

The MRDP theorem is historically proven by three major results:

▶ In 1950, Julia Robinson proves that “J.R.” implies that
exponentiation is Diophantine, i.e.

{(a, b, c) ∈ Z3 : a = bc}

is Diophantine. Pell’s equation is a key ingredient.

▶ In 1961, Davis–Putnam–Robinson prove that exponential
Diophantine sets are precisely the listable sets.

In particular, “J.R.” implies that a set is Diophantine if and only if it
is listable, and Hilbert’s tenth problem is undecidable.

▶ In 1970, Matiyasevich proves “J.R.”, thus settling Hilbert’s tenth
problem. Pell’s equation is a key ingredient in this step as well.

Matiyasevich asks in the 1970s: what about other rings?
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Finitely generated rings

Definition

For a finitely generated ring R, we have natural analogues of “Hilbert’s
tenth problem”, “Diophantine set” and “listable set” by replacing all
occurrences of Z by R.

Theorem (Mazur–Rubin, 2009)

Assume BSD. Let R be a finitely generated ring with |R| = ∞. Then
Hilbert’s tenth problem is undecidable over R.

Theorem (K.–Pagano, 2024)

Let R be a finitely generated ring with |R| = ∞. Then Hilbert’s tenth
problem is undecidable over R.

We do this by proving the following conjecture of Denef–Lipshitz (1978).

Theorem (K.–Pagano, 2024)

Let K be a number field. Then Z is Diophantine over OK .

This implies the previous theorem by work of Eisenträger.
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Elliptic curves

Recall that Pell’s equation plays an important role in the MRDP theorem.

The theory of Pell’s equation works well over totally real number fields.
Denef (1980) suggested to use other algebraic groups of rank 1 for
number fields that are not totally real.

The next result builds on work of Poonen and Cornelissen–Pheidas–Zahidi.

Theorem (Shlapentokh (2008))

Let L/K be an extension of number fields. Suppose that there exists an
elliptic curve E/K such that rkE (L) = rkE (K ) > 0. Then OK is
Diophantine over OL.

Our main new technical result is (rank growth theorem):

Theorem (K.–Pagano, 2024)

Let K be a number field with at least 32 real embeddings. Then there
exists an elliptic curve E/K such that

rkE (K ) = rkE (K (i)) > 0.
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Reduction to the rank growth theorem

Lemma (Denef, Denef–Lipshitz)

Let K ⊆ L be number fields. Then:

(i) If D1,D2 ⊆ OK are Diophantine over OK , so is D1 ∩ D2.

(ii) If D ⊆ OK is Diophantine over OK and if OK is Diophantine over
OL, then D is Diophantine over OL.

(iii) If Z is Diophantine over OL, then Z is Diophantine over OK .

(iv) If K is totally real, then Z is Diophantine over OK .

Rank growth implies that Z is Diophantine over OK .

Let K be a number field: we will show that Z is Dio over OK . Define M
to be the Galois closure of K (i ,

√
3,
√
5,
√
7,
√
11,

√
13,

√
17), so suffices

to show that Z is Dio over OM by (iii). Let D ⊆ Gal(M/Q) be a
decomposition group at infinity, so i ̸∈ MD =: L and M = L(i). Hence
rank growth and Shlapentokh’s theorem show that OMD is Dio over OM .
By (i), we get that OF is Dio over OM , where F is the intersection of all
the MD (with D a decomposition group at infinity). But F is totally real,
so Z is Dio over OF by (iv), and therefore over OM by (ii).
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Rank growth

We recall:

Theorem (K.–Pagano, 2024)

Let K be a number field with at least 32 real embeddings. Then there
exists an elliptic curve E/K such that

rkE (K ) = rkE (K (i)) > 0.

What is the challenge?

▶ It is easy to construct elliptic curves E/K with rkE (K ) > 0.

▶ It is also easy to use 2-descent to upper bound the rank of E/K .

However, it is not at all clear how to combine this.
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The 2-Selmer group

Consider the short exact sequence of GK := Gal(K/K )-modules

0 → E [2] → E
·2−→ E → 0.

Taking Galois cohomology gives

0 → E (K )[2] → E (K )
·2−→ E (K )

δ−→ H1(GK ,E [2]),

so E (K )/2E (K )
δ
↪−→ H1(GK ,E [2]). However, dimF2 H

1(GK ,E [2]) = ∞ so
this is not too informative. But, for each place v of K we have

0 E (K )[2] E (K ) E (K ) H1(GK ,E [2])

0 E (Kv )[2] E (Kv ) E (Kv ) H1(GKv ,E [2]).

·2 δ

resv

·2 δv
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The 2-Selmer group II

Recall:

E (K )/2E (K ) H1(GK ,E [2])

E (Kv )/2E (Kv ) H1(GKv ,E [2])

δ

resv

δv

We define

Sel2(E/K ) := ker

(
H1(GK ,E [2])

∏
v resv−−−−→

∏
v

H1(GKv ,E [2])

im(δv )

)
.

Key facts:

(1) We have im(δ) ⊆ Sel2(E/K ), and hence

rkE (K ) + dimF2 E (K )[2] = dimF2 E (K )/2E (K ) ≤ dimF2 Sel
2(E/K ).

(2) The group Sel2(E/K ) is computable and finite dimensional (note
that rank is not known to be computable!).
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Forcing positive rank

Take some E1 with E1(K )[2] ∼= F2
2, i.e.

E1 : y
2 = (x − a1)(x − a2)(x − a3) a1, a2, a3 ∈ K distinct.

Consider the quadratic twist E t
1 with t := (n− a1)(n− a2)(n− a3). Then

E t
1 : (n − a1)(n − a2)(n − a3)y

2 = (x − a1)(x − a2)(x − a3)

has the rational point (x , y) = (n, 1). It is not hard to show that this
point is almost never torsion (Northcott’s theorem + height bounds).

However, it is very difficult to control rank in this family. Instead, we
consider E t

1 with t := m(n − a1m)(n − a2m)(n − a3m). Then

E t
1 : m(n − a1m)(n − a2m)(n − a3m)y2 = (x − a1)(x − a2)(x − a3)

has the rational point (x , y) = (n/m, 1/m2) and hence rkE t
1(K ) > 0.
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Forcing positive rank II

Because i ̸∈ K (since K has 32 real places), we get

rkE t
1(K (i)) = rkE t

1(K ) + rkE−t
1 (K ).

Hence it suffices to find t := m(n − a1m)(n − a2m)(n − a3m) with

rkE−t
1 (K ) = 0,

as then E := E t
1 satisfies rkE (K (i)) = rkE (K ) > 0 as desired.

Because E1 has full rational 2-torsion (and therefore all of its quadratic
twists do), it suffices to find t := m(n − a1m)(n − a2m)(n − a3m) with

dimF2 Sel
2(E−t

1 /K ) = 2,

as this implies rkE−t
1 (K ) = 0.
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Computing 2-Selmer

We now restrict to K = Q for simplicity.

Because E (Q)[2] ∼= F2
2, we get

Sel2(E/Q) ⊆ H1(GQ,E [2]) ∼= H1(GQ,F2
2)

∼= (Q∗/Q∗2)2

= {(x1, x2) : x1, x2 squarefree}.

The local conditions im(δv ) are hard to describe for v | ∆E1 . But for E
d
1

(with d squarefree and gcd(d ,∆E1) = 1), we have the explicit description

im(δv ) =

{
⟨(αβ, dα), (−dα,−αγ)⟩ if v | d
H1

ur(GQv ,F2
2) if v ∤ d∆E1

with α = a1 − a2, β = a1 − a3 and γ = a2 − a3.

In particular, if (x1, x2) ∈ Sel2(E d
1 /Q), then x1, x2 are only divisible by

primes dividing d∆E .
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Computing 2-Selmer II

Theorem

Let E1/Q be an elliptic curve with E1[2] ∼= F2
2. Let d1 = p1 · · · pr be

squarefree and let d2 = q1 · · · qr be squarefree. Assume that:

▶ the primes pi , qi do not divide ∆E1 ,

▶ we have (pi/r) = (qi/r) for all odd r | ∆E1 and pi ≡ qi mod 8,

▶ we have (pi/pj) = (qi/qj) for all 1 ≤ i < j ≤ r .

Then we have Sel2(E d1
1 /Q) ∼= Sel2(E d2

1 /Q).

In particular, fixing some d , we can compute Sel2(E dp
1 /Q) from

Sel2(E d
1 /Q) and the congruence of p modulo 8d∆E .

Distribution of Sel2(E d
1 /Q) was found by Heath-Brown, Kane and Smith.
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Additive combinatorics

Our key new insight is to bring additive combinatorics into the field.

Take

t = m(n − a1m)(n − a2m)(n − a3m) = κP1P2P3P4

with

n − a1m = P1, n − a2m = P2, n − a3m = P3, m = κP4.

This is possible by the Green–Tao theorem (recently generalized to
number fields by Kai).

The strategy is then:

(1) First arrange Sel2(Eκ
1 /Q) favorably.

(2) Then twist by P1,P2,P3,P4 in a controlled way.
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Final hurdles

A direct strategy is to take an assignment of Legendre symbols with
dimF2 Sel

2(E d
1 /Q) = 2 (which exists by Heath-Brown/Kane/Smith), and

then mimic this assignment with κ,P1,P2,P3,P4.

However, since Pi = n − aid and P4 = κd , we see that there are
constraints between (Pi/Pj), and moreover (PiPj/r) = +1 with r | κ.

An extra complication is that Green–Tao does not give control over the
Legendre symbol (Pi/Pj).

We circumvent this by carefully choosing κ and then P1,P2,P3,P4 (as an
analogy: one can choose 3 entries of a 2× 2-matrix so that the matrix is
invertible no matter the choice of the fourth entry).

It is only here that we use the presence of the 32 real places of K to play
off some symbols against each other with quadratic reciprocity.
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Summary

Hilbert’s tenth problem is undecidable for every finitely generated ring R
with |R| = ∞, strengthening previous conditional work of Mazur–Rubin.

The key technical result is a rank growth result: under mild hypotheses,
there exists an elliptic curve E/K with rkE (K (i)) = rkE (K ) > 0.

This result is proven by a combination of 2-descent and additive
combinatorics.

We consider a family with elevated rank to guarantee positive rank.

By finding a prime specialization with additive combinatorics, 2-descent
allows us to show that rkE−1(K ) = 0.

Thank you for your attention!

17 / 17



Summary

Hilbert’s tenth problem is undecidable for every finitely generated ring R
with |R| = ∞, strengthening previous conditional work of Mazur–Rubin.

The key technical result is a rank growth result: under mild hypotheses,
there exists an elliptic curve E/K with rkE (K (i)) = rkE (K ) > 0.

This result is proven by a combination of 2-descent and additive
combinatorics.

We consider a family with elevated rank to guarantee positive rank.

By finding a prime specialization with additive combinatorics, 2-descent
allows us to show that rkE−1(K ) = 0.

Thank you for your attention!

17 / 17



Summary

Hilbert’s tenth problem is undecidable for every finitely generated ring R
with |R| = ∞, strengthening previous conditional work of Mazur–Rubin.

The key technical result is a rank growth result: under mild hypotheses,
there exists an elliptic curve E/K with rkE (K (i)) = rkE (K ) > 0.

This result is proven by a combination of 2-descent and additive
combinatorics.

We consider a family with elevated rank to guarantee positive rank.

By finding a prime specialization with additive combinatorics, 2-descent
allows us to show that rkE−1(K ) = 0.

Thank you for your attention!

17 / 17



Summary

Hilbert’s tenth problem is undecidable for every finitely generated ring R
with |R| = ∞, strengthening previous conditional work of Mazur–Rubin.

The key technical result is a rank growth result: under mild hypotheses,
there exists an elliptic curve E/K with rkE (K (i)) = rkE (K ) > 0.

This result is proven by a combination of 2-descent and additive
combinatorics.

We consider a family with elevated rank to guarantee positive rank.

By finding a prime specialization with additive combinatorics, 2-descent
allows us to show that rkE−1(K ) = 0.

Thank you for your attention!

17 / 17



Summary

Hilbert’s tenth problem is undecidable for every finitely generated ring R
with |R| = ∞, strengthening previous conditional work of Mazur–Rubin.

The key technical result is a rank growth result: under mild hypotheses,
there exists an elliptic curve E/K with rkE (K (i)) = rkE (K ) > 0.

This result is proven by a combination of 2-descent and additive
combinatorics.

We consider a family with elevated rank to guarantee positive rank.

By finding a prime specialization with additive combinatorics, 2-descent
allows us to show that rkE−1(K ) = 0.

Thank you for your attention!

17 / 17



Summary

Hilbert’s tenth problem is undecidable for every finitely generated ring R
with |R| = ∞, strengthening previous conditional work of Mazur–Rubin.

The key technical result is a rank growth result: under mild hypotheses,
there exists an elliptic curve E/K with rkE (K (i)) = rkE (K ) > 0.

This result is proven by a combination of 2-descent and additive
combinatorics.

We consider a family with elevated rank to guarantee positive rank.

By finding a prime specialization with additive combinatorics, 2-descent
allows us to show that rkE−1(K ) = 0.

Thank you for your attention!

17 / 17


